Nutritional Adequacy and Day-to-Day Energy Variability: Impacts on Outcomes in Severe Trauma Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Nutritional Data and Calculations
2.3. Outcome Variables
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Calorie and Protein Intake
Initiation of EN (hours) | |
<48 h, n (%) | 80 (28) |
>48–72 h, n (%) | 77 (26.9) |
>72 h, n (%) | 129 (45.1) |
Type of Nutrition | |
EN + PN, n (%) | 264 (92) |
EN only, n (%) | 22 (8) |
Caloric and Protein Adequacy Assessment | |
Received kcal/day | 1227.5 ± 387.9 |
Required kcal/day | 1835.8 ± 335.8 |
% Caloric adequacy | 68.3 ± 22.8 |
Received protein (g)/day | 79.0 ± 23.8 |
Required protein (g)/day | 105.1 ± 20.4 |
% Protein adequacy | 76.8 ± 22.7 |
% EN of total kcal | 63.7 ± 22.5 |
% PN of total kcal | 33.1 ± 20.5 |
Reasons for Delay in Starting EEN | |
Shock requiring high dose of vasopressors, n (%) | 54 (19) |
Bowel resection, n (%) | 25 (8.7) |
Reasons for Interrupting Feeds | |
Any surgery, n (%) | 130 (45) |
Weaning/extubation/delirium, n (%) | 65 (23) |
GI intolerance/high GRV, n (%) | 46 (16) |
Diagnostic procedures outside ICU, n (%) | 40 (14) |
Complications | |
Paralytic ileus, n (%) | 215 (75) |
Time to first defecation, median (Q1, Q3) a | 7 (2, 15) |
Diarrhea, n (%) | 46 (16) |
Method Used to Estimate Energy Requirements (Number of Measurements) b | |
Indirect calorimetry, n (%) | 1105 (39) |
Weight-based, n (%) | 1755 (61) |
3.3. Clinical Outcomes
3.3.1. Nutrition and Mortality
3.3.2. Nutrition and Mechanical Ventilation
3.3.3. Nutrition and Nosocomial Infection
4. Discussion
Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APACHE II | Acute Physiology And Chronic Health Evaluation II |
BMI | Body Mass Index |
BW | Body Weight |
CCI | Charlson Comorbidity Index |
CI | Confidence Interval |
EN | Enteral Nutrition |
ESPEN | European Society for Clinical Nutrition and Metabolism |
GI | Gastrointestinal |
GRV | Gastric Residual Volume |
IC | Indirect Calorimetry |
ICU | Intensive Care Unit |
ISS | Injury Severity Score |
LOS | Length of Stay |
MASD | Mean Absolute Successive Differences |
MV | Mechanical Ventilation |
NUTRIC | Nutrition Risk in the Critically Ill |
PN | Parenteral Nutrition |
Q1 | First Quartile (25th percentile) |
Q3 | Third Quartile (75th percentile) |
RMSSD | Root Mean Square of Successive Differences |
RCT | Randomized Controlled Trial |
SD | Standard Deviation |
SOFA | Sequential Organ Failure Assessment |
HR | Hazard Ratio |
Appendix A
Characteristic | N | HR | 95% CI | p-Value |
---|---|---|---|---|
Day-to-Day Energy Variability (RMSSD) | 213 | 0.55 | 0.31–0.99 | 0.047 |
Nutritional Adequacy (%) | 213 | 1.32 | 0.81–2.16 | 0.260 |
Rate of Energy Deficit Recovery (Slope) | 213 | 0.73 | 0.52–1.03 | 0.077 |
Initial Energy Deficit (Intercept) | 213 | 0.60 | 0.40–0.90 | 0.014 |
Early Enteral Nutrition (<72 h) | 213 | 0.80 | 0.52–1.24 | 0.316 |
Age (years) | 213 | 0.98 | 0.96–0.99 | 0.005 |
Sex | 0.928 | |||
Female | 50 | — | — | |
Male | 163 | 0.99 | 0.58–1.68 | |
Glasgow Coma Scale (GCS) | 213 | 1.10 | 1.03–1.17 | 0.004 |
APACHE II Score | 213 | 0.94 | 0.89–0.98 | 0.009 |
Charlson Comorbidity Index | 213 | 0.92 | 0.81–1.04 | 0.177 |
Injury Severity Score (ISS) | 213 | 0.90 | 0.86–0.93 | <0.001 |
Protein intake (% target, z-score) * | 213 | 1.40 | 0.20–9.63 | 0.732 |
Characteristic | N | HR | 95% CI | p-Value |
---|---|---|---|---|
Day-to-Day Energy Variability (RMSSD) | 168 | 0.94 | 0.84–1.05 | 0.256 |
Nutrition adequacy (% target, z-score) | 168 | 0.68 | 0.48–0.98 | 0.036 |
Rate of Energy Deficit Recovery (Slope) | 168 | 1.21 | 0.92–1.58 | 0.167 |
Initial Energy Deficit (Intercept) | 168 | 1.27 | 0.96–1.68 | 0.091 |
Days of supplemental parenteral nutrition | 168 | 1.04 | 0.98–1.10 | 0.249 |
Feeding route | 0.467 | |||
Per os | 24 | — | — | — |
Gastric/postpyloric | 144 | 1.22 | 0.71–2.11 | |
Early enteral nutrition (<72 h) | 168 | 1.24 | 0.90–1.71 | 0.186 |
SOFA score at admission | 168 | 0.99 | 0.98–1.00 | 0.292 |
Age (years) | 168 | 1.00 | 0.99–1.01 | 0.623 |
Sex | 0.260 | |||
Female | 47 | — | — | |
Male | 121 | 1.20 | 0.87–1.67 | |
APACHE II Score | 168 | 1.01 | 0.97–1.04 | 0.733 |
Charlson Comorbidity Index | 168 | 0.97 | 0.89–1.05 | 0.471 |
Injury Severity Score (ISS) | 168 | 1.01 | 1.00–1.02 | 0.188 |
Protein intake (% target, z-score) * | 168 | 0.29 | 0.09–0.96 | 0.043 |
References
- Verheul, E.A.H.; Dijkink, S.; Krijnen, P.; Hoogendoorn, J.M.; Arbous, S.; Peters, R.; Velmahos, G.C.; Salim, A.; Yeh, D.D.; Schipper, I.B. Prevalence, incidence, and complications of malnutrition in severely injured patients. Eur. J. Trauma Emerg. Surg. 2025, 51, 72. [Google Scholar] [CrossRef]
- Dijkink, S.; Meier, K.; Krijnen, P.; Yeh, D.D.; Velmahos, G.C.; Schipper, I.B. Malnutrition and its effects in severely injured trauma patients. Eur. J. Trauma Emerg. Surg. 2020, 46, 993–1004. [Google Scholar] [CrossRef]
- Heyland, D.K.; Dhaliwal, R.; Wang, M.; Day, A.G. The Prevalence of Iatrogenic Underfeeding in the Nutritionally “At-Risk” Critically Ill Patient: Results of an International, Multicenter, Prospective Study. Clin. Nutr. 2015, 34, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.Y.; Zheng, W.H.; Zhou, H.; Xu, Y.; Huang, H.B. Energy delivery guided by indirect calorimetry in critically ill patients: A systematic review and meta-analysis. Crit. Care 2021, 25, 88. [Google Scholar] [CrossRef]
- Pelekhaty, S.; Rozenberg, K.; Kozar, R. Indirect calorimetry in traumatically injured patients: A descriptive cohort study. J. Parenter. Enter. Nutr. 2025, 49, 488–496. [Google Scholar] [CrossRef]
- Ranea-Robles, P.; Lund, J.; Clemmensen, C. The Physiology of Experimental Overfeeding in Animals. Mol. Metab. 2022, 64, 101573. [Google Scholar] [CrossRef]
- Flower, L.; Page, A.; Puthucheary, Z. Should Nutrition Therapy Be Modified to Account for Mitochondrial Dysfunction in Critical Illness? J. Parenter. Enter. Nutr. 2021, 45, 60–65. [Google Scholar] [CrossRef]
- Vanhorebeek, I.; Casaer, M.; Gunst, J. Nutrition and Autophagy Deficiency in Critical Illness. Curr. Opin. Crit. Care 2023, 29, 306–314. [Google Scholar] [CrossRef] [PubMed]
- McClave, S.A.; Wischmeyer, P.E.; Miller, K.R.; van Zanten, A.R.H. Mitochondrial Dysfunction in Critical Illness: Implications for Nutritional Therapy. Curr. Nutr. Rep. 2019, 8, 363–373. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Calder, P.C.; Casaer, M.; Hiesmayr, M.; Mayer, K.; Montejo-Gonzalez, J.C.; Pichard, C.; Preiser, J.C.; et al. ESPEN Practical and Partially Revised Guideline: Clinical Nutrition in the Intensive Care Unit. Clin. Nutr. 2023, 42, 1671–1689. [Google Scholar] [CrossRef] [PubMed]
- Lambell, K.J.; Tatucu-Babet, O.A.; Chapple, L.A.; Gantner, D.; Ridley, E.J. Nutrition Therapy in Critical Illness: A Review of the Literature for Clinicians. Crit. Care 2020, 24, 35. [Google Scholar] [CrossRef]
- LOINC 75891-2 Comprehensive. Available online: https://loinc.org/75891-2/ (accessed on 1 October 2025).
- Gennarelli, T.A.; Wodzin, E. AIS 2005: A Contemporary Injury Scale. Injury 2006, 37, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Wełna, M.; Adamik, B.; Kübler, A.; Goździk, W. The NUTRIC Score as a Tool to Predict Mortality and Increased Resource Utilization in Intensive Care Patients with Sepsis. Nutrients 2023, 15, 1648. [Google Scholar] [CrossRef]
- Reintam Blaser, A.; Cotoia, A.; Berger, M.M.; Padar, M.; Arabi, Y.M.; Casaer, M.P.; Gunst, J.; Kouw, I.W.K.; Malbrain, M.L.N.G.; Schaller, S.J.; et al. GUTPHOS study sites and investigators. How to Define Parenteral Nutrition. Crit. Care 2024, 28, 372. [Google Scholar] [CrossRef]
- Berger, M.M.; Pantet, O.; Jacquelin-Ravel, N.; Charrière, M.; Schmidt, S.; Becce, F.; Audran, R.; Spertini, F.; Tappy, L.; Pichard, C. Supplemental Parenteral Nutrition Improves Immunity with Unchanged Carbohydrate and Protein Metabolism in Critically Ill Patients: The SPN2 Randomized Tracer Study. Clin. Nutr. 2019, 38, 2408–2416. [Google Scholar] [CrossRef]
- Briassoulis, P.; Ilia, S.; Briassouli, E.; Briassoulis, G. External Validation with Accuracy Confounders of VCO-Derived Predicted Energy Expenditure Compared to Resting Energy Expenditure Measured by Indirect Calorimetry in Mechanically Ventilated Children. Nutrients 2022, 14, 4211. [Google Scholar] [CrossRef]
- Heidegger, C.P.; Berger, M.M.; Graf, S.; Zingg, W.; Darmon, P.; Costanza, M.C.; Thibault, R.; Pichard, C. Optimisation of Energy Provision with Supplemental Parenteral Nutrition in Critically Ill Patients: A Randomised Controlled Clinical Trial. Lancet 2013, 381, 385–393. [Google Scholar] [CrossRef] [PubMed]
- McClave, S.A.; Taylor, B.E.; Martindale, R.G.; Warren, M.M.; Johnson, D.R.; Braunschweig, C.; McCarthy, M.S.; Davanos, E.; Rice, T.W.; Cresci, G.A.; et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). J. Parenter. Enter. Nutr. 2016, 40, 159–211. [Google Scholar] [CrossRef] [PubMed]
- Sabatino, A.; Fiaccadori, E.; Barazzoni, R.; Carrero, J.J.; Cupisti, A.; De Waele, E.; Jonckheer, J.; Cuerda, C.; Bischoff, S.C. ESPEN Practical Guideline on Clinical Nutrition in Hospitalized Patients with Acute or Chronic Kidney Disease. Clin. Nutr. 2024, 43, 2238–2254. [Google Scholar] [CrossRef]
- Horan, T.C.; Andrus, M.; Dudeck, M.A. CDC/NHSN Surveillance Definition of Health Care-Associated Infection and Criteria for Specific Types of Infections in the Acute Care Setting. Am. J. Infect. Control 2008, 36, 309–332. [Google Scholar] [CrossRef]
- Fine, J.P.; Gray, R.J. A Proportional Hazards Model for the Subdistribution of a Competing Risk. J. Am. Stat. Assoc. 1999, 94, 496–509. [Google Scholar] [CrossRef]
- Westreich, D.; Greenland, S. The Table 2 Fallacy: Presenting and Interpreting Confounder and Modifier Coefficients. Am. J. Epidemiol. 2013, 177, 292–298. [Google Scholar] [CrossRef]
- Plurad, D.S.; Geesman, G.; Sheets, N.W.; Chawla-Kondal, B.; Ayutyanont, N.; Mahmoud, A. A Contemporary Analysis of the Effect of Trauma Center Verification Level on Mortality in Severe Injury. Am. Surg. 2023, 89, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Miclau, T.; Balogh, Z.J.; Miclau, K.R.; Bernstein, B.; Kojima, K.E.; Kurozumi, T.; Leighton, R.K.; Lundy, D.W.; Putzeys, G.; Schipper, I.B.; et al. Trauma Systems: A Global Comparison. OTA Int. 2025, 8, e376. [Google Scholar] [CrossRef] [PubMed]
- Craig, H.A.; Lowe, D.J.; Khan, A.; Paton, M.; Gordon, M.W. Exploring the Impact of Traumatic Injury on Mortality: An Analysis of the Certified Cause of Death within One Year of Serious Injury in the Scottish Population. Injury 2024, 55, 111470. [Google Scholar] [CrossRef]
- Verheul, E.A.H.; Koole, D.; Dijkink, S.; Krijnen, P.; Hoogendoorn, J.M.; Arbous, S.; Peters, R.; Velmahos, G.C.; Salim, A.; Yeh, D.D.; et al. Association of Modified NUTRIC Score for Nutritional Risk and In-Hospital Developed Malnutrition in Adults with Severe Injuries: A Prospective Observational Cohort Study. Eur. J. Trauma Emerg. Surg. 2025, 51, 214. [Google Scholar] [CrossRef]
- Vincent, J.L.; Sakr, Y.; Singer, M.; Martin-Loeches, I.; Machado, F.R.; Marshall, J.C.; Finfer, S.; Pelosi, P.; Brazzi, L.; Aditianingsih, D.; et al. EPIC III Investigators. Prevalence and Outcomes of Infection among Patients in Intensive Care Units in 2017. JAMA 2020, 323, 1478–1487. [Google Scholar] [CrossRef]
- Davari, M.; Moludi, J.; Asghari Jafarabadi, M.; Ahmadi-Nejad, M.; Sanaie, S.; Aref-Hosseini, S.R. Impact of Clinical Factors on Calorie and Protein Intakes during ICU Stay in Adult Trauma Patients: Results from a Prospective Observational Study. Int. J. Burns Trauma 2019, 9, 59–65. [Google Scholar]
- Matejovic, M.; Huet, O.; Dams, K.; Elke, G.; Vaquerizo Alonso, C.; Csomos, A.; Krzych, Ł.J.; Tetamo, R.; Puthucheary, Z.; Rooyackers, O.; et al. Medical Nutrition Therapy and Clinical Outcomes in Critically Ill Adults: A European Multinational, Prospective Observational Cohort Study (EuroPN). Crit. Care 2022, 26, 143. [Google Scholar] [CrossRef]
- Dreydemy, G.; Coussy, A.; Lannou, A.; Petit, L.; Biais, M.; Carrié, C. Augmented Renal Clearance, Muscle Catabolism and Urinary Nitrogen Loss: Implications for Nutritional Support in Critically Ill Trauma Patients. Nutrients 2021, 13, 3554. [Google Scholar] [CrossRef] [PubMed]
- Zusman, O.; Theilla, M.; Cohen, J.; Kagan, I.; Bendavid, I.; Singer, P. Resting energy expenditure, calorie and protein consumption in critically ill patients: A retrospective cohort study. Crit. Care 2016, 20, 367. [Google Scholar] [CrossRef]
- Marik, P.E.; Hooper, M.H. Normocaloric versus Hypocaloric Feeding on the Outcomes of ICU Patients: A Systematic Review and Meta-Analysis. Intensive Care Med. 2016, 42, 316–323. [Google Scholar] [CrossRef]
- Al-Dorzi, H.M.; Albarrak, A.; Ferwana, M.; Murad, M.H.; Arabi, Y.M. Lower versus Higher Dose of Enteral Caloric Intake in Adult Critically Ill Patients: A Systematic Review and Meta-Analysis. Crit. Care 2016, 20, 358. [Google Scholar] [CrossRef]
- Tian, F.; Wang, X.; Gao, X.; Wan, X.; Wu, C.; Zhang, L.; Li, N.; Li, J. Effect of Initial Calorie Intake via Enteral Nutrition in Critical Illness: A Meta-Analysis of Randomised Controlled Trials. Crit. Care 2015, 19, 180. [Google Scholar] [CrossRef]
- Choi, E.Y.; Park, D.A.; Park, J. Calorie Intake of Enteral Nutrition and Clinical Outcomes in Acutely Critically Ill Patients: A Meta-Analysis of Randomized Controlled Trials. J. Parenter. Enter. Nutr. 2015, 39, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Stolarski, A.E.; Young, L.; Weinberg, J.; Jiyun, K.; Lusczek, E.; Remick, D.G.; Bistrian, B.; Burke, P. Early Metabolic Support for Critically Ill Trauma Patients: A Prospective Randomized Controlled Trial. J. Trauma Acute Care Surg. 2022, 92, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Gregori, P.; Franceschetti, E.; Basciani, S.; Impieri, L.; Zampogna, B.; Matano, A.; Manzi, C.; Carbone, L.; Marano, L.; Papalia, R. Immunonutrition in Orthopedic and Traumatic Patients. Nutrients 2023, 15, 537. [Google Scholar] [CrossRef] [PubMed]
- Bels, J.L.M.; Thiessen, S.; van Gassel, R.J.J.; Beishuizen, A.; De Bie Dekker, A.; Fraipont, V.; Lamote, S.; Ledoux, D.; Scheeren, C.; De Waele, E.; et al. Effect of High versus Standard Protein Provision on Functional Recovery in People with Critical Illness (PRECISe): An Investigator-Initiated, Double-Blinded, Multicentre, Parallel-Group, Randomised Controlled Trial in Belgium and the Netherlands. Lancet 2024, 404, 659–669. [Google Scholar] [CrossRef]
- van Zanten, A.R.; Sztark, F.; Kaisers, U.X.; Zielmann, S.; Felbinger, T.W.; Sablotzki, A.R.; De Waele, J.J.; Timsit, J.-F.; Honing, M.L.H.; Keh, D.; et al. High-Protein Enteral Nutrition Enriched with Immune-Modulating Nutrients vs Standard High-Protein Enteral Nutrition and Nosocomial Infections in the ICU: A Randomized Clinical Trial. JAMA 2014, 312, 514–524. [Google Scholar] [CrossRef]
- Davies, M.L.; Chapple, L.S.; Chapman, M.J.; Moran, J.L.; Peake, S.L. Protein Delivery and Clinical Outcomes in the Critically Ill: A Systematic Review and Meta-Analysis. Crit. Care Resusc. 2017, 19, 117–127. [Google Scholar] [CrossRef]
- National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network; Rice, T.W.; Wheeler, A.P.; Thompson, B.T.; Steingrub, J.; Hite, R.D.; Moss, M.; Morris, A.; Dong, N.; Rock, P. Initial Trophic vs Full Enteral Feeding in Patients with Acute Lung Injury: The EDEN Randomized Trial. JAMA 2012, 307, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Pradelli, L.; Graf, S.; Pichard, C.; Berger, M.M. Supplemental Parenteral Nutrition in Intensive Care Patients: A Cost Saving Strategy. Clin. Nutr. 2018, 37, 573–579. [Google Scholar] [CrossRef] [PubMed]
Variable | Value |
---|---|
Age, median (Q1, Q3) | 54 (34, 71) |
Male | 220 (76.9) |
Female | 66 (23.1) |
Body Mass Index (kg/m2) | |
<18.5 | 10 (3.5) |
18.5–25.5 | 151 (52.8) |
25.5–30 | 78 (27.3) |
>30 | 47 (16.4) |
Charlson comorbidity index, median (Q1, Q3) | 1.00 (0.00, 4.00) |
Characteristics at Admission | |
APACHE II, median (Q1, Q3) | 16 (12, 20) |
SAPS II, median (Q1, Q3) | 45 (30, 55) |
SOFA, median (Q1, Q3) | 6.0 (4.0, 9.0) |
GCS, median (Q1, Q3) | 10.0 (7.0, 14.0) |
NUTRIC, median (Q1, Q3) | 3.00 (1.00, 5.00) |
MV (first 48 h) | 217 (75.9) |
Sedation (first 48 h) | 225 (78.7) |
Vasopressors (first 48 h) | 174 (60.8) |
Injury Characteristics | |
Blunt | 241 (84.3) |
Penetrating | 45 (15.7) |
ISS, median (Q1, Q3) | 22.0 (18.0, 27.0) |
ISS Severity | |
Critical (25–75) | 111 (38.8) |
Severe (16–24) | 175 (61.2) |
Polytrauma | 143 (50.0) |
Damage control surgery | 120 (42.0) |
Number of Surgeries | |
0 | 82 (28.7) |
1 | 103 (36.0) |
2 | 57 (19.9) |
≥3 | 28 (9.8) |
Outcomes | |
ICU mortality | 101 (35.3) |
90-day mortality | 101 (35.3) |
ICU LOS, days, median (Q1, Q3) | 15 (11, 25) |
Sum days on MV, median (Q1, Q3) | 10 (3, 17) |
Infections | |
Nosocomial infection | 172 (60.1) |
VAP | 120 (41.9) |
Sepsis | 114 (39.8) |
Septic shock | 86 (30.0) |
Reinfection | 63 (22.0) |
Primary bloodstream infection | 86 (30.0) |
Relapse of infection | 49 (17.1) |
Surgical wound infection | 20 (7.0) |
Intra-abdominal infection | 8 (2.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanisavljevic, J.; Grubor, N.N.; Marjanovic, S.; Palibrk, I.; Bezmarevic, M.; Velickovic, J.; Hadzibegovic, A.; Milenkovic, M.; Ratkovic, S.; Jovanovic, B. Nutritional Adequacy and Day-to-Day Energy Variability: Impacts on Outcomes in Severe Trauma Patients. Nutrients 2025, 17, 3180. https://doi.org/10.3390/nu17193180
Stanisavljevic J, Grubor NN, Marjanovic S, Palibrk I, Bezmarevic M, Velickovic J, Hadzibegovic A, Milenkovic M, Ratkovic S, Jovanovic B. Nutritional Adequacy and Day-to-Day Energy Variability: Impacts on Outcomes in Severe Trauma Patients. Nutrients. 2025; 17(19):3180. https://doi.org/10.3390/nu17193180
Chicago/Turabian StyleStanisavljevic, Jovana, Nikola N. Grubor, Sergej Marjanovic, Ivan Palibrk, Mihailo Bezmarevic, Jelena Velickovic, Adi Hadzibegovic, Marija Milenkovic, Sanja Ratkovic, and Bojan Jovanovic. 2025. "Nutritional Adequacy and Day-to-Day Energy Variability: Impacts on Outcomes in Severe Trauma Patients" Nutrients 17, no. 19: 3180. https://doi.org/10.3390/nu17193180
APA StyleStanisavljevic, J., Grubor, N. N., Marjanovic, S., Palibrk, I., Bezmarevic, M., Velickovic, J., Hadzibegovic, A., Milenkovic, M., Ratkovic, S., & Jovanovic, B. (2025). Nutritional Adequacy and Day-to-Day Energy Variability: Impacts on Outcomes in Severe Trauma Patients. Nutrients, 17(19), 3180. https://doi.org/10.3390/nu17193180