FokI Polymorphism of the VDR Gene Is Associated with Vitamin D Insufficiency in Elite Male Power Athletes of Kazakhstan
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Blood Sampling
2.3. Biochemical Analysis
2.4. DNA Isolation
2.5. Genotyping
2.6. Statistical Analysis
3. Results
3.1. Study Group
3.2. Serum Concentration of 25-Hydroxy-Vitamin D [25(OH)D]
3.3. Association of Vitamin D Status with Epidemiological Data of Study Participants
3.4. Genotyping Samples for Polymorphisms of the VDR Gene
3.5. Genetic Association of Polymorphisms of the VDR Gene with Vitamin D Status
4. Discussion
- Limitations
- Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolf, G. The Discovery of Vitamin D: The Contribution of Adolf Windaus. J. Nutr. 2004, 134, 1299–1302. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D. Vitamin D Metabolism, Mechanism of Action, and Clinical Applications. Chem. Biol. 2014, 21, 319–329. [Google Scholar] [CrossRef]
- Cui, A.; Zhang, T.; Xiao, P.; Fan, Z.; Wang, H.; Zhuang, Y. Global and Regional Prevalence of Vitamin D Deficiency in Population-Based Studies from 2000 to 2022: A Pooled Analysis of 7.9 Million Participants. Front. Nutr. 2023, 10, 1070808. [Google Scholar] [CrossRef]
- Bouillon, R.; Marcocci, C.; Carmeliet, G.; Bikle, D.; White, J.H.; Dawson-Hughes, B.; Lips, P.; Munns, C.F.; Lazaretti-Castro, M.; Giustina, A.; et al. Skeletal and Extraskeletal Actions of Vitamin D: Current Evidence and Outstanding Questions. Endocr. Rev. 2019, 40, 1109–1151. [Google Scholar] [CrossRef]
- Voltan, G.; Cannito, M.; Ferrarese, M.; Ceccato, F.; Camozzi, V. Vitamin D: An Overview of Gene Regulation, Ranging from Metabolism to Genomic Effects. Genes 2023, 14, 1691. [Google Scholar] [CrossRef]
- Harju, T.; Gray, B.; Mavroedi, A.; Farooq, A.; Reilly, J.J. Prevalence and Novel Risk Factors for Vitamin D Insufficiency in Elite Athletes: Systematic Review and Meta-Analysis. Eur. J. Nutr. 2022, 61, 3857–3871. [Google Scholar] [CrossRef]
- Flore, L.; Robledo, R.; Dettori, L.; Scorcu, M.; Francalacci, P.; Tocco, F.; Massidda, M.; Calò, C.M. Association of VDR Polymorphisms with Muscle Mass Development in Elite Young Soccer Players: A Pilot Study. Sports 2024, 12, 253. [Google Scholar] [CrossRef]
- Shuler, F.D.; Wingate, M.K.; Moore, G.H.; Giangarra, C. Sports Health Benefits of Vitamin D. Sports Health 2022, 4, 496–501. [Google Scholar] [CrossRef]
- Miraj, S.S.; Thunga, G.; Kunhikatta, V.; Rao, M.; Nair, S. Benefits of Vitamin D in Sport Nutrition. In Nutrition and Enhancing Sports Performance: Muscle Building, Endurance, and Strength; Elsevier: Amsterdam, The Netherlands, 2018; pp. 497–508. [Google Scholar] [CrossRef]
- Klein, G.L.; Chen, T.C.; Holick, M.F.; Langman, C.B.; Price, H.; Celis, M.M.; Herndon, D.N. Synthesis of Vitamin D in Skin after Burns. Lancet 2004, 363, 291–292. [Google Scholar] [CrossRef] [PubMed]
- Pop, T.L.; Sîrbe, C.; Benţa, G.; Mititelu, A.; Grama, A. The Role of Vitamin D and Vitamin D Binding Protein in Chronic Liver Diseases. Int. J. Mol. Sci. 2022, 23, 10705. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, K.; Kesterson, R.A.; Yamamoto, H.; Taketani, Y.; Nishiwaki, E.; Tatsumi, S.; Inoue, Y.; Morita, K.; Takeda, E.; Pike, J.W. Structural Organization of the Human Vitamin D Receptor Chromosomal Gene and Its Promoter. Mol. Endocrinol. 1997, 11, 1165–1179. [Google Scholar] [CrossRef]
- Hibler, E.A.; Jurutka, P.W.; Egan, J.B.; Hu, C.; LeRoy, E.C.; Martinez, M.E.; Thompson, P.A.; Jacobs, E.T. Association between Polymorphic Variation in VDR and RXRA and Circulating Levels of Vitamin D Metabolites. J. Steroid Biochem. Mol. Biol. 2010, 121, 438–441. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Alanazi, A.T.; Ahmed, H.H.; Elfiky, S.; Ghafar, M.T.A.; Maher, I.; Taha, S.A.; AbuRahma, M.Z.A.; Elagawy, W.; Mohareb, D.A.; et al. FokI Polymorphism of the Vitamin D Receptor Gene: Linking COVID-19 Risk to Genetic Susceptibility in Children. Cytokine 2025, 191, 156958. [Google Scholar] [CrossRef]
- Gilioli da Costa Nunes, G.; Cezar Aquino de Moraes, F.; Carvalho de Almeida, A.B.; Goes Costa, F.; Duarte de Andrade Junior, L.F.; Sabino Hupp, M.V.; Rotondano Assunção, R.; Rodrigues Fernandes, M.; Emanuel Batista dos Santos, S.; Pereira Carneiro dos Santos, N. Single-Nucleotide Polymorphisms Related to Multiple Myeloma Risk: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2025, 26, 3369. [Google Scholar] [CrossRef]
- González Rojo, P.; Pérez Ramírez, C.; Gálvez Navas, J.M.; Pineda Lancheros, L.E.; Rojo Tolosa, S.; Ramirez Tortosa, M.D.C.; Jiménez Morales, A. Vitamin D-Related Single Nucleotide Polymorphisms as Risk Biomarkers of Cardiovascular Disease. Int. J. Mol. Sci. 2022, 23, 8686. [Google Scholar] [CrossRef]
- Yerezhepov, D.; Gabdulkayum, A.; Akhmetova, A.; Kozhamkulov, U.A.; Rakhimova, S.E.; Kairov, U.Y.; Zhunussova, G.; Kalendar, R.N.; Akilzhanova, A. Vitamin D Status, VDR, and TLR Polymorphisms and Pulmonary Tuberculosis Epidemiology in Kazakhstan. Nutrients 2024, 16, 558. [Google Scholar] [CrossRef]
- Bulgay, C.; Bayraktar, I.; Kazan, H.H.; Yıldırım, D.S.; Zorba, E.; Akman, O.; Ergun, M.A.; Cerit, M.; Ulucan, K.; Eken, Ö.; et al. Evaluation of the Association of VDR rs2228570 Polymorphism with Elite Track and Field Athletes’ Competitive Performance. Healthcare 2023, 11, 681. [Google Scholar] [CrossRef] [PubMed]
- Baumert, P.; Lake, M.J.; Stewart, C.E.; Drust, B.; Erskine, R.M. Genetic Variation and Exercise-Induced Muscle Damage: Implications for Athletic Performance, Injury, and Ageing. Eur. J. Appl. Physiol. 2016, 116, 1595–1625. [Google Scholar] [CrossRef] [PubMed]
- Marques, I.S.; Tavares, V.; Vieira Neto, B.; Lopes, L.R.; Goes, R.A.; Guimarães, J.A.M.; Perini, J.A.; Medeiros, R. Genetic Variations in Susceptibility to Traumatic Muscle Injuries and Muscle Pain among Brazilian High-Performance Athletes. Int. J. Mol. Sci. 2024, 25, 3300. [Google Scholar] [CrossRef] [PubMed]
- Varley, I.; Hughes, D.C.; Greeves, J.P.; Stellingwerff, T.; Ranson, C.; Fraser, W.D.; Sale, C. The Association of Novel Polymorphisms with Stress Fracture Injury in Elite Athletes: Further Insights from the SFEA Cohort. J. Sci. Med. Sport 2018, 21, 564–568. [Google Scholar] [CrossRef]
- Longhurst, J.C.; Stebbins, C.L. The Power Athlete. Cardiol. Clin. 1997, 15, 413–429. [Google Scholar] [CrossRef]
- de la Puente Yagüe, M.; Collado Yurrita, L.; Ciudad Cabañas, M.J.; Cuadrado Cenzual, M.A. Role of Vitamin D in Athletes and Their Performance: Current Concepts and New Trends. Nutrients 2020, 12, 579. [Google Scholar] [CrossRef]
- Ozcan, N.; Ucar, F.; Arzuhal, A.E.; Bulut, E.; Ozturk, A.; Yavuz, M.T.; Temel, I.; Erden, G. Evaluation of the Analytical Performance of Unicel DXI 800 for Total 25(OH) Vitamin D Measurements. Clin. Biochem. 2016, 49, 486–491. [Google Scholar] [CrossRef]
- Ip, T.S.; Fu, S.C.; Ong, M.T.; Yung, P.S. Vitamin D Deficiency in Athletes: Laboratory, Clinical, and Field Integration. Asia-Pac. J. Sports Med. Arthrosc. Rehabil. Technol. 2022, 29, 22–29. [Google Scholar] [CrossRef]
- Holick, M.F.; Chen, T.C. Vitamin D deficiency: A worldwide problem with health consequences. Am. J. Clin. Nutr. 2008, 87, 1080S–1086S. [Google Scholar] [CrossRef]
- Autier, P.; Boniol, M.; Pizot, C.; Mullie, P. Vitamin D Status and Ill Health: A Systematic Review. Lancet Diabetes Endocrinol. 2014, 2, 76–89. [Google Scholar] [CrossRef]
- Costenbader, K.H. Vitamin D and Fish Oil Supplements and Risk of Autoimmune Disease. BMJ 2022, 376, e066452. [Google Scholar] [CrossRef] [PubMed]
- Nikooyeh, B.; Abdollahi, Z.; Shariatzadeh, N.; Kalayi, A.; Zahedirad, M.; Neyestani, T. Effect of Latitude on Seasonal Variations of Vitamin D and Some Cardiometabolic Risk Factors: National Food and Nutrition Surveillance. East Mediterr. Health J. 2021, 27, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Gromova, O.; Doschanova, A.; Lokshin, V.; Tuletova, A.; Grebennikova, G.; Daniyarova, L.; Kaishibayeva, G.; Nurpeissov, T.; Khan, V.; Semenova, Y.; et al. Vitamin D Deficiency in Kazakhstan: Cross-Sectional Study. J. Steroid Biochem. Mol. Biol. 2020, 199, 105565. [Google Scholar] [CrossRef] [PubMed]
- Ceglia, L.; Harris, S.S. Vitamin D and Its Role in Skeletal Muscle. Calcif. Tissue Int. 2012, 92, 151–162. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Guidelines for Preventing and Treating Vitamin D Deficiency and Insufficiency Revisited. J. Clin. Endocrinol. Metab. 2012, 97, 1153–1158. [Google Scholar] [CrossRef]
- Hacker, S.; Lenz, C.; Reichert, L.; Ringseis, R.; Zentgraf, K.; Krüger, K. Vitamin D Status and Its Determinants in German Elite Athletes. Eur. J. Appl. Physiol. 2025, 125, 1549–1561. [Google Scholar] [CrossRef]
- Bezuglov, E.; Tikhonova, A.; Zueva, A.; Khaitin, V.; Waśkiewicz, Z.; Gerasimuk, D.; Żebrowska, A.; Rosemann, T.; Nikolaidis, P.; Knechtle, B. Prevalence and Treatment of Vitamin D Deficiency in Young Male Russian Soccer Players in Winter. Nutrients 2019, 11, 2405. [Google Scholar] [CrossRef]
- Grieshober, J.A.; Mehran, N.; Photopolous, C.; Fishman, M.; Lombardo, S.J.; Kharrazi, F.D. Vitamin D Insufficiency among Professional Basketball Players: A Relationship to Fracture Risk and Athletic Performance. Orthop. J. Sports Med. 2018, 6, 2325967118774329. [Google Scholar] [CrossRef]
- Farrokhyar, F.; Tabasinejad, R.; Dao, D.; Peterson, D.; Ayeni, O.R.; Hadioonzadeh, R.; Bhandari, M. Prevalence of Vitamin D Inadequacy in Athletes: A Systematic-Review and Meta-Analysis. Sports Med. 2015, 45, 365–378. [Google Scholar] [CrossRef]
- Hamilton, B.; Whiteley, R.; Farooq, A.; Chalabi, H. Vitamin D Concentration in 342 Professional Football Players and Association with Lower Limb Isokinetic Function. J. Sci. Med. Sport 2014, 17, 139–143. [Google Scholar] [CrossRef]
- Mehran, N.; Schulz, B.M.; Neri, B.R.; Robertson, W.J.; Limpisvasti, O. Prevalence of Vitamin D Insufficiency in Professional Hockey Players. Orthop. J. Sports Med. 2016, 4, 2325967116677512. [Google Scholar] [CrossRef]
- Sutherland, J.P.; Zhou, A.; Leach, M.J.; Hyppönen, E. Differences and Determinants of Vitamin D Deficiency among UK Biobank Participants: A Cross-Ethnic and Socioeconomic Study. Clin. Nutr. 2021, 40, 3436–3447. [Google Scholar] [CrossRef] [PubMed]
- Shraim, R.; Brennan, M.M.; van Geffen, J.; Zgaga, L. Prevalence and Determinants of Profound Vitamin D Deficiency (25-Hydroxyvitamin D <10 nmol/L) in the UK Biobank and Potential Implications for Disease Association Studies. J. Steroid Biochem. Mol. Biol. 2025, 250, 106737. [Google Scholar] [CrossRef] [PubMed]
- Bârsan, M.; Chelaru, V.-F.; Râjnoveanu, A.-G.; Popa, Ș.L.; Socaciu, A.I.; Bădulescu, A.V. Difference in Levels of Vitamin D between Indoor and Outdoor Athletes: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2023, 24, 7584. [Google Scholar] [CrossRef] [PubMed]
- Valtueña, J.; Dominguez, D.; Til, L.; González-Gross, M.; Drobnic, F. High Prevalence of Vitamin D Insufficiency among Elite Spanish Athletes: The Importance of Outdoor Training Adaptation. Nutr. Hosp. 2014, 30, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Kwon, O.; Kim, J. Vitamin D in Athletes: Focus on Physical Performance and Musculoskeletal Injuries. Phys. Act. Nutr. 2021, 25, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Ogan, D.; Pritchett, K. Vitamin D and the Athlete: Risks, Recommendations, and Benefits. Nutrients 2013, 5, 1856–1868. [Google Scholar] [CrossRef]
- Cashman, K.D.; Sheehy, T.; O’Neill, C.M. Is Vitamin D Deficiency a Public Health Concern for Low-Middle-Income Countries? A Systematic Literature Review. Eur. J. Nutr. 2019, 58, 433–453. [Google Scholar] [CrossRef]
- Arabi, A.; El-Hajj Fuleihan, G. Hypovitaminosis D in Developing Countries—Prevalence, Risk Factors, and Outcomes. Nat. Rev. Endocrinol. 2010, 6, 550–561. [Google Scholar] [CrossRef]
- Bolland, M.J.; Grey, A.; Avenell, A. Effects of Vitamin D Supplementation on Musculoskeletal Health: A Systematic Review, Meta-Analysis, and Trial Sequential Analysis. Lancet Diabetes Endocrinol. 2018, 6, 847–858. [Google Scholar] [CrossRef]
- Jung, H.C.; Seo, M.W.; Lee, S.; Kim, S.W.; Song, J.K. Vitamin D3 Supplementation Reduces the Symptoms of Upper Respiratory Tract Infection during Winter Training in Vitamin D-Insufficient Taekwondo Athletes: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2018, 15, 2003. [Google Scholar] [CrossRef] [PubMed]
- Żebrowska, A.; Sadowska-Krępa, E.; Stanula, A.; Waśkiewicz, Z.; Łakomy, O.; Bezuglov, E.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. The Effect of Vitamin D Supplementation on Serum Total 25(OH) Levels and Biochemical Markers of Skeletal Muscles in Runners. J. Int. Soc. Sports Nutr. 2020, 17, 18. [Google Scholar] [CrossRef]
- Michalczyk, M.M.; Gołaś, A.; Maszczyk, A.; Kaczka, P.; Zając, A. Influence of Sunlight and Oral D3 Supplementation on Serum 25(OH)D Concentration and Exercise Performance in Elite Soccer Players. Nutrients 2020, 12, 1311. [Google Scholar] [CrossRef]
- Teixeira, P.; Santos, A.C.; Casalta-Lopes, J.; Almeida, M.; Loureiro, J.; Ermida, V.; Caldas, J.; Fontes-Ribeiro, C. Prevalence of Vitamin D Deficiency among Soccer Athletes and Effects of Eight Weeks Supplementation. J. Sports Med. Phys. Fitness 2019, 59, 693–699. [Google Scholar] [CrossRef]
- Sepulveda-Villegas, M.; Elizondo-Montemayor, L.; Trevino, V. Identification and Analysis of 35 Genes Associated with Vitamin D Deficiency: A Systematic Review to Identify Genetic Variants. J. Steroid Biochem. Mol. Biol. 2020, 196, 105516. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, D.A.; Walton, R.T.; Griffiths, C.J.; Martineau, A.R. Single Nucleotide Polymorphisms in the Vitamin D Pathway Associating with Circulating Concentrations of Vitamin D Metabolites and Non-Skeletal Health Outcomes: Review of Genetic Association Studies. J. Steroid Biochem. Mol. Biol. 2016, 164, 18–29. [Google Scholar] [CrossRef]
- Usategui-Martín, R.; De Luis-Román, D.-A.; Fernández-Gómez, J.M.; Ruiz-Mambrilla, M.; Pérez-Castrillón, J.-L. Vitamin D Receptor (VDR) Gene Polymorphisms Modify the Response to Vitamin D Supplementation: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 360. [Google Scholar] [CrossRef]
- Uitterlinden, A.G.; Fang, Y.; Van Meurs, J.B.J.; Pols, H.A.P.; Van Leeuwen, J.P.T.M. Genetics and Biology of Vitamin D Receptor Polymorphisms. Gene 2004, 338, 143–156. [Google Scholar] [CrossRef]
- Annalora, A.J.; Jozic, M.; Marcus, C.B.; Iversen, P.L. Alternative Splicing of the Vitamin D Receptor Modulates Target Gene Expression and Promotes Ligand-Independent Functions. Toxicol. Appl. Pharmacol. 2019, 364, 55–67. [Google Scholar] [CrossRef] [PubMed]
- AbdElneam, A.I.; Al-Dhubaibi, M.S.; Bahaj, S.S.; Mohammed, G.F. TaqI Polymorphism T/t Genotypes at the Vitamin D Receptor Gene (VDR) Are Associated with Increased Serum Vitamin D Levels in Mild and Moderate Psoriasis Vulgaris: A Pilot Study. J. Gene Med. 2022, 24, e3449. [Google Scholar] [CrossRef]
- Gaffney-Stomberg, E.; Lutz, L.J.; Shcherbina, A.; Ricke, D.O.; Petrovick, M.; Cropper, T.L.; Cable, S.J.; McClung, J.P. Association Between Single Gene Polymorphisms and Bone Biomarkers and Response to Calcium and Vitamin D Supplementation in Young Adults Undergoing Military Training. J. Bone Miner. Res. 2017, 32, 498–507. [Google Scholar] [CrossRef]
- Krasniqi, E.; Boshnjaku, A.; Wagner, K.H.; Wessner, B. Association between Polymorphisms in Vitamin D Pathway-Related Genes, Vitamin D Status, Muscle Mass, and Function: A Systematic Review. Nutrients 2021, 13, 3109. [Google Scholar] [CrossRef]
- Orton, S.M.; Morris, A.P.; Herrera, B.M.; Ramagopalan, S.V.; Lincoln, M.R.; Chao, M.J.; Vieth, R.; Sadovnick, A.D.; Ebers, G.C. Evidence for Genetic Regulation of Vitamin D Status in Twins with Multiple Sclerosis. Am. J. Clin. Nutr. 2008, 88, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Lázaro, D.; Mielgo-Ayuso, J.; Seco-Calvo, J.; Gutiérrez-Abejón, E.; Roche, E.; Garrosa, M. Single-Nucleotide Polymorphisms (SNPs) in Vitamin D Physiology Genes May Modulate Serum 25(OH)D Levels in Well-Trained CrossFit® Athletes, Which May Be Associated with Performance Outcomes. Int. J. Mol. Sci. 2025, 26, 5602. [Google Scholar] [CrossRef]
- Tanabe, R.; Kawamura, Y.; Tsugawa, N.; Haraikawa, M.; Sogabe, N.; Okano, T.; Hosoi, T.; Goseki-Sone, M. Effects of Fok-I Polymorphism in Vitamin D Receptor Gene on Serum 25-Hydroxyvitamin D, Bone-Specific Alkaline Phosphatase and Calcaneal Quantitative Ultrasound Parameters in Young Adults. Asia-Pac. J. Clin. Nutr. 2015, 24, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Sadat-Ali, M.; Al-Turki, H.A.; Azam, M.Q.; Al-Elq, A.H. Genetic Influence on Circulating Vitamin D among Saudi Arabians. Saudi Med. J. 2016, 37, 996–1001. [Google Scholar] [CrossRef] [PubMed]
Gene | Name | Reference Number | Context Sequence |
---|---|---|---|
VDR | TaqI | rs731236 | TGGACAGGCGGTCCTGGATGGCCTC[A/G] ATCAGCGCGGCGTCCTGCACCCCAG |
BsmI | rs1544410 | GAGCAGAGCCTGAGTATTGGGAATG[T/C] GCAGGCCTGTCTGTGGCCCCAGGAA | |
ApaI | rs7975232 | AAGGCACAGGAGCTCTCAGCTGGGC[A/C] CCTCACTGCTCAATCCCACCACCCC | |
FokI | rs2228570 | GGAAGTGCTGGCCGCCATTGCCTCC[A/G] TCCCTGTAAGAACAGCAAGCAGGCC |
Details | All (n = 92) |
---|---|
Age, mean ± SD, years | 24.5 ± 4.1 |
Age, years, n (%) | |
<25 | 54 (58.7) |
≥25 | 38 (41.3) |
Weight, mean ± SD, kg | 82.1 ± 22.8 |
Height, mean ± SD, cm | 177.2 ± 9.3 |
BMI, mean ± SD, kg/m2 | 25.9 ± 5.5 |
BMI, cat., n (%) | |
18.5 ≥ <25 | 48 (52.2) |
≥25 | 44 (47.8) |
Sports Experience, mean ± SD, years | 13.1 ± 4.2 |
Sports Experience, years, n (%) | |
≤13 | 46 (50.0) |
>13 | 46 (50.0) |
Sport types | n (%) |
Boxing | 32 (34.8) |
Judo | 23 (25.0) |
Freestyle Wrestling | 14 (15.2) |
Taekwondo | 10 (10.9) |
Greco-Roman Wrestling | 9 (9.8) |
Weightlifting | 4 (4.3) |
Details | All (n = 92) |
---|---|
Serum 25(OH)D, mean ± SD, ng/mL | 24.4 ± 8.7 |
Serum 25(OH)D, deficiency vs. insufficiency vs. sufficiency, ng/mL | n (%) |
<20 | 35 (38.0) |
20 ≥ <30 | 23 (25.0) |
≥30 | 34 (37.0) |
Serum 25(OH)D, deficiency/insufficiency vs. sufficiency, ng/mL | n (%) |
<30 | 58 (63.0) |
≥30 | 34 (37.0) |
Serum 25(OH)D, deficiency vs. insufficiency/sufficiency, ng/mL | n (%) |
<20 | 35 (38.0) |
≥20 | 57 (62.0) |
Variables | Serum 25(OH)D Levels, ng/mL | χ2 | p-value | |||
---|---|---|---|---|---|---|
Indicators | <20 (n = 35) | 20 ≥ <30 (n = 23) | ≥30 (n = 34) | |||
n (%) | n (%) | n (%) | ||||
Age, years | <25 | 27 (77.1) | 13 (56.5) | 14 (41.2) | 9.26 | <0.01 |
≥25 | 8 (22.9) | 10 (43.5) | 20 (58.8) | |||
BMI, kg/m2 | 18.5 ≥ <25 | 25 (71.4) | 15 (65.2) | 14 (41.2) | 7.04 | <0.03 |
≥25 | 10 (28.6) | 8 (34.8) | 20 (58.8) | |||
Experience, years | ≤13 | 11 (31.4) | 12 (52.2) | 19 (63.3) | 6.84 | 0.03 |
>13 | 24 (68.6) | 11 (47.8) | 11 (36.7) |
Variables | Indicators | Serum 25(OH)D Levels, ng/mL | OR (95% CI) | p-value | Serum 25(OH)D Levels, ng/mL | OR (95% CI) | p-value | ||
---|---|---|---|---|---|---|---|---|---|
<30 (n = 58) | ≥30 (n = 34) | <20 (n = 35) | ≥20 (n = 57) | ||||||
n (%) | n (%) | n (%) | n (%) | ||||||
Age, years | <25 | 40 (69.0) | 14 (41.2) | 3.18 (1.32–7.66) | <0.01 | 27 (77.1) | 27 (47.4) | 3.75 (1.46–9.65) | <0.01 |
≥25 | 18 (31.0) | 20 (58.8) | 8 (22.9) | 30 (52.6) | |||||
BMI, kg/m2 | <25 | 40 (69.0) | 14 (41.2) | 3.18 (1.32–7.66) | <0.01 | 25 (71.4) | 27 (47.4) | 2.78 (1.13–6.82) | <0.03 |
≥25 | 18 (31.0) | 20 (58.8) | 10 (28.6) | 30 (52.6) | |||||
Experience, years | ≤13 | 23 (39.7) | 19 (63.3) | 0.38 (0.15–0.94) | <0.04 | 11 (31.4) | 31 (54.4) | 0.33 (0.13–0.80) | <0.02 |
>13 | 35 (60.3) | 11 (36.7) | 24 (68.6) | 22 (45.6) |
Gene | Polymorphism | Reference Number | Genotype | Total (%) |
---|---|---|---|---|
VDR | TaqI | rs731236 | A/A | 52 (56.5) |
A/G | 37 (40.2) | |||
G/G | 3 (3.3) | |||
BsmI | rs1544410 | T/T | 53 (57.6) | |
T/C | 35 (38.0) | |||
C/C | 4 (4.4) | |||
ApaI | rs7975232 | C/C | 30 (32.6) | |
A/C | 52 (56.5) | |||
A/A | 10 (10.9) | |||
FokI | rs2228570 | G/G | 44 (47.8) | |
G/A | 36 (39.2) | |||
A/A | 12 (13.0) |
Polymorphisms | Model | Genotype | Deficiency/Insufficiency vs. Sufficiency | Deficiency vs. Insufficiency/Sufficiency | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Serum 25(OH)D, ng/mL | OR (95% CI) * | p-value | Serum 25(OH)D, ng/mP | OR (95% CI) * | p-value | |||||
<30 (n = 58) | ≥30 (n = 34) | <20 (n = 35) | ≥20 (n = 57) | |||||||
VDR TaqI | CD | A/A | 29 (50%) | 23 (67.7%) | 1.00 | 0.18 | 17 (48.6%) | 35 (61.4%) | 1.00 | 0.11 |
A/G | 27 (46.5%) | 10 (29.4%) | 0.41 (0.15–1.11) | 18 (51.4%) | 19 (33.3%) | 0.49 (0.19–1.27) | ||||
G/G | 2 (3.5%) | 1 (2.9%) | 0.34 (0.02–6.94) | 0 (0%) | 3 (5.3%) | NA (0.00–NA) | ||||
Dom | A/A | 29 (50%) | 23 (67.7%) | 1.00 | 0.06 | 17 (48.6%) | 35 (61.4%) | 1.00 | 0.23 | |
A/G-G/G | 29 (50%) | 11 (32.4%) | 0.41 (0.15–1.07) | 18 (51.4%) | 22 (38.6%) | 0.57 (0.22–1.45) | ||||
Rec | A/A-A/G | 56 (96.5%) | 33 (97.1%) | 1.00 | 0.63 | 35 (100%) | 54 (94.7%) | 1.00 | 0.13 | |
G/G | 2 (3.5%) | 1 (2.9%) | 0.50 (0.03–9.32) | 0 (0%) | 3 (5.3%) | NA (0.00–NA) | ||||
OD | A/A-G/G | 31 (53.5%) | 24 (70.6%) | 1.00 | 0.09 | 17 (48.6%) | 38 (66.7%) | 1.00 | 0.1 | |
A/G | 27 (46.5%) | 10 (29.4%) | 0.43 (0.16–1.15) | 18 (51.4%) | 19 (33.3%) | 0.45 (0.17–1.17) | ||||
VDR BsmI | CD | G/G | 30 (51.7%) | 23 (67.7%) | 1.00 | 0.21 | 17 (48.6%) | 36 (63.2%) | 1.00 | 0.33 |
G/A | 25 (43.1%) | 10 (29.4%) | 0.46 (0.17–1.25) | 17 (48.6%) | 18 (31.6%) | 0.49 (0.18–1.28) | ||||
A/A | 3 (5.2%) | 1 (2.9%) | 0.24 (0.02–3.67) | 1 (2.9%) | 3 (5.3%) | 0.99 (0.09–10.70) | ||||
Dom | G/G | 30 (51.7%) | 23 (67.7%) | 1.00 | 0.09 | 17 (48.6%) | 36 (63.2%) | 1.00 | 0.18 | |
G/A-A/A | 28 (48.3%) | 11 (32.4%) | 0.44 (0.17–1.15) | 18 (51.4%) | 21 (36.8%) | 0.52 (0.20–1.34) | ||||
Rec | G/G-G/A | 55 (94.8%) | 33 (97.1%) | 1.00 | 0.38 | 34 (97.1%) | 54 (94.7%) | 1.00 | 0.81 | |
A/A | 3 (5.2%) | 1 (2.9%) | 0.33 (0.02–4.72) | 1 (2.9%) | 3 (5.3%) | 1.32 (0.13–13.76) | ||||
OD | G/G-A/A | 33 (56.9%) | 24 (70.6%) | 1.00 | 0.17 | 18 (51.4%) | 39 (68.4%) | 1.00 | 0.14 | |
G/A | 25 (43.1%) | 10 (29.4%) | 0.51 (0.19–1.35) | 17 (48.6%) | 18 (31.6%) | 0.49 (0.19–1.26) | ||||
VDR ApaI | CD | C/C | 18 (31%) | 12 (35.3%) | 1.00 | 0.26 | 11 (31.4%) | 19 (33.3%) | 1.00 | 0.96 |
A/C | 32 (55.2%) | 20 (58.8%) | 0.74 (0.27–2.04) | 21 (60%) | 31 (54.4%) | 0.90 (0.32–2.51) | ||||
A/A | 8 (13.8%) | 2 (5.9%) | 0.22 (0.03–1.52) | 3 (8.6%) | 7 (12.3%) | 1.09 (0.21–5.74) | ||||
Dom | C/C | 18 (31%) | 12 (35.3%) | 1.00 | 0.36 | 11 (31.4%) | 19 (33.3%) | 1.00 | 0.88 | |
A/C-A/A | 40 (69%) | 22 (64.7%) | 0.63 (0.24–1.69) | 24 (68.6%) | 38 (66.7%) | 0.93 (0.34–2.51) | ||||
Rec | C/C-A/C | 50 (86.2%) | 32 (94.1%) | 1.00 | 0.12 | 32 (91.4%) | 50 (87.7%) | 1.00 | 0.84 | |
A/A | 8 (13.8%) | 2 (5.9%) | 0.27 (0.05–1.62) | 3 (8.6%) | 7 (12.3%) | 1.17 (0.25–5.41) | ||||
OD | C/C-A/A | 26 (44.8%) | 14 (41.2%) | 1.00 | 0.94 | 14 (40%) | 26 (45.6%) | 1.00 | 0.79 | |
A/C | 32 (55.2%) | 20 (58.8%) | 1.03 (0.41–2.63) | 21 (60%) | 31 (54.4%) | 0.88 (0.34–2.27) | ||||
VDR FokI | CD | G/G | 30 (51.7%) | 14 (41.2%) | 1.00 | <0.01 | 19 (54.3%) | 25 (43.9%) | 1.00 | 0.44 |
A/G | 25 (43.1%) | 11 (32.4%) | 0.92 (0.31–2.67) | 13 (37.1%) | 23 (40.4%) | 1.07 (0.39–2.96) | ||||
A/A | 3 (5.2%) | 9 (26.5%) | 8.90 (1.80–43.97) | 3 (8.6%) | 9 (15.8%) | 2.59 (0.55–12.21) | ||||
Dom | G/G | 30 (51.7%) | 14 (41.2%) | 1.00 | 0.3 | 19 (54.3%) | 25 (43.9%) | 1.00 | 0.55 | |
A/G-A/A | 28 (48.3%) | 20 (58.8%) | 1.65 (0.64–4.28) | 16 (45.7%) | 32 (56.1%) | 1.33 (0.52–3.43) | ||||
Rec | G/G-A/G | 55 (94.8%) | 25 (73.5%) | 1.00 | <0.01 | 32 (91.4%) | 48 (84.2%) | 1.00 | 0.2 | |
A/A | 3 (5.2%) | 9 (26.5%) | 9.25 (2.01–42.51) | 3 (8.6%) | 9 (15.8%) | 2.51 (0.57–11.03) | ||||
OD | G/G-A/A | 33 (56.9%) | 23 (67.7%) | 1.00 | 0.25 | 22 (62.9%) | 34 (59.6%) | 1.00 | 0.78 | |
A/G | 25 (43.1%) | 11 (32.4%) | 0.56 (0.21–1.51) | 13 (37.1%) | 23 (40.4%) | 0.87 (0.33–2.29) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabdulkayum, A.; Amangeldikyzy, S.; Yerezhepov, A.; Khassanova, S.; Akilzhanov, K.R.; Kozhamkulov, U.; Rakhimova, S.; Kairov, U.; Akilzhanova, A.; Yerezhepov, D. FokI Polymorphism of the VDR Gene Is Associated with Vitamin D Insufficiency in Elite Male Power Athletes of Kazakhstan. Nutrients 2025, 17, 3195. https://doi.org/10.3390/nu17203195
Gabdulkayum A, Amangeldikyzy S, Yerezhepov A, Khassanova S, Akilzhanov KR, Kozhamkulov U, Rakhimova S, Kairov U, Akilzhanova A, Yerezhepov D. FokI Polymorphism of the VDR Gene Is Associated with Vitamin D Insufficiency in Elite Male Power Athletes of Kazakhstan. Nutrients. 2025; 17(20):3195. https://doi.org/10.3390/nu17203195
Chicago/Turabian StyleGabdulkayum, Aidana, Saya Amangeldikyzy, Adil Yerezhepov, Sayipzhamal Khassanova, Kenes R. Akilzhanov, Ulan Kozhamkulov, Saule Rakhimova, Ulykbek Kairov, Ainur Akilzhanova, and Dauren Yerezhepov. 2025. "FokI Polymorphism of the VDR Gene Is Associated with Vitamin D Insufficiency in Elite Male Power Athletes of Kazakhstan" Nutrients 17, no. 20: 3195. https://doi.org/10.3390/nu17203195
APA StyleGabdulkayum, A., Amangeldikyzy, S., Yerezhepov, A., Khassanova, S., Akilzhanov, K. R., Kozhamkulov, U., Rakhimova, S., Kairov, U., Akilzhanova, A., & Yerezhepov, D. (2025). FokI Polymorphism of the VDR Gene Is Associated with Vitamin D Insufficiency in Elite Male Power Athletes of Kazakhstan. Nutrients, 17(20), 3195. https://doi.org/10.3390/nu17203195