Effects of Ketogenic Diet on Quality of Life in Parkinson Disease: An Integrative Review
Abstract
1. Introduction
1.1. Aims and Research Questions
1.1.1. Primary
- -
- Does the KD improve QoL and reduce motor and non-motor symptoms in patients with PD, while also producing measurable changes in specific metabolic parameters?
1.1.2. Secondary
- -
- Is the KD feasible and sustainable for patients with PD in terms of adherence, and what is its tolerability and safety profile (including the most common adverse events)?
2. Methods
2.1. Study Design & Protocol Registration
2.2. Problem Identification
2.3. Inclusion and Exclusion Criteria
2.4. Literature Search
2.5. Evaluation of Risk of Bias and Methodological Quality of Studies Included
2.6. Data Extraction and Synthesis
3. Results
4. Discussion
4.1. Future Perspectives
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jankovic, J.; Tan, E.K. Parkinson’s disease: Etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry 2020, 91, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Yang, Y.; Zhang, L.; Zhang, Q.; Balbuena, L.; Ungvari, G.S.; Zang, Y.-F.; Xiang, Y.-T. Quality of life in Parkinson’s disease: A systematic review and meta—Analysis of comparative studies. CNS Neurosci. Ther. 2021, 27, 270–279. [Google Scholar] [CrossRef]
- Knecht, L.; Folke, J.; Dodel, R.; Ross, J.A.; Albus, A. Alpha-synuclein Immunization Strategies for Synucleinopathies in Clinical Studies: A Biological Perspective. Neurotherapeutics 2022, 19, 1489–1502. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Pan, Y.-T.; Zhang, Z.-Y.; Yang, H.; Yu, S.-Y.; Zheng, Y.; Ma, J.-H.; Wang, X.-M. Systemic activation of NLRP3 inflammasome and plasma α-synuclein levels are correlated with motor severity and progression in Parkinson’s disease. J. Neuroinflamm. 2020, 17, 11. [Google Scholar] [CrossRef]
- Catanesi, M.; Brandolini, L.; D’Angelo, M.; Tupone, M.G.; Benedetti, E.; Alfonsetti, M.; Quintiliani, M.; Fratelli, M.; Iaconis, D.; Cimini, A.; et al. S-Carboxymethyl Cysteine Protects against Oxidative Stress and Mitochondrial Impairment in a Parkinson’s Disease In Vitro Model. Biomedicines 2021, 9, 1467. [Google Scholar] [CrossRef]
- Borsche, M.; König, I.R.; Delcambre, S.; Petrucci, S.; Balck, A.; Brüggemann, N.; Zimprich, A.; Wasner, K.; Pereira, S.L.; Avenali, M.; et al. Mitochondrial damage-associated inflammation highlights biomarkers in PRKN/PINK1 parkinsonism. Brain 2020, 143, 3041–3051. [Google Scholar] [CrossRef]
- Ye, H.; Robak, L.A.; Yu, M.; Cykowski, M.; Shulman, J.M. Genetics and Pathogenesis of Parkinson’s Syndrome. Annu. Rev. Pathol. 2023, 18, 95–121. [Google Scholar] [CrossRef]
- Tansey, M.G.; Wallings, R.L.; Houser, M.C.; Herrick, M.K.; Keating, C.E.; Joers, V. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 2022, 22, 657–673. [Google Scholar] [CrossRef]
- Pir Hayati, M.; Eydivandi, N.; Khodashenas, M.; Fallah Torbeh Bar, H. Prevalence of Depression and Anxiety and Related Factors in Patients with Parkinson’s Disease. Int. Clin. Neurosci. J. 2021, 8, 85–89. [Google Scholar] [CrossRef]
- Goldman, J.G.; Sieg, E. Cognitive Impairment and Dementia in Parkinson Disease. Clin. Geriatr. Med. 2020, 36, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Berardi, A.; Colalelli, F. Correlation between Quality of Life and severity of Parkinson’s Disease by assessing an optimal cut-off point on the Parkinson’s Disease questionnaire (PDQ-39) as related to the Hoehn & Yahr (H&Y) scale. Clin. Ter. 2022, 173, 243–248. [Google Scholar] [CrossRef]
- Heidiyana, M.; Surbakti, K.P.; Hutagalung, H.S. The Association Between Degree of Severity and Number of Medications with Quality of Life in Parkinson’s Disease Patients. J. Soc. Med. 2023, 2, 103–112. [Google Scholar] [CrossRef]
- Pavan, S.; Prabhu, A.N.; Gorthi, S.P.; Shetty, V.; Rajesh, V.; Hegde, A.; Ballal, M. Dietary interventions in Parkinson’s disease: An update. Biomedicine 2022, 42, 422–426. [Google Scholar] [CrossRef]
- Fernandez, R.D.; Bezerra, G.M.B.; Krejcová, L.V.; Gomes, D.L. Correlations between Nutritional Status and Quality of Life of People with Parkinson’s Disease. Nutrients 2023, 15, 3272. [Google Scholar] [CrossRef]
- Bianchi, V.E.; Rizzi, L.; Somaa, F. The role of nutrition on Parkinson’s disease: A systematic review. Nutr. Neurosci. 2023, 26, 605–628. [Google Scholar] [CrossRef]
- Ben-Shlomo, Y.; Darweesh, S.; Llibre-Guerra, J.; Marras, C.; San Luciano, M.; Tanner, C. The epidemiology of Parkinson’s disease. Lancet 2024, 403, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Schiess, N.; Cataldi, R.; Okun, M.S.; Fothergill-Misbah, N.; Dorsey, E.R.; Bloem, B.R.; Barretto, M.; Bhidayasiri, R.; Brown, R.; Chishimba, L.; et al. Six Action Steps to Address Global Disparities in Parkinson Disease: A World Health Organization Priority. JAMA Neurol. 2022, 79, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Boulos, C.; Yaghi, N.; El Hayeck, R.; Heraoui, G.N.; Fakhoury-Sayegh, N. Nutritional Risk Factors, Microbiota and Parkin-son’s Disease: What Is the Current Evidence? Nutrients 2019, 11, 1896. [Google Scholar] [CrossRef]
- Yi, Z.-M.; Li, X.-Y.; Wang, Y.-B.; Wang, R.-L.; Ma, Q.-C.; Zhao, R.-S.; Chen, L.-C. Evaluating the direct medical cost, drug utilization and expenditure for managing Parkinson’s disease: A costing study at a medical center in China. Ann. Transl. Med. 2022, 10, 330. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Ma, J.; Cui, S.; He, Y.; Xiao, Q.; Liu, J.; Chen, S. Parkinson’s disease in China: A forty-year growing track of bedside work. Transl. Neurodegener. 2019, 8, 22. [Google Scholar] [CrossRef]
- Phillips, M.C.L.; Murtagh, D.K.J.; Ziad, F.; Johnston, S.E.; Moon, B.G. Impact of a Ketogenic Diet on Sporadic Inclusion Body Myositis: A Case Study. Front. Neurol. 2020, 11, 582402. [Google Scholar] [CrossRef]
- Wu, D.; Chen, Y.; Sun, Y.; Gao, Q.; Li, H.; Yang, Z.; Wang, Y.; Jiang, X.; Yu, B. Target of MCC950 in Inhibition of NLRP3 Inflammasome Activation: A Literature Review. Inflammation 2020, 43, 17–23. [Google Scholar] [CrossRef]
- Pinto, A.; Bonucci, A.; Maggi, E.; Corsi, M.; Businaro, R. Anti-Oxidant and Anti-Inflammatory Activity of Ketogenic Diet: New Perspectives for Neuroprotection in Alzheimer’s Disease. Antioxidants 2018, 7, 63. [Google Scholar] [CrossRef] [PubMed]
- Whittemore, R.; Knafl, K. The integrative review: Updated methodology. J. Adv. Nurs. 2005, 52, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Schardt, C.; Adams, M.B.; Owens, T.; Keitz, S.; Fontelo, P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med. Inform. Decis. Mak. 2007, 7, 16. [Google Scholar] [CrossRef]
- Barker, T.H.; Stone, J.C.; Sears, K.; Klugar, M.; Tufanaru, C.; Leonardi-Bee, J.; Aromataris, E.; Munn, Z. The revised JBI critical appraisal tool for the assessment of risk of bias for randomized controlled trials. JBI Evid. Synth. 2023, 21, 494–506. [Google Scholar] [CrossRef]
- Barker, T.H.; Habibi, N.; Aromataris, E.; Stone, J.C.; Leonardi-Bee, J.; Sears, K.; Sabira, H.; Miloslav, K.; Catalin, T.; Sandeep, M.; et al. The revised JBI critical appraisal tool for the assessment of risk of bias for quasi-experimental studies. JBI Evid. Synth. 2024, 22, 378–388. [Google Scholar] [CrossRef]
- Moola, S.; Munn, Z.; Tufanaru, C.; Aromataris, E.; Sears, K.; Sfetcu, R.; Currie, M.; Lisy, K.; Qureshi, R.; Mattis, P.; et al. Chapter 7: Systematic reviews of etiology and risk. In JBI Manual for Evidence Synthesis; Aromataris, E., Munn, Z., Eds.; JBI: Adelaide, Australia, 2020; Available online: https://synthesismanual.jbi.global (accessed on 16 October 2025).
- Sguanci, M.; Ferrara, G.; Palomares, S.M.; Parozzi, M.; Godino, L.; Gazineo, D.; Anastasi, G.; Mancin, S. Dysgeusia and Chronic Kidney Disease: A Scoping Review. J. Ren. Nutr. 2024, 34, 374–390. [Google Scholar] [CrossRef]
- Phillips, M.C.L.; Murtagh, D.K.J.; Gilbertson, L.J.; Asztely, F.J.S.; Lynch, C.D.P. Low-fat versus ketogenic diet in Parkinson’s disease: A pilot randomized controlled trial. Mov. Disord. 2018, 33, 1306–1314. [Google Scholar] [CrossRef] [PubMed]
- Krikorian, R.; Shidler, M.D.; Summer, S.S.; Sullivan, P.G.; Duker, A.P.; Isaacson, R.S.; Espay, A.J. Nutritional ketosis for mild cognitive impairment in Parkinson’s disease: A controlled pilot trial. Clin. Park. Relat. Disord. 2019, 1, 41–47. [Google Scholar] [CrossRef]
- Koyuncu, H.; Fidan, V.; Toktas, H.; Binay, O.; Celik, H. Effect of ketogenic diet versus regular diet on voice quality of patients with Parkinson’s disease. Acta Neurol. Belg. 2021, 121, 1729–1732. [Google Scholar] [CrossRef]
- Choi, A.H.; Delgado, M.; Chen, K.Y.; Chung, S.T.; Courville, A.; Turner, S.A.; Yang, S.; Airaghi, K.; Dustin, I.; McGurrin, P.; et al. A randomized feasibility trial of medium chain triglyceride-supplemented ketogenic diet in people with Parkinson’s disease. BMC Neurol. 2024, 24, 106. [Google Scholar] [CrossRef]
- Tidman, M.M.; White, D.R.; White, T.A. Impact of a keto diet on symptoms of Parkinson’s disease, biomarkers, depression, anxiety and quality of life: A longitudinal study. Neurodegener. Dis. Manag. 2024, 14, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Tidman, M.M.; White, D.; White, T. Effects of a low carbohydrate/healthy fat/ketogenic diet on biomarkers of health and symptoms, anxiety and depression in Parkinson’s Disease: A pilot study. Neurodegener. Dis. Manag. 2022, 12, 57–66. [Google Scholar] [CrossRef]
- Skorvanek, M.; Martinez-Martin, P.; Kovacs, N.; Zezula, I.; Rodriguez-Violante, M.; Corvol, J.C.; Taba, P.; Seppi, K.; Levin, O.; Schrag, A.; et al. Relationship between the MDS-UPDRS and Quality of Life: A large multicenter study of 3206 patients. Park. Relat. Disord. 2018, 52, 83–89. [Google Scholar] [CrossRef]
- Fabbri, M.; Coelho, M.; Guedes, L.C.; Chendo, I.; Sousa, C.; Rosa, M.M.; Abreu, D.; Costa, N.; Godinho, C.; Antonini, A.; et al. Response of non-motor symptoms to levodopa in late-stage Parkinson’s disease: Results of a levodopa challenge test. Park. Relat. Disord. 2017, 39, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Bostock, E.C.S.; Kirkby, K.C.; Taylor, B.V.; Hawrelak, J.A. Consumer Reports of “Keto Flu” Associated with the Ketogenic Diet. Front. Nutr. 2020, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Kayode, T.O.; Rotimi, E.D.; Afolayan, A.O.; Kayode, A.A.A. Ketogenic diet: A nutritional remedy for some metabolic disorders. J. Educ. Health Sport 2020, 10, 180–188. [Google Scholar] [CrossRef]
- Schoemberger, Y.C.; Pereira, L.M.; Jacobsen, M.A.P.; Rocha, B.V.; Santana, R.S.; Garbossa, L.; Bittencourt, A.L.T.; Lugarini, S.; Biesuz, L.D.S.; Steniski, S.E.; et al. Ketogenic dietary treatment of refractory epilepsy in children: Narrative review. Int. J. Health Sci. 2024, 4, 2–9. [Google Scholar] [CrossRef]
- Cieślińska-Świder, J.; Błaszczyk, J.W.; Opala-Berdzik, A. The effect of body mass reduction on functional stability in young obese women. Sci. Rep. 2022, 12, 8876. [Google Scholar] [CrossRef]
- Goetz, C.G.; Leurgans, S.; Raman, R. Placebo-associated improvements in motor function: Comparison of subjective and objective sections of the UPDRS in early Parkinson’s disease. Mov. Disord. 2002, 17, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Merovci, A.; Finley, B.; Hansis-Diarte, A.; Neppala, S.; Abdul-Ghani, M.A.; Cersosimo, E.; Triplitt, C.; DeFronzo, R.A. Effect of weight-maintaining ketogenic diet on glycemic control and insulin sensitivity in obese T2D subjects. BMJ Open Diabetes Res. Care 2024, 12, e004199. [Google Scholar] [CrossRef]
- Holvast, F.; Massoudi, B.; Oude Voshaar, R.C.; Verhaak, P.F.M. Non-pharmacological treatment for depressed older patients in primary care: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0184666. [Google Scholar] [CrossRef]
- Gee, B.; Orchard, F.; Clarke, E.; Joy, A.; Clarke, T.; Reynolds, S. The effect of non-pharmacological sleep interventions on depression symptoms: A meta-analysis of randomised controlled trials. Sleep Med. Rev. 2019, 43, 118–128. [Google Scholar] [CrossRef]
- Dietch, D.M.; Kerr-Gaffney, J.; Hockey, M.; Marx, W.; Ruusunen, A.; Young, A.H.; Berk, M.; Valeria Mondelli, V. Efficacy of low carbohydrate and ketogenic diets in treating mood and anxiety disorders: Systematic review and implications for clinical practice. BJPsych Open 2023, 9, e70. [Google Scholar] [CrossRef]
- Ozan, E.; Chouinard, V.A.; Palmer, C.M. The Ketogenic Diet as a Treatment for Mood Disorders. Curr. Treat. Options Psychiatry 2024, 11, 163–176. [Google Scholar] [CrossRef]
- Khoiroh, A.D. Effect of ketogenic diet on Alzheimer’s disease to improve cognitive function: A literature review. Malahayati Int. J. Nurs. Health Sci. 2023, 6, 247–255. [Google Scholar] [CrossRef]
- Harvey, D.C.; Schofield, G.M.; Williden, M.; McQuillan, J.A. The Effect of Medium Chain Triglycerides on Time to Nutritional Ketosis and Symptoms of Keto-Induction in Healthy Adults: A Randomised Controlled Clinical Trial. J. Nutr. Metab. 2018, 2018, 2630565. [Google Scholar] [CrossRef]
- Abbasi, M.M.; Jafari, A.; Mohtadi, M.; Shahabi, M.; Bakhshimoghaddam, F.; Abbasi, H.; Eslamian, G. Illuminating the Safety, Tolerability, and Efficacy of Different Ketogenic Diets for Individuals with Epilepsy: A Scoping Meta-Review. Seizure 2025, 125, 140–151. [Google Scholar] [CrossRef]
- Baylie, T.; Ayelgn, T.; Tiruneh, M.; Tesfa, K. Effect of Ketogenic Diet on Obesity and Other Metabolic Disorders: Narrative Review. Diabetes Metab. Syndr. Obes. 2024, 17, 1391–1401. [Google Scholar] [CrossRef]
- Baziyar, H.; Marandi, S.M.; Chitsaz, A. Assessing the Effect of 12 Weeks of Pilates and Aquatic Exercise on Muscle Strength and Range of Motion in Patients with Mild to Moderate Parkinson’s Disease. Asian J. Sports Med. 2022, 13, e123190. [Google Scholar] [CrossRef]
- Zhaoli, M.; Xiao, Z.; Beibei, L.; Yanpei, Z.; Lin, L.; Fei, D.; Tong, L.; Zhi, Y.; Zhanghua, L. Meta-analysis: The Effect of Muscle Strength Training on Walking Ability of Patients with Parkinson’s Disease. Rehabil. Sci. 2021, 6, 1–9. [Google Scholar] [CrossRef]
- Starace, E.; De Pasquale, G.; Morenghi, E.; Crippa, C.; Matteucci, S.; Pieri, G.; Soekeland, F.; Gibbi, S.M.; Cricchio, G.L.; Reggiani, F.; et al. Hospital Malnutrition in the Medicine and Neurology Departments: A Complex Challenge. Nutrients 2023, 15, 5061. [Google Scholar] [CrossRef]
- Kacprzyk, K.W.; Milewska, M.; Zarnowska, A.; Panczyk, M.; Rokicka, G.; Szostak-Wegierek, D. Prevalence of Malnutrition in Patients with Parkinson’s Disease: A Systematic Review. Nutrients 2022, 14, 5194. [Google Scholar] [CrossRef] [PubMed]
- Trautwein, E.A.; McKay, S. The Role of Specific Components of a Plant-Based Diet in Management of Dyslipidemia and the Impact on Cardiovascular Risk. Nutrients 2020, 12, 2671. [Google Scholar] [CrossRef] [PubMed]
- Lennerz, B.S.; Barton, A.; Bernstein, R.K.; Dikeman, R.D.; Diulus, C.; Hallberg, S.; Rhodes, E.T.; Ebbeling, C.B.; Westman, E.C.; Yancy, W.S.; et al. Management of Type 1 Diabetes with a Very Low–Carbohydrate Diet. Pediatrics 2018, 141, e20173349. [Google Scholar] [CrossRef]
- Elbarbry, F.; Nguyen, V.; Mirka, A.; Zwickey, H.; Rosenbaum, R. A new validated HPLC method for the determination of levodopa: Application to study the impact of ketogenic diet on the pharmacokinetics of levodopa in Parkinson’s participants. Biomed. Chromatogr. 2019, 33, e4382. [Google Scholar] [CrossRef]
- Boelens Keun, J.T.; Arnoldussen, I.A.; Vriend, C.; van de Rest, O. Dietary Approaches to Improve Efficacy and Control Side Effects of Levodopa Therapy in Parkinson’s Disease: A Systematic Review. Adv. Nutr. 2021, 12, 2265–2287. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.C.L. Ketogenic Diet Therapies in Children and Adults with Epilepsy. In Epilepsy—Advances in Diagnosis and Therapy; Al-Zwaini, I.J., Majeed Albadri, B.A.H., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Schoeler, N.E.; Simpson, Z.; Whiteley, V.J.; Nguyen, P.; Meskell, R.; Lightfoot, K.; Martin-McGill, K.J.; Olpin, S.; Ivison, F. Biochemical assessment of patients following ketogenic diets for epilepsy: Current practice in the UK and Ireland. Epilepsia Open 2019, 5, 73–79. [Google Scholar] [CrossRef]
- Katyayan, A.; Nayak, A.; Diaz-Medina, G.; Handoko, M.; Riviello, J.J. Acute Changes in Liver Function Tests During Initiation of Ketogenic Diet. J. Child. Neurol. 2024, 39, 395–402. [Google Scholar] [CrossRef]
- Vranjić, P.; Vuković, M.; Blažetić, S.; Viljetić, B. Ketogenic Diet and Thyroid Function: A Delicate Metabolic Balancing Act. Curr. Issues Mol. Biol. 2025, 47, 696. [Google Scholar] [CrossRef]
- Idzikowska, K.; Gątarek, P.; Gajda, A.; Safiński, P.; Przyslo, L.; Kałużna-Czaplińska, J. The Ketogenic Diet Through a Metabolomic Lens: Biochemical Pathways, Therapeutic Applications, and Analytical Challenges. Nutrients 2025, 17, 2969. [Google Scholar] [CrossRef]
- Neth, B.J.; Bauer, B.A.; Benarroch, E.E.; Savica, R. The Role of Intermittent Fasting in Parkinson’s Disease. Front. Neurol. 2021, 12, 682184. [Google Scholar] [CrossRef]
- Hein, Z.M.; Arbain, M.F.F.; Kumar, S.; Mehat, M.Z.; Hamid, H.A.; Ramli, M.D.C.; Nassir, C.M.N.C.M. Intermittent Fasting as a Neuroprotective Strategy: Gut-Brain Axis Modulation and Metabolic Reprogramming in Neurodegenerative Disorders. Nutrients 2025, 17, 2266. [Google Scholar] [CrossRef]
- Szegő, É.M.; Höfs, L.; Antoniou, A.; Dinter, E.; Bernhardt, N.; Schneider, A.; Di Monte, D.A.; Falkenburger, B.H. Intermittent fasting reduces alpha-synuclein pathology and functional decline in a mouse model of Parkinson’s disease. Nat. Commun. 2025, 16, 4470. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Wang, X.; Li, Y.; Luo, A.; Zhao, Y.; Luo, X.; Li, S. Intermittent Fasting on Neurologic Diseases: Potential Role of Gut Microbiota. Nutrients 2023, 15, 4915. [Google Scholar] [CrossRef]
- Gudden, J.; Arias Vasquez, A.; Bloemendaal, M. The Effects of Intermittent Fasting on Brain and Cognitive Function. Nutrients 2021, 13, 3166. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yeom, I.; Chung, M.L.; Kim, Y.; Yoo, S.; Kim, E. Use of Mobile Apps for Self-care in People with Parkinson Disease: Systematic Review. JMIR mHealth uHealth 2022, 10, e33944. [Google Scholar] [CrossRef]
- Palmisano, A.; Angileri, S.; Zito, M.P.; Soekeland, F.; Gazineo, D.; Godino, L.; Savini, S.; Andreoli, D.; Mancin, S. Chronic kidney disease and mobile health: Quality of renal nutritional APPs in Italy. Acta Biomed. 2023, 94, e2023169. [Google Scholar] [CrossRef]
- Sguanci, M.; Palomares, S.M.; Cangelosi, G.; Petrelli, F.; Sandri, E.; Ferrara, G.; Mancin, S. Artificial Intelligence in the Management of Malnutrition in Cancer Patients: A Systematic Review. Adv. Nutr. 2025, 16, 100438. [Google Scholar] [CrossRef]
- Li, Y.; Ren, H.X.; Chi, C.Y.; Miao, Y.B. Artificial Intelligence-Guided Gut-Microenvironment-Triggered Imaging Sensor Reveals Potential Indicators of Parkinson’s Disease. Adv. Sci. 2024, 11, e2307819. [Google Scholar] [CrossRef]
- Di Cesare, M.G.; Perpetuini, D.; Cardone, D.; Merla, A. Machine Learning-Assisted Speech Analysis for Early Detection of Parkinson’s Disease: A Study on Speaker Diarization and Classification Techniques. Sensors 2024, 24, 1499. [Google Scholar] [CrossRef]
- Sacchini, F.; Mancin, S.; Cangelosi, G.; Palomares, S.M.; Caggianelli, G.; Gravante, F.; Petrelli, F. The Role of Artificial Intelligence in Diabetic Retinopathy Screening in Type 1 Diabetes: A Systematic Review. J. Diabetes Complicat. 2025, 39, 109139. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Mortezaagha, P.; Rahgozar, A. Explainable Artificial Intelligence to Diagnose Early Parkinson’s Disease via Voice Analysis. Sci. Rep. 2025, 15, 11687. [Google Scholar] [CrossRef] [PubMed]
- Mancin, S.; Cangelosi, G.; Matteucci, S.; Palomares, S.M.; Parozzi, M.; Sandri, E.; Sguanci, M.; Piredda, M. The Role of Vitamin D in Hematopoietic Stem Cell Transplantation: Implications for Graft-versus-Host Disease—A Narrative Review. Nutrients 2024, 16, 2976. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.; Reddy, R.P.; Roghani, A.K.; Garcia, R.I.; Khemka, S.; Pattoor, V.; Jacob, M.; Reddy, P.H.; Sehar, U. Artificial Intelligence in Parkinson’s Disease: Early Detection and Diagnostic Advancements. Ageing Res. Rev. 2024, 99, 102410. [Google Scholar] [CrossRef]
- Sguanci, M.; Mancin, S.; Gazzelloni, A.; Diamanti, O.; Ferrara, G.; Morales Palomares, S.; Parozzi, M.; Petrelli, F.; Cangelosi, G. The Internet of Things in the Nutritional Management of Patients with Chronic Neurological Cognitive Impairment: A Scoping Review. Healthcare 2024, 13, 23. [Google Scholar] [CrossRef]
- Pantanetti, P.; Cangelosi, G.; Morales Palomares, S.; Ferrara, G.; Biondini, F.; Mancin, S.; Caggianelli, G.; Parozzi, M.; Sguanci, M.; Petrelli, F. Real-World Life Analysis of a Continuous Glucose Monitoring and Smart Insulin Pen System in Type 1 Diabetes: A Cohort Study. Diabetology 2025, 6, 7. [Google Scholar] [CrossRef]


| Study | Design | Population | Intervention and Duration | Primary Outcomes | Outcome Measures | Study Limitations | Quality Rating |
|---|---|---|---|---|---|---|---|
| Choi et al. (2024), USA [33] | RCT (2-phase) | n = 16 Phase 1: IG = 7 CG = 9 Phase 2: IG = 16 | Phase 1: Hospital-based (6 days) IG: KD + MCT CG: Standard diet Phase 2: Home-based (2 weeks) IG: KD + MCT total duration: 3 weeks | KD feasibility (retention, adherence, acceptability); Motor function effects; Metabolic biomarker changes; Cognitive and mood assessment | TUG; MDS-UDRS; NMSS; Metabolic biomarkers (BHB, insulin, triglycerides, HDL, HbA1c); EEG; DOPAC | Small sample size; Short study Duration; Lack of long-term follow-up; Potential placebo effect | ++/Low |
| Tidman et al. (2024), USA [34] | Longitudinal study | n = 7 | Intervention: KD Duration: 6 months | Motor and non-motor symptom improvement; QoL enhancement; Anxiety and depression reduction; Metabolic biomarker improvement | MDS-UPDRS I-II; CESD-R-20; PAS; Metabolic biomarkers (BMI, HbA1c, triglycerides, HDL, fasting insulin); H-Y Scale | Small sample size; Absence of control group; Possible selection bias and self-report bias; COVID-19 pandemic effects on measurements | ++/Medium |
| Tidman et al. (2022), USA [35] | Quasi- experimental study | n = 16 | Intervention: LCHF/KD Duration: 12 weeks | Health biomarker improvements; Anxiety symptom reduction | CESD-R-20; PAS; MDS-UPDRS; Blood tests (HbA1c, triglycerides, HDL, insulin, CRP); Anthropometric measurements | No control group; Small sample size; Possible placebo effect; Self-assessment of symptoms | +++/Medium |
| Koyuncu et al. (2021), Turkey [32] | RCT | n = 74 IG = 37 CG = 37 | IG: KD CG: Standard diet Duration: 3 months | Voice quality improvements | VHI-10 | Small sample size; Need for further research on pathophysiological mechanisms | ++/Medium |
| Krikorian et al. (2019), USA [31] | RCT | n = 14 IG = 7 CG = 7 | IG: KD CG: High carbohydrate diet Duration: 8 weeks | Cognitive performance improvement (lexical access, memory); Metabolic parameter changes | COWA; CVLT; VPLT; MDS-UPDRS; Metabolic analyses (glucose, insulin, D-BHB) | Small sample size; Limited duration; Inability to assess CNS biomarkers; Gender imbalance (predominantly male) | +++/Low |
| Phillips et al. (2018), [30] New Zealand | RCT | n = 44 IG = 22 CG = 22 | IG: KD CG: Low-fat diet Duration: 8 weeks | Motor and non-motor symptom improvement; Metabolic parameter changes | MDS-UPDRS (I–IV); Metabolic parameters (weight, BMI, lipids, HbA1c) | Small sample size; Limited duration; Possible placebo effects; Adverse effects (worsened tremor and stiffness in some patients) | +++/Low |
| Study | Non-Motor Symptoms (MDS-UPDRS/UPDRS Part I) | Motor Symptoms (MDS-UPDRS/UPDRS Parts II, III, IV) | Body Weight | Lipid Profile | Cognitive Function | Quality of Life | Safety and Tolerability | Additional Parameters |
|---|---|---|---|---|---|---|---|---|
| Choi et al. (2024) [33] | Improved ↑*** | No change = | Decreased ↓† | Triglycerides ↓† HDL ↑† | 3-back test (working memory) = | Improved ↑*** | Side effects: mild | TUG =; NMSS ↑; Continuous blood glucose ↓; HbA1c ↓†; Plasma dopamine =; DOPAC =; BHB ↑; CRP = |
| Tidman et al. (2024) [34] | Improved ↑ | No change = | Decreased ↓ | Triglycerides ↓ HDL = | PAS ↑ CESD-R-20 ↑ | Improved ↑ | Side effects: mild | BMI ↓; Waist circumference ↓ Blood glucose = HbA1c ↓ Insulin ↓* CRP = H-Y Scale ↓ |
| Tidman et al. (2022) [35] | Improved ↑ | No change = | Decreased ↓ | Triglycerides ↓* HDL = | No significant cognitive improvement, but psychological improvement: PAS ↑ CESD-R-20 = | Improved ↑ | Side effects: mild | Waist circumference ↓ HbA1c ↓ BMI ↓ Fasting insulin ↓ CRP = |
| Koyuncu et al. (2021) [32] | NA | NA | NA | NA | NA | Improved ↑ | Side effects: mild | VHI-10 ↑ |
| Krikorian et al. (2019) [31] | NA | No change = | Decreased ↓ | NA | COWA (Lexical Access) ↑ CVLT and VPAL (Verbal Memory) ↑ CVLT (Mnemonic interference) Tendency to reduce | No change = | Side effects: mild | Waist circumference ↓* Fasting blood glucose = Fasting insulin = D-BHB ↑ Finger tapping = |
| Phillips et al. (2018) [30] | Improved ↑ | No change = | Decreased ↓† | Triglycerides = HDL ↑ LDL ↑ Total cholesterol ↑ | Improvement in fatigue and daytime sleepiness | Improved ↑ | Side effects: mild | BMI ↓† Fasting glycemia ↓ HbA1c ↓† Urate ↑ BHB ↑ CRP = |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golob, M.G.; Mancin, S.; Lopane, D.; Coldani, C.; Cattani, D.; Dacomi, A.; Tomaiuolo, G.; Petrelli, F.; Cangelosi, G.; Cosmai, S.; et al. Effects of Ketogenic Diet on Quality of Life in Parkinson Disease: An Integrative Review. Nutrients 2025, 17, 3343. https://doi.org/10.3390/nu17213343
Golob MG, Mancin S, Lopane D, Coldani C, Cattani D, Dacomi A, Tomaiuolo G, Petrelli F, Cangelosi G, Cosmai S, et al. Effects of Ketogenic Diet on Quality of Life in Parkinson Disease: An Integrative Review. Nutrients. 2025; 17(21):3343. https://doi.org/10.3390/nu17213343
Chicago/Turabian StyleGolob, Maria Giulia, Stefano Mancin, Diego Lopane, Chiara Coldani, Daniela Cattani, Alessandra Dacomi, Giuseppina Tomaiuolo, Fabio Petrelli, Giovanni Cangelosi, Simone Cosmai, and et al. 2025. "Effects of Ketogenic Diet on Quality of Life in Parkinson Disease: An Integrative Review" Nutrients 17, no. 21: 3343. https://doi.org/10.3390/nu17213343
APA StyleGolob, M. G., Mancin, S., Lopane, D., Coldani, C., Cattani, D., Dacomi, A., Tomaiuolo, G., Petrelli, F., Cangelosi, G., Cosmai, S., Santagostino, A. M., & Mazzoleni, B. (2025). Effects of Ketogenic Diet on Quality of Life in Parkinson Disease: An Integrative Review. Nutrients, 17(21), 3343. https://doi.org/10.3390/nu17213343

