Mentha Essential Oils: Unraveling Chemotype-Dependent Biosynthesis and Assessing Evidence for Health-Promoting Activities
Abstract
1. Introduction
2. Literature Search Strategy
2.1. Search Strategy and Data Sources
2.2. Study Selection and Inclusion Criteria
2.3. Exclusion Criteria
2.4. Data Extraction and Synthesis
3. Chemical Composition of Mentha EOs
3.1. Structural Diversity of Major Monoterpenes
3.2. Chemotypic Variations and Influencing Factors
3.3. Analytical Methodologies for EO Characterization
4. Biosynthetic Pathways of Major Monoterpenes
4.1. Overview of the Plastidial MEP Pathway
4.2. Enzymatic Regulation of Terpenoid Biosynthesis
4.3. Genetic and Epigenetic Regulation of Biosynthetic Genes
5. Health-Beneficial Effects of Mentha EOs
5.1. Antimicrobial and Antifungal Properties
5.2. Antioxidant and Anti-Inflammatory Activities
5.3. Neurological and Digestive Benefits
5.4. Respiratory and Cognitive-Enhancing Potential
5.5. Emerging Anticancer Properties
6. Challenges and Future Perspectives
6.1. Standardization and Quality Control Issues
6.2. Bioavailability and Formulation Advances
6.3. Safety Assessment and Toxicity Profiling
6.4. Interdisciplinary Research on Mentha EOs
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
EO | Essential Oil |
GC-MS | Gas Chromatography–Mass Spectrometry |
GC-FID | Gas Chromatography with Flame Ionization Detection |
ATR-FTIR | Attenuated Total Reflectance–Fourier Transform Infrared Spectroscopy |
MEP | Methylerythritol Phosphate Pathway |
IPP | Isopentenyl Pyrophosphate |
DMAPP | Dimethylallyl Pyrophosphate |
GPP | Geranyl Pyrophosphate |
GPPS | Geranyl Pyrophosphate Synthase |
LS | Limonene Synthase |
L6OH | Limonene 6-Hydroxylase |
L3OH | Limonene 3-Hydroxylase |
CD | Carveol Dehydrogenase |
ISPD | Isopiperitenol Dehydrogenase |
ISPR | Isopiperitenone Reductase |
ISPI | Isopulegone Isomerase |
MFS | Menthofuran Synthase |
PR | Pulegone Reductase |
MD | Menthol Dehydrogenase |
TPS | Terpene Synthase |
CYP450 | Cytochrome P450 Monooxygenase |
TF | Transcription Factor |
MeJA | Methyl Jasmonate |
JA | Jasmonic Acid |
DEG | Differentially Expressed Gene |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
WGCNA | Weighted Gene Co-expression Network Analysis |
PGT | Peltate Glandular Trichome |
ADG | Average Daily Gain |
ADFI | Average Daily Feed Intake |
V:C | Villus Height to Crypt Depth Ratio |
OEO | Oregano Essential Oil |
BRD | Bovine Respiratory Disease |
COPD | Chronic Obstructive Pulmonary Disease |
MIC | Minimum Inhibitory Concentration |
MBC | Minimum Bactericidal Concentration |
FRAP | Ferric Reducing Antioxidant Power |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
ABTS | 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
TEAC | Trolox Equivalent Antioxidant Capacity |
COX | Cyclooxygenase |
NLRP3 | NOD-, LRR- and pyrin domain-containing protein 3 |
IL | Interleukin |
TNF-α | Tumor Necrosis Factor-alpha |
IFN-γ | Interferon-gamma |
MCP-1 | Monocyte Chemoattractant Protein-1 |
MIP-1β | Macrophage Inflammatory Protein-1β |
M-CSF | Macrophage Colony-Stimulating Factor |
GM-CSF | Granulocyte-Macrophage Colony-Stimulating Factor |
NF-κB | Nuclear Factor Kappa B |
Nrf-2 | Nuclear Factor Erythroid 2-Related Factor 2 |
IBS | Irritable Bowel Syndrome |
MEO | Microencapsulated Essential Oil |
ADME | Absorption, Distribution, Metabolism, Excretion |
PASS | Prediction of Activity Spectra for Substances |
PLSR | Partial Least Squares Regression |
PCR | Principal Component Regression |
HCA | Hierarchical Cluster Analysis |
PCA | Principal Component Analysis |
References
- Vui, N.V.; Linh, N.T.; Quyen, N.T.K.; Nang, K.; Trinh, L.T.T. The Interaction of Ocimum basilicum, Perilla frutescens and Mentha spicata Essential Oils with Norfloxacin Against Antibiotic-Resistant Salm onella spp. That Cause Disease in Chickens. Vet. Med. Sci. 2025, 11, e70316. [Google Scholar] [CrossRef] [PubMed]
- Tsitlakidou, P.; Tasopoulos, N.; Chatzopoulou, P.; Mourtzinos, I. Current status, technology, regulation and future perspectives of esse ntial oils usage in the food and drink industry. J. Sci. Food Agric. 2023, 103, 6727–6751. [Google Scholar] [CrossRef]
- Movahedi, F.; Nirmal, N.; Wang, P.; Jin, H.; Grøndahl, L.; Li, L. Recent advances in essential oils and their nanoformulations for poult ry feed. J. Anim. Sci. Biotechnol. 2024, 15, 110. [Google Scholar] [CrossRef]
- Stringaro, A.; Colone, M.; Angiolella, L. Antioxidant, Antifungal, Antibiofilm, and Cytotoxic Activities of Mentha spp. Essential Oils. Medicines 2018, 5, 112. [Google Scholar] [CrossRef]
- Hudz, N.; Kobylinska, L.; Pokajewicz, K.; Horčinová Sedláčková, V.; Fedin, R.; Voloshyn, M.; Myskiv, I.; Brindza, J.; Wieczorek, P.P.; Lipok, J. Mentha piperita: Essential Oil and Extracts, Their Biological Activiti es, and Perspectives on the Development of New Medicinal and Cosmetic Products. Molecules 2023, 28, 7444. [Google Scholar] [CrossRef]
- Sharma, N.; Sheikh, Z.N.; Alamri, S.; Singh, B.; Kesawat, M.S.; Guleria, S. Chemical Composition, Antibacterial and Combinatorial Effects of the E ssential Oils from Cymbopogon spp. and Mentha arvensis with Convention al Antibiotics. Agronomy 2023, 13, 1091. [Google Scholar] [CrossRef]
- Tafrihi, M.; Imran, M.; Tufail, T.; Gondal, T.A.; Caruso, G.; Sharma, S.; Sharma, R.; Atanassova, M.; Atanassov, L.; Valere Tsouh Fokou, P.; et al. The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Pro perties. Molecules 2021, 26, 1118. [Google Scholar] [CrossRef]
- Fuchs, L.K.; Holland, A.H.; Ludlow, R.A.; Coates, R.J.; Armstrong, H.; Pickett, J.A.; Harwood, J.L.; Scofield, S. Genetic Manipulation of Biosynthetic Pathways in Mint. Front. Plant Sci. 2022, 13, 928178. [Google Scholar] [CrossRef]
- Gupta, I.; Singh, R.; Muthusamy, S.; Sharma, M.; Grewal, K.; Singh, H.P.; Batish, D.R. Plant Essential Oils as Biopesticides: Applications, Mechanisms, Innov ations, and Constraints. Plants 2023, 12, 2916. [Google Scholar] [CrossRef] [PubMed]
- Benomari, F.Z.; Sarazin, M.; Chaib, D.; Pichette, A.; Boumghar, H.; Boumghar, Y.; Djabou, N. Chemical Variability and Chemotype Concept of Essential Oils from Algerian Wild Plants. Molecules 2023, 28, 4439. [Google Scholar] [CrossRef] [PubMed]
- Gebauer, S.; Pompermayer, K.; Oliveira, D.G.P.; Silva Pinto, F.G.; Rosset, J.; Bandeira, D.M.; Silva, G.T.; Oliveira, M.S.; Silva, G.H.; Alves, L.F.A.; et al. Mentha spp. essential oils: Toxicity to Alphitobius diaperinus, activi ty against poultry pathogenic bacteria, and Beauveria bassiana compati bility. Environ. Sci. Pollut. Res. 2024, 31, 34010–34027. [Google Scholar] [CrossRef]
- Zekri, N.; Elazzouzi, H.; Ailli, A.; Gouruch, A.A.; Radi, F.Z.; El Belghiti, M.A.; Zair, T.; Nieto, G.; Centeno, J.A.; Lorenzo, J.M. Physicochemical Characterization and Antioxidant Properties of Essential Oils of M. pulegium (L.), M. suaveolens (Ehrh.) and M. spicata (L.) from Moroccan Middle-Atlas. Foods 2023, 12, 760. [Google Scholar] [CrossRef]
- Piras, A.; Porcedda, S.; Falconieri, D.; Maxia, A.; Gonçalves, M.; Cavaleiro, C.; Salgueiro, L. Antifungal activity of essential oil from Mentha spicata L. and Mentha pulegium L. growing wild in Sardinia island (Italy). Nat. Prod. Res. 2019, 35, 993–999. [Google Scholar] [CrossRef]
- Haddou, M.; Taibi, M.; Elbouzidi, A.; Loukili, E.H.; Yahyaoui, M.I.; Ou-Yahia, D.; Mehane, L.; Addi, M.; Asehraou, A.; Chaabane, K.; et al. Investigating the Impact of Irrigation Water Quality on Secondary Meta bolites and Chemical Profile of Mentha piperita Essential Oil: Analyti cal Profiling, Characterization, and Potential Pharmacological Applica tions. Int. J. Plant Biol. 2023, 14, 638–657. [Google Scholar] [CrossRef]
- Beigi, M.; Torki-Harchegani, M.; Ghasemi Pirbalouti, A. Quantity and chemical composition of essential oil of peppermint (Mentha × piperita L.) leaves under different drying methods. Int. J. Food Prop. 2018, 21, 267–276. [Google Scholar] [CrossRef]
- Mustafa, K.H.; Khorshidi, J.; Vafaee, Y.; Rastegar, A.; Morshedloo, M.R.; Hossaini, S. Phytochemical profile and antifungal activity of essential oils obtain ed from different Mentha longifolia L. accessions growing wild in Iran and Iraq. BMC Plant Biol. 2024, 24, 461. [Google Scholar] [CrossRef]
- Yang, H.; Wang, C.; Zhou, G.; Zhang, Y.; He, T.; Yang, L.; Wu, Y.; Wang, Z.; Tang, X.; Chen, G.; et al. A haplotype-resolved gap-free genome assembly provides novel insight i nto monoterpenoid diversification in Mentha suaveolens ‘Variegata’. Hortic. Res. 2024, 11, uhae022. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Fang, H.; Yu, X.; Xu, D.; Li, L.; Liang, C.; Lu, H.; Li, W.; Chen, Y.; Chen, Z. Transcriptome Analysis of JA Signal Transduction, Transcription Factor s, and Monoterpene Biosynthesis Pathway in Response to Methyl Jasmonat e Elicitation in Mentha canadensis L. Int. J. Mol. Sci. 2018, 19, 2364. [Google Scholar] [CrossRef]
- Huang, T.; Men, W.; Myanganbayar, A.; Davaasambuu, U. Transcriptome analysis reveals regulatory mechanism of methyl jasmonat e-induced monoterpenoid biosynthesis in Mentha arvensis L. Front. Plant Sci. 2025, 15, 1517851. [Google Scholar] [CrossRef]
- Chen, Z.; Vining, K.J.; Qi, X.; Yu, X.; Zheng, Y.; Liu, Z.; Fang, H.; Li, L.; Bai, Y.; Liang, C.; et al. Genome-Wide Analysis of Terpene Synthase Gene Family in Mentha longifolia and Catalytic Activity Analysis of a Single Terpene Synthase. Genes 2021, 12, 518. [Google Scholar] [CrossRef]
- Jin, J.; Panicker, D.; Wang, Q.; Kim, M.J.; Liu, J.; Yin, J.-L.; Wong, L.; Jang, I.-C.; Chua, N.-H.; Sarojam, R. Next generation sequencing unravels the biosynthetic ability of Spearmint (Mentha spicata) peltate glandular trichomes through comparative transcriptomics. BMC Plant Biol. 2014, 14, 292. [Google Scholar] [CrossRef]
- Rios-Estepa, R.; Lange, I.; Lee, J.M.; Lange, B.M. Mathematical Modeling-Guided Evaluation of Biochemical, Developmental, Environmental, and Genotypic Determinants of Essential Oil Composition and Yield in Peppermint Leaves. Plant Physiol. 2010, 152, 2105–2119. [Google Scholar] [CrossRef]
- Landeo-Villanueva, G.E.; Salazar-Salvatierra, M.E.; Ruiz-Quiroz, J.R.; Zuta-Arriola, N.; Jarama-Soto, B.; Herrera-Calderon, O.; Pari-Olarte, J.B.; Loyola-Gonzales, E. Inhibitory Activity of Essential Oils of Mentha spicata and Eucalyptus globulus on Biofilms of Streptococcus mutans in an In Vitro Model. Antibiotics 2023, 12, 369. [Google Scholar] [CrossRef]
- Ezzaky, Y.; Elmoslih, A.; Silva, B.N.; Bonilla-Luque, O.M.; Possas, A.; Valero, A.; Cadavez, V.; Gonzales-Barron, U.; Achemchem, F. In vitro antimicrobial activity of extracts and essential oils of Cinnamomum, Salvia, and Mentha spp. against foodborne pathogens: A meta-analysis study. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4516–4536. [Google Scholar] [CrossRef]
- Kafa, A.H.T.; Aslan, R.; Celik, C.; Hasbek, M. Antimicrobial synergism and antibiofilm activities of Pelargonium graveolens, Rosemary officinalis, and Mentha piperita essential oils against extreme drug-resistant Acinetobacter baumannii clinical isolates. Z. Fur Naturforschung Sect. C-A J. Biosci. 2022, 77, 95–104. [Google Scholar] [CrossRef]
- Tourabi, M.; Nouioura, G.; Touijer, H.; Baghouz, A.; El Ghouizi, A.; Chebaibi, M.; Bakour, M.; Ousaaid, D.; Almaary, K.S.; Nafidi, H.-A.; et al. Antioxidant, Antimicrobial, and Insecticidal Properties of Chemically Characterized Essential Oils Extracted from Mentha longifolia: In Vitro and In Silico Analysis. Plants 2023, 12, 3783. [Google Scholar] [CrossRef]
- Ciliberti, M.G.; Albenzio, M.; Sevi, A.; Frabboni, L.; Marino, R.; Caroprese, M. Immunomodulatory Role of Rosmarinus officinalis L., Mentha x piperita L., and Lavandula angustifolia L. Essential Oils in Sheep Peripheral Blood Mononuclear Cells. Vet. Sci. 2024, 11, 157. [Google Scholar] [CrossRef] [PubMed]
- Zouari-Bouassida, K.; Trigui, M.; Makni, S.; Jlaiel, L.; Tounsi, S. Seasonal Variation in Essential Oils Composition and the Biological an d Pharmaceutical Protective Effects of Mentha longifolia Leaves Grown in Tunisia. Biomed Res. Int. 2018, 2018, 7856517. [Google Scholar] [CrossRef]
- Ćavar Zeljković, S.; Schadich, E.; Džubák, P.; Hajdúch, M.; Tarkowski, P. Antiviral Activity of Selected Lamiaceae Essential Oils and Their Monoterpenes Against SARS-CoV-2. Front. Pharmacol. 2022, 13, 893634. [Google Scholar] [CrossRef]
- Afkar, S.; Somaghian, S.A. Determining of chemical composition, anti-pathogenic and anticancer ac tivity of Mentha longifolia essential oil collected from Iran. Nat. Prod. Res. 2024, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dolghi, A.; Coricovac, D.; Dinu, S.; Pinzaru, I.; Dehelean, C.A.; Grosu, C.; Chioran, D.; Merghes, P.E.; Sarau, C.A. Chemical and Antimicrobial Characterization of Mentha piperita L. and Rosmarinus officinalis L. Essential Oils and In Vitro Potential Cytoto xic Effect in Human Colorectal Carcinoma Cells. Molecules 2022, 27, 6106. [Google Scholar] [CrossRef] [PubMed]
- Biltekin, S.N.; Karadağ, A.E.; Demirci, F.; Demirci, B. In Vitro Anti-Inflammatory and Anticancer Evaluation of Mentha spicata L. and Matricaria chamomilla L. Essential Oils. ACS Omega 2023, 8, 17143–17150. [Google Scholar] [CrossRef]
- Reddy, V.A.; Saju, J.M.; Nadimuthu, K.; Sarojam, R. A non-canonical Aux/IAA gene MsIAA32 regulates peltate glandular trich ome development in spearmint. Front. Plant Sci. 2024, 15, 1284125. [Google Scholar] [CrossRef]
- Wu, Z.; Tan, B.; Liu, Y.; Dunn, J.; Martorell Guerola, P.; Tortajada, M.; Cao, Z.; Ji, P. Chemical Composition and Antioxidant Properties of Essential Oils from Peppermint, Native Spearmint and Scotch Spearmint. Molecules 2019, 24, 2825. [Google Scholar] [CrossRef]
- Karadağ, A.E.; Kahya, S.E.; Çaşkurlu Öz, A.; Demirci, B.; Demirci, F. In vitro antimicrobial activity of chlorhexidine in combination with e ssential oils of Mentha x piperita L. & Thymus serpyllum L. & Pelargonium graveolens L’hér. J. Essent. Oil Res. 2024, 36, 606–613. [Google Scholar] [CrossRef]
- Kalemba, D.; Synowiec, A. Agrobiological Interactions of Essential Oils of Two Menthol Mints: Me ntha piperita and Mentha arvensis. Molecules 2019, 25, 59. [Google Scholar] [CrossRef] [PubMed]
- Oliveira Filho, J.G.d.; Duarte, L.G.R.; Silva, Y.B.B.; Milan, E.P.; Santos, H.V.; Moura, T.C.; Bandini, V.P.; Vitolano, L.E.S.; Nobre, J.J.C.; Moreira, C.T.; et al. Novel Approach for Improving Papaya Fruit Storage with Carnauba Wax Na noemulsion in Combination with Syzigium aromaticum and Mentha spicata Essential Oils. Coatings 2023, 13, 847. [Google Scholar] [CrossRef]
- El abdali, Y.; Jalte Meryem, M.; Agour, A.; Allali, A.; Chebaibi, M.; Bouia, A. Chemical composition, free radicals, pathogenic microbes, α-amylase an d α-glucosidase suppressant proprieties of essential oil derived from Moroccan Mentha pulegium: In silico and in vitro approaches. J. Biol. Biomed. Res. 2024, 1, 46–61. [Google Scholar] [CrossRef]
- Messaoudi, M.; Rebiai, A.; Sawicka, B.; Atanassova, M.; Ouakouak, H.; Larkem, I.; Egbuna, C.; Awuchi, C.G.; Boubekeur, S.; Ferhat, M.A.; et al. Effect of Extraction Methods on Polyphenols, Flavonoids, Mineral Eleme nts, and Biological Activities of Essential Oil and Extracts of Mentha pulegium L. Molecules 2021, 27, 11. Molecules 2021, 27, 11. [Google Scholar] [CrossRef]
- Cheraif, K.; Bakchiche, B.; Gherib, A.; Bardaweel, S.K.; Çol Ayvaz, M.; Flamini, G.; Ascrizzi, R.; Ghareeb, M.A. Chemical Composition, Antioxidant, Anti-Tyrosinase, Anti-Cholinesteras e and Cytotoxic Activities of Essential Oils of Six Algerian Plants. Molecules 2020, 25, 1710. [Google Scholar] [CrossRef]
- El Hajli, F.; Chakir, S.; Annemer, S.; Assouguem, A.; Elaissaoui, F.; Ullah, R.; Ali, E.A.; Choudhary, R.; Hammani, K.; Lahlali, R.; et al. Tetraclinis articulata (Vahl) Mast., Mentha pulegium L., and Thymus zygis L. essential oils: Chemical composition, antioxidant and antifunga l properties against postharvest fungal diseases of apple, and in vitro, in vivo, and in silico investigation. Open Chem. 2025, 23, 20250131. [Google Scholar] [CrossRef]
- Moullamri, M.; Rharrabe, K.; Annaz, H.; Laglaoui, A.; Alibrando, F.; Cacciola, F.; Mondello, L.; Bouayad, N.; Zantar, S.; Bakkali, M. Salvia officinalis, Lavandula angustifolia, and Mentha pulegium essential oils: Insecticidal activities and feeding deterrence against Plodia interpunctella (Lepidoptera: Pyralidae). J. Essent. Oil Bear. Plants 2024, 27, 16–33. [Google Scholar] [CrossRef]
- Sarri, K.; Mourouzidou, S.; Ntalli, N.; Monokrousos, N. Recent Advances and Developments in the Nematicidal Activity of Essential Oils and Their Components Against Root-Knot Nematodes. Agronomy 2024, 14, 213. [Google Scholar] [CrossRef]
- Bouyahya, A.; Belmehdi, O.; Abrini, J.; Dakka, N.; Bakri, Y. Chemical composition of Mentha suaveolens and Pinus halepensis essenti al oils and their antibacterial and antioxidant activities. Asian Pac. J. Trop. Med. 2019, 12, 117. [Google Scholar] [CrossRef]
- Al-Mijalli, S.H.; Assaggaf, H.; Qasem, A.; El-Shemi, A.G.; Abdallah, E.M.; Mrabti, H.N.; Bouyahya, A. Antioxidant, Antidiabetic, and Antibacterial Potentials and Chemical C omposition of Salvia officinalis and Mentha suaveolens Grown Wild in Morocco. Adv. Pharmacol. Pharm. Sci. 2022, 2022, 2844880. [Google Scholar] [CrossRef] [PubMed]
- Brahmi, F.; Bentouhami, N.E.; Rbah, Y.; Elbouzidi, A.; Mokhtari, O.; Salamatullah, A.M.; Ibenmoussa, S.; Bourhia, M.; Addi, M.; Asehraou, A.; et al. Chemical composition, antioxidant, and antimicrobial properties of Men tha subtomentella: In sight in vitro and in silico analysis. Front. Chem. 2024, 11, 1341704. [Google Scholar] [CrossRef]
- Assadpour, E.; Can Karaça, A.; Fasamanesh, M.; Mahdavi, S.A.; Shariat-Alavi, M.; Feng, J.; Kharazmi, M.S.; Rehman, A.; Jafari, S.M. Application of essential oils as natural biopesticides; recent advances. Crit. Rev. Food Sci. Nutr. 2023, 64, 6477–6497. [Google Scholar] [CrossRef]
- Stevanović, Z.D.; Bošnjak-Neumüller, J.; Pajić-Lijaković, I.; Raj, J.; Vasiljević, M. Essential Oils as Feed Additives—Future Perspectives. Molecules 2018, 23, 1717. [Google Scholar] [CrossRef]
- Fitsiou, E.; Mitropoulou, G.; Spyridopoulou, K.; Tiptiri-Kourpeti, A.; Vamvakias, M.; Bardouki, H.; Panayiotidis, M.Ι.; Galanis, A.; Kourkoutas, Y.; Chlichlia, K.; et al. Phytochemical Profile and Evaluation of the Biological Activities of Essential Oils Derived from the Greek Aromatic Plant Species Ocimum basilicum, Mentha spicata, Pimpinella anisum and Fortunella margarita. Molecules 2016, 21, 1069. [Google Scholar] [CrossRef] [PubMed]
- Horváth, P.; Koščová, J. In vitro Antibacterial Activity of Mentha Essential Oils Against Staphylococcus aureus. J. Folia Vet. 2017, 61, 71–77. [Google Scholar] [CrossRef]
- Bakhtiar, A.; Khaghani, S.; Ghasemi Pirbalouti, A.; Gomarian, M.; Chavoshi, S. Essential oil variation among different populations of Ziziphora tenuior L. cultivated at semiarid climate. J. Essent. Oil Res. 2021, 33, 385–393. [Google Scholar] [CrossRef]
- Halli, L.; Harchaoui, L.; Messaoudi, M.; Dahmane, T.; Aid, F.; Sawicka, B.; Zahnit, W. Chemical Constituents and in Vitro/In Vivo Pharmacological Effects of Mentha piperita L. Essential oil in Different Regions of Algeria. Jordan J. Pharm. Sci. 2025, 18, 258–271. [Google Scholar] [CrossRef]
- Zhou, W.; Li, J.; Wang, X.; Liu, L.; Li, Y.; Song, R.; Zhang, M.; Li, X. Research Progress on Extraction, Separation, and Purification Methods of Plant Essential Oils. Separations 2023, 10, 596. [Google Scholar] [CrossRef]
- Pavela, R.; Kaffková, K.; Kumšta, M.J.P.P.S. Chemical composition and larvicidal activity of essential oils from different Mentha L. and Pulegium species against Culex quinquefasciatus Say (Diptera: Culicidae). Plant Prot. Sci. 2014, 50, 36–42. [Google Scholar] [CrossRef]
- Hassanein, H.D.; El-Gendy, A.E.-N.G.; Saleh, I.A.; Hendawy, S.F.; Elmissiry, M.M.; Omer, E.A. Profiling of essential oil chemical composition of some Lamiaceae species extracted using conventional and microwave-assisted hydrodistillation extraction methods via chemometrics tools. Flavour Fragr. J. 2020, 35, 329–340. [Google Scholar] [CrossRef]
- Papadimitriou, D.M.; Petrakis, E.A.; Arvaniti, K.A.; Kimbaris, A.C.; Polissiou, M.G.; Perdikis, D.C. Comparative bioactivity of essential oils from two Mentha pulegium (Lamiaceae) chemotypes against Aphis gossypii, Aphis spiraecola, Tetranychus urticae and the generalist predator Nesidiocoris tenuis. Phytoparasitica 2019, 47, 683–692. [Google Scholar] [CrossRef]
- Llorens-Molina, J.A.; Vacas, S.; Castell, V.; Verdeguer, M. Seasonal variations of essential oils from five accessions of Mentha longifolia (L.) L. with selected chemical profiles. J. Essent. Oil Res. 2020, 32, 419–428. [Google Scholar] [CrossRef]
- Rodríguez, J.D.W.; Peyron, S.; Rigou, P.; Chalier, P. Rapid quantification of clove (Syzygium aromaticum) and spearmint (Mentha spicata) essential oils encapsulated in a complex organic matrix u sing an ATR-FTIR spectroscopic method. PLoS ONE 2018, 13, e0207401. [Google Scholar] [CrossRef]
- Taylan, O.; Cebi, N.; Sagdic, O. Rapid Screening of Mentha spicata Essential Oil and L-Menthol in Mentha piperita Essential Oil by ATR-FTIR Spectroscopy Coupled with Multivariate Analyses. Foods 2021, 10, 202. [Google Scholar] [CrossRef]
- Cheng, R.; Yang, S.; Wang, D.; Qin, F.; Wang, S.; Meng, S. Advances in the Biosynthesis of Plant Terpenoids: Models, Mechanisms, and Applications. Plants 2025, 14, 1428. [Google Scholar] [CrossRef]
- Soliman, S.A.; Hafez, E.E.; Al-Kolaibe, A.M.G.; Abdel Razik, E.-S.S.; Abd-Ellatif, S.; Ibrahim, A.A.; Kabeil, S.S.A.; Elshafie, H.S. Biochemical Characterization, Antifungal Activity, and Relative Gene Expression of Two Mentha Essential Oils Controlling Fusarium oxysporum, the Causal Agent of Lycopersicon esculentum Root Rot. Plants 2022, 11, 189. [Google Scholar] [CrossRef]
- Liu, C.; Gao, Q.; Shang, Z.; Liu, J.; Zhou, S.; Dang, J.; Liu, L.; Lange, I.; Srividya, N.; Lange, B.M.; et al. Functional Characterization and Structural Insights into Stereoselectivity of Pulegone Reductase in Menthol Biosynthesis. Front. Plant Sci. 2021, 12, 780970. [Google Scholar] [CrossRef]
- Malli, R.P.N.; Adal, A.M.; Sarker, L.S.; Liang, P.; Mahmoud, S.S. De novo sequencing of the Lavandula angustifolia genome reveals highly duplicated and optimized features for essential oil production. Planta 2019, 249, 251–256. [Google Scholar] [CrossRef]
- Kainer, D.; Padovan, A.; Degenhardt, J.; Krause, S.; Mondal, P.; Foley, W.J.; Külheim, C. High marker density GWAS provides novel insights into the genomic architecture of terpene oil yield in Eucalyptus. New Phytol. 2019, 223, 1489–1504. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Ma, R.; Su, P.; Jin, B.; Guo, J.; Tang, J.; Chen, T.; Zeng, W.; Lai, C.; Ling, F.; et al. Elucidation of the essential oil biosynthetic pathways in Cinnamomum burmannii through identification of six terpene synthases. Plant Sci. 2022, 317, 111203. [Google Scholar] [CrossRef]
- Mohammadi, V.; Talebi, S.; Ahmadnasab, M.; Mollahassanzadeh, H. The effect of induced polyploidy on phytochemistry, cellular organelles and the expression of genes involved in thymol and carvacrol biosynthetic pathway in thyme (Thymus vulgaris). Front. Plant Sci. 2023, 14, 1228844. [Google Scholar] [CrossRef]
- Meng, S.; Lian, N.; Qin, F.; Yang, S.; Meng, D.; Bian, Z.; Xiang, L.; Lu, J. The AREB transcription factor SaAREB6 promotes drought stress-induced santalol biosynthesis in sandalwood. Hortic. Res. 2024, 12, uhae347. [Google Scholar] [CrossRef]
- Pandey, G.; Sharma, N.; Sahu, P.P.; Prasad, M. Chromatin-Based Epigenetic Regulation of Plant Abiotic Stress Response. Curr. Genom. 2016, 17, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Shi, R.; Gao, T.; Hu, Y.; Zhou, J.; Li, C.; Wang, P.; Yang, H.; Xing, W.; Dong, L.; et al. Repeated Inhalation of Peppermint Essential Oil Improves Exercise Performance in Endurance-Trained Rats. Nutrients 2023, 15, 2480. [Google Scholar] [CrossRef] [PubMed]
- Hafeeza; Kouser, S. Fodanj (Mentha piperita): Clinical applications in medicine and beyond. World J. Adv. Res. Rev. 2025, 25, 2004–2010. [Google Scholar] [CrossRef]
- Chen, K.; Dai, Z.; Zhang, Y.; Wu, S.; Liu, L.; Wang, K.; Shen, D.; Li, C. Effects of Microencapsulated Essential Oils on Growth and Intestinal Health in Weaned Piglets. Animals 2024, 14, 2705. [Google Scholar] [CrossRef]
- Susmita, G.; Prakash, D.A. A Detailed study on Effects of Mentha spp. Oil on Human Health. Int. J. Multidiscip. Res. 2024, 6, 1–11. [Google Scholar] [CrossRef]
- Park, E.J.; Kim, S.H.; Kim, B.J.; Kim, S.Y.; So, I.; Jeon, J.H. Menthol Enhances an Antiproliferative Activity of 1alpha,25-Dihydroxyvitamin D(3) in LNCaP Cells. J. Clin. Biochem. Nutr. 2009, 44, 125–130. [Google Scholar] [CrossRef]
- Yang, Q.; Luo, J.; Lv, H.; Wen, T.; Shi, B.; Liu, X.; Zeng, N. Pulegone inhibits inflammation via suppression of NLRP3 inflammasome and reducing cytokine production in mice. Immunopharmacol. Immunotoxicol. 2019, 41, 420–427. [Google Scholar] [CrossRef]
- Amat, S.; Magossi, G.; Rakibuzzaman, A.; Holman, D.B.; Schmidt, K.N.; Kosel, L.; Ramamoorthy, S. Screening and selection of essential oils for an intranasal spray against bovine respiratory pathogens based on antimicrobial, antiviral, immunomodulatory, and antibiofilm activities. Front. Vet. Sci. 2024, 11, 1360398. [Google Scholar] [CrossRef] [PubMed]
- Bautista-Hernández, I.; Gómez-García, R.; Martínez-Ávila, G.C.G.; Medina-Herrera, N.; González-Hernández, M.D. Unlocking Essential Oils’ Potential as Sustainable Food Additives: Current State and Future Perspectives for Industrial Applications. Sustainability 2025, 17, 2053. [Google Scholar] [CrossRef]
- Aouadhi, C.; Jouini, A.; Maaroufi, K.; Maaroufi, A. Antibacterial Effect of Eight Essential Oils against Bacteria Implicated in Bovine Mastitis and Characterization of Primary Action Mode of Thymus capitatus Essential Oil. Antibiotics 2024, 13, 237. [Google Scholar] [CrossRef] [PubMed]
- Rayan, A.; Ouazzani, C.; Er-ramly, A.; Moustaghfir, A.; Benchama, Z.; Abdelaziz, E.; Benkhouili, F.; Otman, E.-G.; Abdallah, D.; Lhousaine, B. A comparative study of the chemical composition and antioxidant capacity of the essential oils from three species of Mentha cultivated in Morocco. J. Pharm. Pharmacogn. Res. 2024, 12, 1021–1039. [Google Scholar] [CrossRef]
- Stefanakis, M.K.; Giannakoula, A.E.; Ouzounidou, G.; Papaioannou, C.; Lianopoulou, V.; Philotheou-Panou, E. The Effect of Salinity and Drought on the Essential Oil Yield and Quality of Various Plant Species of the Lamiaceae Family (Mentha spicata L., Origanum dictamnus L., Origanum onites L.). Horticulturae 2024, 10, 265. [Google Scholar] [CrossRef]
- Chen, X.; Shang, S.; Yan, F.; Jiang, H.; Zhao, G.; Tian, S.; Chen, R.; Chen, D.; Dang, Y. Antioxidant Activities of Essential Oils and Their Major Components in Scavenging Free Radicals, Inhibiting Lipid Oxidation and Reducing Cellular Oxidative Stress. Molecules 2023, 28, 4559. [Google Scholar] [CrossRef]
- Dziedziak, M.; Mytych, A.; Szyller, H.P.; Lasocka, M.; Augustynowicz, G.; Szydziak, J.; Hrapkowicz, A.; Dyda, M.; Braksator, J.; Pytrus, T. Gut Microbiota in Psychiatric and Neurological Disorders: Current Insights and Therapeutic Implications. Biomedicines 2025, 13, 2104. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, Y.; Hao, Y.; Fang, J.; Feng, J. Effects of Supplementation with Oregano Essential Oil during Late Gestation and Lactation on Serum Metabolites, Antioxidant Capacity and Fecal Microbiota of Sows. Animals 2024, 14, 753. [Google Scholar] [CrossRef]
- Arora, S.; Sharma, A. Exploring the Role of Mentha in Gut Microbiota: A Modern Perspective of an Ancient Herb. Recent Adv. Food Nutr. Agric. 2023, 14, 94–106. [Google Scholar] [CrossRef]
- Magossi, G.; Schmidt, K.N.; Winders, T.M.; Carlson, Z.E.; Holman, D.B.; Underdahl, S.R.; Swanson, K.C.; Amat, S. A single intranasal dose of essential oil spray confers modulation of the nasopharyngeal microbiota and short-term inhibition of Mannheimia in feedlot cattle: A pilot study. Sci. Rep. 2024, 14, 823. [Google Scholar] [CrossRef]
- Gautam, N.; Mantha, A.K.; Mittal, S. Essential Oils and Their Constituents as Anticancer Agents: A Mechanistic View. BioMed Res. Int. 2014, 2014, 154106. [Google Scholar] [CrossRef]
- Ishfaq, P.M.; Shukla, A.; Beraiya, S.; Tripathi, S.; Mishra, S.K. Biochemical and Pharmacological Applications of Essential Oils in Human Health Especially in Cancer Prevention. Anticancer Agents Med. Chem. 2018, 18, 1815–1827. [Google Scholar] [CrossRef] [PubMed]
- Russo, R.; Corasaniti, M.T.; Bagetta, G.; Morrone, L.A. Exploitation of Cytotoxicity of Some Essential Oils for Translation in Cancer Therapy. Evid.-Based Complement. Altern. Med. 2015, 2015, 397821. [Google Scholar] [CrossRef]
- Oualdi, I.; Merzouki, M.; Ouahhoud, S.; Chakrone, K.; Benabbes, R.; Yousfi, E.B.; Challioui, A.; Hammouti, B.; Touzani, R. Essential Oils of Artemisia herba-alba, Mentha pulegium, and Cedrus atlantica: Chemical compositions, in vitro, in vivo, in silico Antifungals Activities, and Genotoxicity. ASEAN J. Sci. Eng. 2025, 5, 45–60. [Google Scholar] [CrossRef]
- Shahdadi, F.; Faryabi, M.; Khan, H.; Sardoei, A.S.; Fazeli-Nasab, B.; Goh, B.H.; Goh, K.W.; Tan, C.S. Mentha longifolia essential oil and pulegone in edible coatings of alginate and chitosan: Effects on pathogenic bacteria in lactic cheese. Molecules 2023, 28, 4554. [Google Scholar] [CrossRef]
- Pimentel, L.S.; Bastos, L.M.; Goulart, L.R.; Ribeiro, L.N.d.M. Therapeutic Effects of Essential Oils and Their Bioactive Compounds on Prostate Cancer Treatment. Pharmaceutics 2024, 16, 583. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Park, H.-J.; Abdul, Q.A.; Jung, H.A.; Choi, J.S. Pulegone exhibits anti-inflammatory activities through the regulation of NF-κB and nrf-2 signaling pathways in LPS-stimulated RAW 264.7 cells. Nat. Prod. Sci. 2018, 24, 28. [Google Scholar] [CrossRef]
- Omidian, H.; Cubeddu, L.X.; Gill, E.J. Harnessing Nanotechnology to Enhance Essential Oil Applications. Molecules 2025, 30, 520. [Google Scholar] [CrossRef]
- Fernandes, B.; Oliveira, M.C.; Marques, A.C.; Santos, R.G.; Serrano, C. Microencapsulation of Essential Oils and Oleoresins: Applications in F ood Products. Foods 2024, 13, 3873. [Google Scholar] [CrossRef]
- Nehme, R.; Andrés, S.; Pereira, R.B.; Ben Jemaa, M.; Bouhallab, S.; Ceciliani, F.; López, S.; Rahali, F.Z.; Ksouri, R.; Pereira, D.M.; et al. Essential Oils in Livestock: From Health to Food Quality. Antioxidants 2021, 10, 330. [Google Scholar] [CrossRef]
- Singh, A.; Paul, N. Efficacy of Mentha piperita (Peppermint), Azadirachta indica (Neem), Syzygium aromaticum (Clove), Brassica nigra (Mustard) oils on termites. Int. J. Sci. Res. Arch. 2024, 12, 322–326. [Google Scholar] [CrossRef]
- Jílková, B.; Víchová, J.; Holková, L.; Pluháčková, H.; Michutová, M.; Kmoch, M. Laboratory Efficacy of Essential Oils Against Pectobacterium carotovor um subsp. carotovorum and Pectobacterium atrosepticum Causing Soft Rot of Potato Tubers. Potato Res. 2024, 68, 641–660. [Google Scholar] [CrossRef]
- Taktak, N.E.M.; Badawy, M.E.I.; Awad, O.M.; Abou El-Ela, N.E.; Aborhyem, S.M. Preparation and evaluation of ecofriendly nanocreams containing some plant essential oils and monoterpenes against adults of Culex pipiens L. with some biochemical and histological studies on albino rat. Int. J. Trop. Insect Sci. 2024, 44, 189–203. [Google Scholar] [CrossRef]
- Fukuyama, C.W.T.; Duarte, L.G.R.; Pedrino, I.C.; Mitsuyuki, M.C.; Junior, S.B.; Ferreira, M.D. Effect of carnauba wax nanoemulsion associated with Syzygium aromaticum and Mentha piperita essential oils as an alternative to extend lychee post-harvest shelf life. Sustain. Food Technol. 2024, 2, 426–436. [Google Scholar] [CrossRef]
- Wei, H.; Kong, S.; Jayaraman, V.; Selvaraj, D.; Soundararajan, P.; Manivannan, A. Mentha arvensis and Mentha × piperita-Vital Herbs with Myriads of Phar maceutical Benefits. Horticulturae 2023, 9, 224. [Google Scholar] [CrossRef]
Species | Pharmacological Activity | Study Type | References |
---|---|---|---|
M. piperita | Antimicrobial/Antifungal | In vitro | [35] |
In vitro | [11] | ||
Antioxidant | In vitro | [34] | |
In vivo (Animal) | [69] | ||
In vivo (Animal) | [34] | ||
Digestive Benefits | Review/Mechanism | [70] | |
In vivo (Animal) | [71] | ||
Neurological/Cognitive | In vivo (Human) | [72] | |
Respiratory Benefits | Review/Mechanism | [70] | |
In vivo (Animal) | [69] | ||
Anticancer | In vitro | [73] | |
M. spicata | Antimicrobial/Antifungal | In vitro | [13,23] |
Antioxidant | In vitro | [34] | |
Anti-inflammatory | In vitro | [32] | |
Anticancer | In vitro | [32] | |
M. pulegium | Antimicrobial/Antifungal | In vitro | [38,39] |
Antioxidant | In vitro | [28,38] | |
Anti-inflammatory | In vivo (Animal) | [39] | |
In vivo (Animal) | [74] | ||
M. longifolia | Antimicrobial | In vitro | [45] |
Antioxidant | In vitro | [28] | |
Anti-inflammatory | In vivo (Animal) | [28] | |
Anticancer | In vitro | [30] | |
M. suaveolens | Antimicrobial | In vitro | [44] |
Antioxidant | In vitro | [44,45] | |
M. subtomentella | Antioxidant | In vitro | [46] |
M. gracilis | Antioxidant | In vivo (Animal) | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Ma, Y.; Ouyang, Z.; Huang, L. Mentha Essential Oils: Unraveling Chemotype-Dependent Biosynthesis and Assessing Evidence for Health-Promoting Activities. Nutrients 2025, 17, 3258. https://doi.org/10.3390/nu17203258
Yu Y, Ma Y, Ouyang Z, Huang L. Mentha Essential Oils: Unraveling Chemotype-Dependent Biosynthesis and Assessing Evidence for Health-Promoting Activities. Nutrients. 2025; 17(20):3258. https://doi.org/10.3390/nu17203258
Chicago/Turabian StyleYu, Yifan, Yalin Ma, Zhen Ouyang, and Luqi Huang. 2025. "Mentha Essential Oils: Unraveling Chemotype-Dependent Biosynthesis and Assessing Evidence for Health-Promoting Activities" Nutrients 17, no. 20: 3258. https://doi.org/10.3390/nu17203258
APA StyleYu, Y., Ma, Y., Ouyang, Z., & Huang, L. (2025). Mentha Essential Oils: Unraveling Chemotype-Dependent Biosynthesis and Assessing Evidence for Health-Promoting Activities. Nutrients, 17(20), 3258. https://doi.org/10.3390/nu17203258