Replacing Sedentary Time with Physical Activity and Sleep: A 24-Hour Movement Behaviour Perspective on Appetite Control
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval and Participants
2.2. Study Design
2.2.1. Visit 1: Eligibility and Familiarisation
2.2.2. 24 h Movement Behaviour Assessment
2.2.3. Free-Living Energy Intake Assessment
2.2.4. Visit 2: Appetite and Energy Intake Assessment
2.2.5. Study Meals
2.2.6. Leeds Food Preference Questionnaire
2.2.7. Blood Sampling and Biochemical Analyses
2.3. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Energy Intake
3.3. Appetite-Related Hormones
3.4. Perceived Ratings of Appetite
3.5. Food Reward, Cravings and Dietary Eating Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AU | Arbitrary units |
AUC | Area under the curve |
BMI | Body mass index |
CI | Confidence interval |
CoEQ | Control of Eating Questionnaire |
ES | Effect size |
LFPQ | Leeds Food Preference Questionnaire |
PFC | Prospective food consumption |
PYY | Peptide-YY |
TFEQ | Three-Factor Eating Questionnaire |
WASO | Wake after sleep onset |
References
- GBD 2021 Adult BMI Collaborators. Global, Regional, and National Prevalence of Adult Overweight and Obesity, 1990–2021, with Forecasts to 2050: A Forecasting Study for the Global Burden of Disease Study 2021. Lancet 2025, 405, 813–838. [Google Scholar] [CrossRef]
- Johansen, V.B.I.; Petersen, J.; Lund, J.; Mathiesen, C.V.; Fenselau, H.; Clemmensen, C. Brain Control of Energy Homeostasis: Implications for Anti-Obesity Pharmacotherapy. Cell 2025, 188, 4178–4212. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wadden, T.A.; et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef]
- Wadden, T.A.; Chao, A.M.; Moore, M.; Tronieri, J.S.; Gilden, A.; Amaro, A.; Leonard, S.; Jakicic, J.M. The Role of Lifestyle Modification with Second-Generation Anti-Obesity Medications: Comparisons, Questions, and Clinical Opportunities. Curr. Obes. Rep. 2023, 12, 453–473. [Google Scholar] [CrossRef]
- Pinkney, J.; Tarrant, M. Time for a New Agenda for Behavioural Treatment of Overweight and Obesity. Clin. Obes. 2024, 14, e12628. [Google Scholar] [CrossRef]
- Mayer, J.; Roy, P.; Mitra, K.P. Relation between Caloric Intake, Body Weight, and Physical Work. Am. J. Clin. Nutr. 1956, 4, 169–175. [Google Scholar] [CrossRef]
- Myers, A.; Gibbons, C.; Finlayson, G.; Blundell, J. Associations among Sedentary and Active Behaviours, Body Fat and Appetite Dysregulation: Investigating the Myth of Physical Inactivity and Obesity. Br. J. Sports Med. 2017, 51, 1540–1544. [Google Scholar] [CrossRef]
- Beaulieu, K.; Hopkins, M.; Blundell, J.; Finlayson, G. Does Habitual Physical Activity Increase the Sensitivity of the Appetite Control System? A Systematic Review. Sports Med. 2016, 46, 1897–1919. [Google Scholar] [CrossRef]
- Long, S.J.; Hart, K.; Morgan, L.M. The Ability of Habitual Exercise to Influence Appetite and Food Intake in Response to High- and Low-Energy Preloads in Man. Br. J. Nutr. 2002, 87, 517–523. [Google Scholar] [CrossRef]
- King, N.A.; Caudwell, P.P.; Hopkins, M.; Stubbs, J.R.; Naslund, E.; Blundell, J.E. Dual-Process Action of Exercise on Appetite Control: Increase in Orexigenic Drive but Improvement in Meal-Induced Satiety. Am. J. Clin. Nutr. 2009, 90, 921–927. [Google Scholar] [CrossRef]
- Rosenkilde, M.; Reichkendler, M.H.; Auerbach, P.; Toräng, S.; Gram, A.S.; Ploug, T.; Holst, J.J.; Sjödin, A.; Stallknecht, B. Appetite Regulation in Overweight, Sedentary Men after Different Amounts of Endurance Exercise: A Randomized Controlled Trial. J. Appl. Physiol. 2013, 115, 1599–1609. [Google Scholar] [CrossRef]
- Martins, C.; Kulseng, B.; Rehfeld, J.F.; King, N.A.; Blundell, J.E. Effect of Chronic Exercise on Appetite Control in Overweight and Obese Individuals. Med. Sci. Sports Exerc. 2013, 45, 805–812. [Google Scholar] [CrossRef]
- Dera, A.M.; Shen, T.; Thackray, A.E.; Hinton, E.C.; King, J.A.; James, L.; Morgan, P.S.; Rush, N.; Miyashita, M.; Batterham, R.L.; et al. The Influence of Physical Activity on Neural Responses to Visual Food Cues in Humans: A Systematic Review of Functional Magnetic Resonance Imaging Studies. Neurosci. Biobehav. Rev. 2023, 152, 105247. [Google Scholar] [CrossRef]
- Al Khatib, H.K.; Harding, S.V.; Darzi, J.; Pot, G.K. The Effects of Partial Sleep Deprivation on Energy Balance: A Systematic Review and Meta-Analysis. Eur. J. Clin. Nutr. 2017, 71, 614–624. [Google Scholar] [CrossRef]
- Zhu, B.; Shi, C.; Park, C.G.; Zhao, X.; Reutrakul, S. Effects of Sleep Restriction on Metabolism-Related Parameters in Healthy Adults: A Comprehensive Review and Meta-Analysis of Randomized Controlled Trials. Sleep Med. Rev. 2019, 45, 18–30. [Google Scholar] [CrossRef]
- Chaput, J.P.; McHill, A.W.; Cox, R.C.; Broussard, J.L.; Dutil, C.; da Costa, B.G.G.; Sampasa-Kanyinga, H.; Wright, K.P. The Role of Insufficient Sleep and Circadian Misalignment in Obesity. Nat. Rev. Endocrinol. 2022, 19, 82–97. [Google Scholar] [CrossRef]
- Spiegel, K.; Tasali, E.; Penev, P.; Van Cauter, E. Brief Communication: Sleep Curtailment in Healthy Young Men Is Associ-ated with Decreased Leptin Levels, Elevated Ghrelin Levels, and Increased Hunger and Appetite. Ann. Intern. Med. 2004, 141, 846–850. [Google Scholar] [CrossRef]
- Thackray, A.E.; Stensel, D.J. The Impact of Acute Exercise on Appetite Control: Current Insights and Future Perspectives. Appetite 2023, 186, 106557. [Google Scholar] [CrossRef]
- Blundell, J.E.; Beaulieu, K. The Complex Pattern of the Effects of Prolonged Frequent Exercise on Appetite Control, and Implications for Obesity. Appetite 2023, 183, 106482. [Google Scholar] [CrossRef]
- Biddle, G.J.H.; Henson, J.; Biddle, S.J.H.; Davies, M.J.; Khunti, K.; Rowlands, A.V.; Sutton, S.; Yates, T.; Edwardson, C.L. Modelling the Reallocation of Time Spent Sitting into Physical Activity: Isotemporal Substitution vs. Compositional Isotemporal Substitution. Int. J. Environ. Res. Public. Health 2021, 18, 6210. [Google Scholar] [CrossRef]
- Covenant, A.; Yates, T.; Rowlands, A.V.; Dempsey, P.C.; Edwardson, C.L.; Hall, A.P.; Davies, M.J.; Henson, J. Replacing Sedentary Time with Sleep and Physical Activity: Associations with Physical Function and Wellbeing in Type 2 Diabetes. Diabetes Res. Clin. Pract. 2024, 217, 111886. [Google Scholar] [CrossRef]
- Nagai, K.; Tamaki, K.; Kusunoki, H.; Wada, Y.; Tsuji, S.; Ito, M.; Sano, K.; Amano, M.; Shimomura, S.; Shinmura, K. Isotemporal Substitution of Sedentary Time with Physical Activity and Its Associations with Frailty Status. Clin. Interv. Aging 2018, 13, 1831–1836. [Google Scholar] [CrossRef]
- Park, J.; Nam, H.K.; Cho, S. Il Association between Accelerometer-Derived Physical Activity and Depression: A Cross-Sectional Study Using Isotemporal Substitution Analysis. BMJ Open 2024, 14, e078199. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Participants. JAMA 2024, 333, 71–74. [Google Scholar] [CrossRef]
- Dalton, M.; Finlayson, G.; Hill, A.; Blundell, J. Preliminary Validation and Principal Components Analysis of the Control of Eating Questionnaire (CoEQ) for the Experience of Food Craving. Eur. J. Clin. Nutr. 2015, 69, 1313–1317. [Google Scholar] [CrossRef]
- Compher, C.; Frankenfield, D.; Keim, N.; Roth-Yousey, L. Best Practice Methods to Apply to Measurement of Resting Metabolic Rate in Adults: A Systematic Review. J. Am. Diet. Assoc. 2006, 106, 881–903. [Google Scholar] [CrossRef]
- Weir, J.B.d.V. New Methods for Calculating Metabolic Rate with Special Reference to Protein Metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef]
- van Hees, V.; Migueles, J.H. GGIR. 2025. Available online: https://zenodo.org/records/15594302 (accessed on 1 August 2025).
- Migueles, J.H.; Rowlands, A.V.; Huber, F.; Sabia, S.; Van Hees, V.T. GGIR: A Research Community–Driven Open Source R Package for Generating Physical Activity and Sleep Outcomes from Multi-Day Raw Accelerometer Data. J. Meas. Phys. Behav. 2019, 2, 188–196. [Google Scholar] [CrossRef]
- Van Hees, V.T.; Sabia, S.; Anderson, K.N.; Denton, S.J.; Oliver, J.; Catt, M.; Abell, J.G.; Kivimäki, M.; Trenell, M.I.; Singh-Manoux, A. A Novel, Open Access Method to Assess Sleep Duration Using a Wrist-Worn Accelerometer. PLoS ONE 2015, 10, e0142533. [Google Scholar] [CrossRef]
- Van Hees, V.T.; Fang, Z.; Langford, J.; Assah, F.; Mohammad, A.; Da Silva, I.C.M.; Trenell, M.I.; White, T.; Wareham, N.J.; Brage, S. Autocalibration of Accelerometer Data for Free-Living Physical Activity Assessment Using Local Gravity and Temperature: An Evaluation on Four Continents. J. Appl. Physiol. 2014, 117, 738–744. [Google Scholar] [CrossRef] [PubMed]
- van Hees, V.T.; Sabia, S.; Jones, S.E.; Wood, A.R.; Anderson, K.N.; Kivimäki, M.; Frayling, T.M.; Pack, A.I.; Bucan, M.; Trenell, M.I.; et al. Estimating Sleep Parameters Using an Accelerometer without Sleep Diary. Sci. Rep. 2018, 8, 12975. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, M.; Van Hees, V.T.; Hansen, B.H.; Ekelund, U. Age Group Comparability of Raw Accelerometer Output from Wrist- and Hip-Worn Monitors. Med. Sci. Sports Exerc. 2014, 46, 1816–1824. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, M.; Hansen, B.H.; van Hees, V.T.; Ekelund, U. Evaluation of Raw Acceleration Sedentary Thresholds in Children and Adults. Scand. J. Med. Sci. Sports 2017, 27, 1814–1823. [Google Scholar] [CrossRef]
- Flint, A.; Raben, A.; Blundell, J.E.; Astrup, A. Reproducibility, Power and Validity of Visual Analogue Scales in Assessment of Appetite Sensations in Single Test Meal Studies. Int. J. Obes. 2000, 24, 38–48. [Google Scholar] [CrossRef]
- Alruwaili, A.; Nayeemullah, R.; Engin, B.; Malaikah, S.; James, L.; Sanders, J.P.; Thivel, D.; Thackray, A.E.; Stensel, D.J.; King, J.A.; et al. The Association of Cigarette Smoking with Appetite, Appetite-Related Hormones and Food Reward: A Matched-Pair Cohort Study. Appetite 2025, 214, 108194. [Google Scholar] [CrossRef]
- King, J.A.; Thackray, A.E.; Gibbons, C.; Martins, C.; Broom, D.R.; Stensel, D.J.; Papamargaritis, D.; Arsenyadis, F.; Finlayson, G.; Whelehan, G.; et al. The Mixed-Meal Tolerance Test as an Appetite Assay: Methodological and Practical Considerations. Int. J. Obes. 2025, 1–16. [Google Scholar] [CrossRef]
- Jetté, M.; Sidney, K.; Blümchen, G. Metabolic Equivalents (METS) in Exercise Testing, Exercise Prescription, and Evaluation of Functional Capacity. Clin. Cardiol. 1990, 13, 555–565. [Google Scholar] [CrossRef]
- Oustric, P.; Thivel, D.; Dalton, M.; Beaulieu, K.; Gibbons, C.; Hopkins, M.; Blundell, J.; Finlayson, G. Measuring Food Preference and Reward: Application and Cross-Cultural Adaptation of the Leeds Food Preference Questionnaire in Human Experimental Research. Food Qual. Prefer. 2020, 80, 103824. [Google Scholar] [CrossRef]
- Finlayson, G.; King, N.; Blundell, J. The Role of Implicit Wanting in Relation to Explicit Liking and Wanting for Food: Implications for Appetite Control. Appetite 2008, 50, 120–127. [Google Scholar] [CrossRef]
- Thackray, A.E.; Willis, S.A.; Clayton, D.J.; Broom, D.R.; Finlayson, G.; Goltz, F.R.; Sargeant, J.A.; Woods, R.M.; Stensel, D.J.; King, J.A. Influence of Short-Term Hyperenergetic, High-Fat Feeding on Appetite, Appetite-Related Hormones, and Food Reward in Healthy Men. Nutrients 2020, 12, 2635. [Google Scholar] [CrossRef] [PubMed]
- Stuart, E.A. Matching Methods for Causal Inference: A Review and a Look Forward. Stat. Sci. 2010, 25, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Van Walleghen, E.L.; Orr, J.S.; Gentile, C.L.; Davy, K.P.; Davy, B.M. Habitual Physical Activity Differentially Affects Acute and Short-Term Energy Intake Regulation in Young and Older Adults. Int. J. Obes. 2007, 31, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Gregersen, N.T.; Møller, B.K.; Raben, A.; Kristensen, S.T.; Holm, L.; Flint, A.; Astrup, A. Determinants of Appetite Ratings: The Role of Age, Gender, BMI, Physical Activity, Smoking Habits, and Diet/Weight Concern. Food Nutr. Res. 2011, 55, 7028. [Google Scholar] [CrossRef]
- Beaulieu, K.; Hopkins, M.; Long, C.; Blundell, J.; Finlayson, G. High Habitual Physical Activity Improves Acute Energy Compensation in Nonobese Adults. Med. Sci. Sports Exerc. 2017, 49, 2268–2275. [Google Scholar] [CrossRef]
- Dorling, J.; Broom, D.R.; Burns, S.F.; Clayton, D.J.; Deighton, K.; James, L.J.; King, J.A.; Miyashita, M.; Thackray, A.E.; Bat-terham, R.L.; et al. Acute and Chronic Effects of Exercise on Appetite, Energy Intake, and Appetite-Related Hormones: The Modulating Effect of Adiposity, Sex, and Habitual Physical Activity. Nutrients 2018, 10, 1140. [Google Scholar] [CrossRef]
- Lund, M.T.; Taudorf, L.; Hartmann, B.; Helge, J.W.; Holst, J.J.; Dela, F. Meal Induced Gut Hormone Secretion Is Altered in Aerobically Trained Compared to Sedentary Young Healthy Males. Eur. J. Appl. Physiol. 2013, 113, 2737–2747. [Google Scholar] [CrossRef]
- Lv, Y.; Liang, T.; Wang, G.; Li, Z. Ghrelin, a Gastrointestinal Hormone, Regulates Energy Balance and Lipid Metabolism. Biosci. Rep. 2018, 38, BSR20181061. [Google Scholar] [CrossRef]
- Le Roux, C.W.; Batterham, R.L.; Aylwin, S.J.B.; Patterson, M.; Borg, C.M.; Wynne, K.J.; Kent, A.; Vincent, R.P.; Gardiner, J.; Ghatei, M.A.; et al. Attenuated Peptide YY Release in Obese Subjects Is Associated with Reduced Satiety. Endocrinology 2006, 147, 3–8. [Google Scholar] [CrossRef]
- Friedman, J.M. Leptin and the Endocrine Control of Energy Balance. Nat. Metab. 2019, 1, 754–764. [Google Scholar] [CrossRef]
- Livingstone, M.B.E.; Black, A.E. Markers of the Validity of Reported Energy Intake. J. Nutr. 2003, 133, 895S–920S. [Google Scholar] [CrossRef]
- Stunkard, A.J.; Messick, S. The Three-Factor Eating Questionnaire to Measure Dietary Restraint, Disinhibition and Hunger. J. Psychosom. Res. 1985, 29, 71–83. [Google Scholar] [CrossRef]
- Oustric, P.; Myers, A.; Gibbons, C.; Buckland, N.; Dalton, M.; Long, C.; Beaulieu, K.; Sophie Hollingworth, S.; Finlayson, G. Are Objectively Measured Free-Living Physical Activity and Sedentary Behaviour Associated with Control over Eating and Food Preferences in Women? Appetite 2018, 123, 465. [Google Scholar] [CrossRef]
- Horner, K.M.; Finlayson, G.; Byrne, N.M.; King, N.A. Food Reward in Active Compared to Inactive Men: Roles for Gastric Emptying and Body Fat. Physiol. Behav. 2016, 160, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Killgore, W.D.S.; Kipman, M.; Schwab, Z.J.; Tkachenko, O.; Preer, L.; Gogel, H.; Bark, J.S.; Mundy, E.A.; Olson, E.A.; Weber, M. Physical Exercise and Brain Responses to Images of High-Calorie Food. Neuroreport 2013, 24, 962–967. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; O’Connor, S.G.; Belcher, B.R.; Page, K.A. Effects of Physical Activity and Sedentary Behavior on Brain Response to High-Calorie Food Cues in Young Adults. Obesity 2018, 26, 540–546. [Google Scholar] [CrossRef]
- Beaulieu, K.; Oustric, P.; Finlayson, G. The Impact of Physical Activity on Food Reward: Review and Conceptual Synthesis of Evidence from Observational, Acute, and Chronic Exercise Training Studies. Curr. Obes. Rep. 2020, 9, 63–80. [Google Scholar] [CrossRef]
Variable | Mean ± SD/Median (IQR)/n [%] |
---|---|
Sex (male) | 70 [58.8%] |
Ethnicity | |
White | 53 [44.5%] |
Indian | 28 [23.5%] |
Asian | 25 [21.0%] |
Mixed | 6 [5.0%] |
Black | 3 [2.5%] |
Arab | 2 [1.7%] |
Latino | 2 [1.7%] |
Age (years) | 24 (9) |
Body mass (kg) | 70.5 ± 12.8 |
BMI (kg·m−2) | 23.6 (5.1) |
Movement behaviours | |
Sedentary time (min·d−1) | 704 ± 103 Range: 409 to 1088 |
LPA (min·d−1) | 194 ± 53 Range: 56 to 336 |
MVPA (min·d−1) | 112 ± 50 Range: 25 to 273 |
Sleep time during sleep period (min·d−1) | 336 ± 76 Range: 106 to 477 |
WASO during sleep period (min·d−1) | 95 ± 49 Range: 26 to 327 |
Total sleep period (min·d−1) | 430 ± 68 Range: 220 to 595 |
LPA | MVPA | Sleep | ||||
---|---|---|---|---|---|---|
β-Coefficient (95% CI) | p-Value | β-Coefficient (95% CI) | p-Value | β-Coefficient (95% CI) | p-Value | |
Appetite-related hormones | ||||||
Fasting leptin (pg·mL−1) * | 0.03 (−0.1, 0.1) | 0.652 | −0.06 (−0.15, 0.03) | 0.111 | −0.06 (−0.12, 0.00) | 0.106 |
Fasting PYY (pg·mL−1) | 4.6 (−1.8, 11.0) | 0.162 | −0.8 (−7.1, 5.6) | 0.815 | −0.2 (−4.6, 4.1) | 0.916 |
PYY AUC (2 h, pg·mL−1) | 549.8 (34.8, 1064.9) | 0.036 | −639.3 (−1143.2, −135.3) | 0.013 | 52.7 (−294.5 to 399.8) | 0.766 |
Fasting acylated ghrelin (pg·mL−1) * | 0.06 (−0.04, 0.14) | 0.234 | 0.10 (0.00, 0.19) | 0.045 | 0.00 (−0.04, 0.06) | 0.648 |
Acylated ghrelin AUC (2 h, pg·mL−1) * | −0.03 (−0.06, 0.03) | 0.514 | 0.03 (−0.03, 0.09) | 0.566 | −0.03 (−0.06, 0.03) | 0.359 |
Perceived ratings of appetite | ||||||
Fasting fullness (mm) | −0.33 (−3.00, 2.33) | 0.809 | 1.00 (−1.65, 3.66) | 0.456 | 0.09 (−1.74, 1.93) | 0.927 |
Fullness AUC (4 h, mm) | 6.5 (−482.5, 495.4) | 0.979 | −453.8 (−936.9, 29.5) | 0.066 | −286.7 (−618.8 to 45.5) | 0.091 |
Fasting hunger (mm) | −0.2 (−3.4, 3.0) | 0.915 | 0.8 (−2.4, 4.0) | 0.635 | 0.0 (−2.2, 2.2) | 0.990 |
Hunger AUC (4 h, mm) | −70.6 (−607.4, 466.3) | 0.797 | 480.8 (−49.1, 1010.7) | 0.075 | 299.3 (−65.5 to 662.0) | 0.108 |
Fasting PFC (mm) | 0.30 (−1.86, 2.42) | 0.789 | 1.77 (−0.34, 3.85) | 0.101 | 0.53 (−0.93, 1.99) | 0.467 |
PFC AUC (4 h, mm) | −168.9 (−621.5, 283.8) | 0.464 | 544.6 (93.4, 995.8) | 0.018 | 175.8 (−132.2 to 483.8) | 0.263 |
Fasting satisfaction (mm) | 1.84 (−1.08, 4.71) | 0.217 | 0.39 (−2.46, 3.24) | 0.785 | 0.72 (−1.23, 2.70) | 0.465 |
Satisfaction AUC (4 h, mm) | −138.7 (−624.9, 347.7) | 0.576 | −135.2 (−611.9, 341.5) | 0.578 | −192.5 (−521.6 to 136.5) | 0.251 |
LPA | MVPA | Sleep Duration | ||||
---|---|---|---|---|---|---|
β-Coefficient (95% CI) | p-Value | β-Coefficient (95% CI) | p-Value | β-Coefficient (95% CI) | p-Value | |
TEFQ | ||||||
Cognitive restraint (0–21) | 0.00 (−0.50, 0.51) | 0.957 | −0.03 (−0.50, 0.44) | 0.901 | −0.12 (−0.46, 0.25) | 0.521 |
Disinhibition (0–16) | −0.15 (−0.45, 0.18) | 0.365 | 0.12 (−0.18, 0.45) | 0.418 | −0.10 (−0.30, 0.15) | 0.476 |
Hunger (0–14) | 0.16 (−0.25, 0.55) | 0.482 | 0.30 (−0.06, 0.70) | 0.104 | 0.00 (−0.27, 0.25) | 0.967 |
Total score | −0.03 (−0.72, 0.66) | 0.943 | 0.42 (−0.30, 1.15) | 0.247 | −0.21 (−0.66, 0.25) | 0.397 |
CoEQ | ||||||
Craving control (AU) | −3.93 (−12.00, 4.14) | 0.34 | 2.26 (−5.70, 10.22) | 0.577 | 3.27 (−2.22, 8.77) | 0.242 |
Craving for Sweet (AU) | 2.03 (−7.90, 11.96) | 0.687 | −2.82 (−12.63, 6.98) | 0.575 | 6.18 (−0.60, 13.00) | 0.074 |
Craving for Savoury (AU) | 2.3 (−7.2, 11.7) | 0.638 | 2.3 (−7.1, 11.6) | 0.630 | −3.4 (−10.0, 3.1) | 0.302 |
Positive Mood (AU) | 6.3 (−13.5, 26.1) | 0.107 | −6.3 (−22.5, 0.9) | 0.102 | 3.4 (−1.8, 8.7) | 0.201 |
LFPQ | ||||||
Fasting fat explicit liking (mm) | −0.5 (−2.0, 1.0) | 0.527 | 0.1 (−1.5, 1.7) | 0.907 | −0.3 (−1.4, 0.8) | 0.618 |
Fasting fat explicit wanting (mm) | −0.3 (−2.0, 1.4) | 0.754 | 0.6 (−1.2, 2.3) | 0.470 | 0.0 (−1.1, 1.1) | 0.992 |
Fasting fat implicit wanting (AU) | −1.0 (−4.2, 2.2) | 0.536 | −0.1 (−3.3, 3.0) | 0.930 | −0.3 (−2.5, 1.9) | 0.789 |
Fasting fat relative preference (AU) | −0.36 (−1.56, 0.84) | 0.538 | −0.18 (−1.42, 1.05) | 0.777 | 0.18 (−0.63, 0.89) | 0.658 |
Fasting taste explicit liking (mm) | −0.96 (−3.21, 1.30) | 0.401 | −0.75 (−2.94, 1.44) | 0.504 | −0.03 (−1.53, 1.48) | 0.984 |
Fasting taste explicit wanting (mm) | −1.05 (−3.24, 1.14) | 0.355 | −0.30 (−2.50, 1.89) | 0.777 | 0.45 (−1.02, 1.93) | 0.548 |
Fasting taste implicit wanting (AU) | 0.57 (−4.09, 5.23) | 0.806 | −3.51 (−8.07, 1.05) | 0.134 | 1.05 (−2.03, 4.14) | 0.512 |
Fasting taste relative preference (AU) | −0.00 (−6.10, 5.30) | 0.891 | −2.20 (−7.80, 3.40) | 0.442 | 0.60 (−3.20, 4.50) | 0.745 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malaikah, S.; Alruwaili, A.; Sanders, J.P.; Thackray, A.E.; Stensel, D.J.; Thivel, D.; Henson, J.; Rowlands, A.V.; Willis, S.A.; King, J.A. Replacing Sedentary Time with Physical Activity and Sleep: A 24-Hour Movement Behaviour Perspective on Appetite Control. Nutrients 2025, 17, 3163. https://doi.org/10.3390/nu17193163
Malaikah S, Alruwaili A, Sanders JP, Thackray AE, Stensel DJ, Thivel D, Henson J, Rowlands AV, Willis SA, King JA. Replacing Sedentary Time with Physical Activity and Sleep: A 24-Hour Movement Behaviour Perspective on Appetite Control. Nutrients. 2025; 17(19):3163. https://doi.org/10.3390/nu17193163
Chicago/Turabian StyleMalaikah, Sundus, Arwa Alruwaili, James P. Sanders, Alice E. Thackray, David J. Stensel, David Thivel, Joseph Henson, Alex V. Rowlands, Scott A. Willis, and James A. King. 2025. "Replacing Sedentary Time with Physical Activity and Sleep: A 24-Hour Movement Behaviour Perspective on Appetite Control" Nutrients 17, no. 19: 3163. https://doi.org/10.3390/nu17193163
APA StyleMalaikah, S., Alruwaili, A., Sanders, J. P., Thackray, A. E., Stensel, D. J., Thivel, D., Henson, J., Rowlands, A. V., Willis, S. A., & King, J. A. (2025). Replacing Sedentary Time with Physical Activity and Sleep: A 24-Hour Movement Behaviour Perspective on Appetite Control. Nutrients, 17(19), 3163. https://doi.org/10.3390/nu17193163