Weissella: From Beneficial Probiotics to Opportunistic Pathogens—A Review
Abstract
1. Introduction
2. Taxonomy and Functional Characteristics of Weissella
| Strain | Source | References | 
|---|---|---|
| W. ceti | Beaked whales (Mesoplodon bidens) | [18] | 
| W. cibaria | Sorghum | [19] | 
| W. cibaria GM93m3 | Raw goat milk | [20] | 
| W. cibaria strain CXO-01 | Saliva | [21] | 
| W. confusa | Feces | [22] | 
| W. diestrammenae | Gut (Diestrammena coreana) | [23] | 
| W. fabaria | Cocoa fermentation | [24] | 
| W. fangxianensis | Chinese rice wine starter | [25] | 
| W. fermenti | Kimchi | [26] | 
| W. jogaejeotgali | Korean jogae jeotgal (Fermented clams) | [27] | 
| W. kimchii | Green onion | [28] | 
| W. muntiaci | Faece (Muntiacus reevesi) | [29] | 
| W. oryzae | Fermented rice grains | [30] | 
| W. sagaensis | Traditional Chinese yogurt | [31] | 
| W. soli | Soil | [32] | 
3. Growth Conditions and Physiological Characteristics
4. Microbial Regulation Mechanisms of Weissella
5. Potential of Weissella in the Food Industry
6. Weissella’s Association with Health
6.1. Weissella and Gut Health
6.2. Weissella and Other Diseases
| Strain | Probiotic Properties | Application | References | 
|---|---|---|---|
| W. confusa WM36 | Produce antimicrobial substances such as antimicrobial peptides, organic acids, and 2,4-di-tert-butylphenol | Alternative therapies as non-antibiotic approaches for typhoid fever control | [47] | 
| W. cibaria CMS1 | Inhibit the formation of the Streptococcus mutans biofilm | Decrease the risk of respiratory tract and intestinal infections | [84] | 
| W. cibaria WIKIM28 | Inhibit local accumulation and degranulation rate of mast cells | Potential use as a dietary supplement or therapeutic agent | [77] | 
| W. confusa PL9001 | Target and destroy bacterial cell wall by secreting bacteriocin with bactericidal activity | Development of a novel gastric probiotic | [85] | 
| W. paramesenteroides MYPS5.1 | Product high concentrations of extracellular polysaccharides | Potential anticancer agent | [86] | 
| W. confusa F213 | Enhance the resistance of the gastrointestinal environment | Adjuvant therapy for inflammatory bowel diseases | [73] | 
| W. viridescens UCO-SMC3 | Produce lactic acid, hydrogen peroxide, and bacteriocins with strong bactericidal activity | Reduce inflammatory response. | [87] | 
| W. cibaria CMU | Produce bactericidal substances: hydrogen peroxide and organic acids (lactic acid, acetic acid, and citric acid) | Improve oral health and prevent oral diseases | [88] | 
| W. sp. SNUL2 | Produce peptidases | Regulate gut microbiota composition | [89] | 
| W. viridescens Wv2365 | Produce exopolysaccharides | Improve symptoms of metabolic dysfunction-associated steatotic liver disease | [90] | 
7. Challenges and Future Research Directions
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AMPK | adenosine 5′-monophosphate (AMP)-activated protein kinase | 
| A-PRS | ammonia-pretreated rice straw | 
| CCAAT | CCAAT enhancer-binding protein α | 
| EPS | exopolysaccharides | 
| FAS | fatty acid synthase | 
| FFNs | fat-free instant noodles | 
| IgE | immunoglobulin E | 
| RSM | Response Surface Methodology | 
| SCFAs | short-chain fatty acids | 
| SIRT1 | Sirtuin1 | 
| SREBP1 | sterol regulatory element binding protein 1 | 
References
- Hugon, P.; Dufour, J.C.; Colson, P.; Fournier, P.E.; Sallah, K.; Raoult, D. A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect. Dis. 2015, 15, 1211–1219. [Google Scholar] [CrossRef]
- Oren, A.; Göker, M.; Sutcliffe, I.C.; Executive, B.I.C.S. New phylum names harmonize prokaryotic nomenclature. mBio 2022, 13, 01479. [Google Scholar] [CrossRef]
- Collins, M.D.; Samelis, J.; Metaxopoulos, J.; Wallbanks, S. Taxonomic studies on some Leuconostoc-like organisms from fermented sausages: Description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 1993, 75, 595–603. [Google Scholar] [CrossRef]
- Teixeira, C.G.; Fusieger, A.; Miliao, G.L.; Martins, E.; Drider, D.; Nero, L.A.; de Carvalho, A.F. Weissella: An emerging bacterium with promising health benefits. Probiotics Antimicrob. Proteins 2021, 13, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Lee, A.; Yoo, H.J.; Kim, M.; Noh, G.M.; Lee, J.H. Supplementation with the probiotic strain Weissella cibaria JW15 enhances natural killer cell activity in nondiabetic subjects. J. Funct. Foods 2018, 48, 153–158. [Google Scholar] [CrossRef]
- Kim, Y.M.; Lee, K.S.; Kim, W.M.; Kim, M.; Park, H.O.; Choi, C.W.; Han, J.S.; Park, S.Y.; Lee, K.S. Sodium hydroxide-induced Weissella kimchii ghosts (WKGs) as immunostimulant. Mol. Cell Toxicol. 2023, 19, 805–815. [Google Scholar] [CrossRef]
- Masuda, Y.; Zendo, T.; Sawa, N.; Perez, R.H.; Nakayama, J.; Sonomoto, K. Characterization and identification of weissellicin y and weissellicin m, novel bacteriocins produced by Weissella hellenica QU 13. J. Appl. Microbiol. 2012, 112, 99–108. [Google Scholar] [CrossRef]
- Liu, X.J.; Qu, H.Y.; Gou, M.X.; Guo, H.Y.; Wang, L.Y.; Yan, X.H. Application of Weissella cibaria x31 or Weissella confusa l2 as a starter in low nitrite dry-fermented sausages. Int. J. Food Eng. 2020, 16, 20190344. [Google Scholar] [CrossRef]
- Xiang, W.L.; Zhang, N.D.; Lu, Y.; Zhao, Q.H.; Xu, Q.; Rao, Y.; Liu, L.; Zhang, Q. Effect of Weissella cibaria co-inoculation on the quality of sichuan pickle fermented by lactobacillus plantarum. Lebensm. Wiss. Technol. 2020, 121, 108975. [Google Scholar] [CrossRef]
- Lawhon, S.D.; Lopez, F.R.; Joswig, A.; Black, H.C.; Watts, A.E.; Norman, T.E.; Porter, B.F. Weissella confusa septicemia in a foal. J. Vet. Diagn. Investig. 2014, 26, 150–153. [Google Scholar] [CrossRef]
- Fanelli, F.; Montemurro, M.; Chieffi, D.; Cho, G.S.; Franz, C.; Dell’Aquila, A.; Rizzello, C.; Fusco, V. Novel insights into the phylogeny and biotechnological potential of Weissella species. Front. Microbiol. 2022, 13, 914036. [Google Scholar] [CrossRef]
- Cheaito, R.A.; Awar, G.; Alkozah, M.; Cheaito, M.A.; El Majzoub, I. Meningitis due to Weissella confusa. Am. J. Emerg. Med. 2020, 38, 1298.e1–1298.e3. [Google Scholar] [CrossRef] [PubMed]
- Siavoshi, F.; Ebrahimi, H.; Sarrafnejad, A. Weissella confusa with thermostable β-hemolytic exopolysaccharide. Toxicon 2021, 202, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.L.; Wang, Y.D.; Zhao, F.Q.; Kang, L. Complete genome sequence of Weissella confusa LM1 and comparative genomic analysis. Front. Microbiol. 2021, 12, 749218. [Google Scholar] [CrossRef] [PubMed]
- Du, R.P.; Pei, F.Y.; Kang, J.; Zhang, W.; Wang, S.; Ping, W.X.; Ling, H.Z.; Ge, J.P. Analysis of the structure and properties of dextran produced by Weissella confusa. Int. J. Biol. Macromol. 2022, 204, 677–684. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; Ispirli, H.; Taylan, O.; Alamoudi, M.; Dertli, E. Bioactive and technological properties of an α-d-glucan synthesized by Weissella cibaria PDER21. Carbohydr. Polym. 2022, 285, 119227. [Google Scholar] [CrossRef]
- Zhao, D.; Jiang, J.; Liu, L.N.; Wang, S.; Ping, W.X.; Ge, J.P. Characterization of exopolysaccharides produced by Weissella confusa XG-3 and their potential biotechnological applications. Int. J. Biol. Macromol. 2021, 178, 306–315. [Google Scholar] [CrossRef]
- Vela, A.I.; Fernández, A.; de Quirós, Y.B.; Herráez, P.; Domínguez, L.; Fernández-Garayzábal, J.F. weissella ceti sp nov., Isolated from beaked whales (Mesoplodon bidens). Int. J. Syst. Evol. Microbiol. 2011, 61, 2758–2762. [Google Scholar] [CrossRef]
- Falasconi, I.; Fontana, A.; Patrone, V.; Rebecchi, A.; Garrido, G.D.; Principato, L.; Callegari, M.L.; Spigno, G.; Morelli, L. Genome-assisted characterization of lactobacillus fermentum, Weissella cibaria, and Weissella confusa strains isolated from sorghum as starters for sourdough fermentation. Microorganisms 2020, 8, 1388. [Google Scholar] [CrossRef]
- Akinyemi, M.O.; Oyedele, O.A.; Kleyn, M.S.; Onarinde, B.A.; Adeleke, R.A.; Ezekiel, C.N. Draft genome sequences of Weissella cibaria GM93m3, a promising probiotic strain from raw goat milk. Microbiol. Resour. Announc. 2024, 13, e0027024. [Google Scholar] [CrossRef]
- Jo, H.; Lee, D.; Kim, H.; Kim, J.; Kang, S.; Mun, S.; Karm, M.; Kim, H.J. Complete genome sequence of Weissella cibaria strain CXO-01 isolated from korean saliva. Microbiol. Resour. Announc. 2024, 13, e0015124. [Google Scholar] [CrossRef]
- Wang, W.; Liu, W.; Chu, W. Isolation and preliminary screening of potentially probiotic weissella confusa strains from healthy human feces by culturomics. Microb. Pathog. 2020, 147, 104356. [Google Scholar] [CrossRef]
- Oh, S.J.; Shin, N.R.; Hyun, D.W.; Kim, P.S.; Kim, J.Y.; Kim, M.S.; Yun, J.H.; Bae, J.W. Weissella diestrammenae sp nov., Isolated from the gut of a camel cricket (Diestrammena coreana). Int. J. Syst. Evol. Microbiol. 2013, 63, 2951–2956. [Google Scholar] [CrossRef] [PubMed]
- De Bruyne, K.; Camu, N.; De Vuyst, L.; Vandamme, P. Weissella fabaria sp. Nov., From a ghanaian cocoa fermentation. Int. J. Syst. Evol. Microbiol. 2010, 60, 1999–2005. [Google Scholar] [CrossRef] [PubMed]
- Xiang, F.S.; Dong, Y.; Cai, W.C.; Zhao, H.J.; Liu, H.J.; Shan, C.H.; Guo, Z. Comparative genomic analysis of the genus Weissella and taxonomic study of Weissella fangxianensis sp. Nov., Isolated from chinese rice wine starter. Int. J. Syst. Evol. Microbiol. 2023, 73, 005870. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Baek, J.H.; Han, D.M.; Lee, S.H.; Kim, S.Y.; Jeon, C.O. Description and genomic characteristics of Weissella fermenti sp. Nov., Isolated from kimchi. J. Microbiol. Biotechnol. 2023, 33, 1448–1456. [Google Scholar] [CrossRef]
- Lee, S.H.; Ku, H.J.; Ahn, M.J.; Hong, J.S.; Lee, S.H.; Shin, H.; Lee, K.C.; Lee, J.S.; Ryu, S.; Jeon, C.O.; et al. Weissella jogaejeotgali sp nov., Isolated from jogae jeotgal, a traditional korean fermented seafood. Int. J. Syst. Evol. Microbiol. 2015, 65, 4674–4681. [Google Scholar] [CrossRef]
- Kim, T.W.; Lee, J.Y.; Song, H.S.; Park, J.H.; Ji, G.E.; Kim, H.Y. Isolation and identification of Weissella kimchii from green onion by cell protein pattern analysis. J. Microbiol. Biotechnol. 2004, 14, 105–109. [Google Scholar]
- Lin, S.T.; Wang, L.T.; Wu, Y.C.; Guu, J.; Tamura, T.; Mori, K.; Huang, L.; Watanabe, K. Weissella muntiaci sp. Nov., Isolated from faeces of formosan barking deer (Muntiacus reevesi). Int. J. Syst. Evol. Microbiol. 2020, 70, 1578–1584. [Google Scholar] [CrossRef]
- Tohno, M.; Kitahara, M.; Inoue, H.; Uegaki, R.; Irisawa, T.; Ohkuma, M.; Tajima, K. weissella oryzae sp nov., Isolated from fermented rice grains. Int. J. Syst. Evol. Microbiol. 2013, 63, 1417–1420. [Google Scholar] [CrossRef]
- Li, W.; Chen, Y.Y.; Wang, T. Cadmium biosorption by lactic acid bacteria Weissella viridescens ZY-6. Food Control 2021, 123, 107747. [Google Scholar] [CrossRef]
- Magnusson, J.; Jonsson, H.; Schnürer, J.; Roos, S. Weisselia soli sp nov., A lactic acid bacterium isolated from soil. Int. J. Syst. Evol. Microbiol. 2002, 52, 831–834. [Google Scholar] [CrossRef] [PubMed]
- Björkroth, K.J.; Schillinger, U.; Geisen, R.; Weiss, N.; Vandamme, P. Taxonomic study of Weissella confusa and description of Weissella cibaria sp. Nov., Detected in food and clinical samples. Int. J. Syst. Evol. Microbiol. 2002, 52, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Ramana, K.V. Purification and characterization of bacteriocin from Weissella paramesenteroides DFR-8, an isolate from cucumber (Cucumis sativus). J. Food Biochem. 2010, 34, 932–948. [Google Scholar] [CrossRef]
- Fusco, V.; Quero, G.M.; Cho, G.S.; Kabisch, J.; Meske, D.; Neve, H.; Bockelmann, W.; Franz, C. The genus Weissella: Taxonomy, ecology and biotechnological potential. Front. Microbiol. 2015, 6, 155. [Google Scholar] [CrossRef]
- Dey, D.K.; Koo, B.G.; Sharma, C.; Kang, S.C. Characterization of Weissella confusa DD_a7 isolated from kimchi. Lebensm. Wiss. Technol. 2019, 111, 663–672. [Google Scholar] [CrossRef]
- Galli, V.; Venturi, M.; Coda, R.; Maina, N.H.; Granchi, L. Isolation and characterization of indigenous Weissella confusa for in situ bacterial exopolysaccharides (EPS) production in chickpea sourdough. Food Res. Int. 2020, 138, 109785. [Google Scholar] [CrossRef]
- Diez, A.M.; Björkroth, J.; Jaime, I.; Rovira, J. Microbial, sensory and volatile changes during the anaerobic cold storage of morcilla de burgos previously inoculated with Weissella viridescens and leuconostoc mesenteroides. Int. J. Food Microbiol. 2009, 131, 168–177. [Google Scholar] [CrossRef]
- Mi, T.; Wang, D.; Yao, S.; Yang, H.; Che, Y.; Wu, C. Effects of salt concentration on the quality and microbial diversity of spontaneously fermented radish paocai. Food Res. Int. 2022, 160, 111622. [Google Scholar] [CrossRef]
- Wang, A.L.; Du, Q.Q.; Li, X.M.; Cui, Y.M.; Luo, J.H.; Li, C.R.; Peng, C.; Zhong, X.F.; Huang, G.D. Intracellular and extracellular metabolic response of the lactic acid bacterium Weissella confusa under salt stress. Metabolites 2024, 14, 695. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Shi, Y.; Liu, D.; Zhang, P.; Chen, Q. A multi-omics analysis reveals the response mechanism of Weissella confusa ZJU.2 to gastric acid and bile salts. Food Biosci. 2025, 63, 105667. [Google Scholar] [CrossRef]
- Adesulu-Dahunsi, A.T.; Sanni, A.I.; Jeyaram, K. Production, characterization and in vitro antioxidant activities of exopolysaccharide from weissella cibaria GA44. Lebensm. Wiss. Technol. 2018, 87, 432–442. [Google Scholar] [CrossRef]
- Adebayo-Tayo, B.; Ishola, R.; Oyewunmi, T. Characterization, antioxidant and immunomodulatory potential on exopolysaccharide produced by wild type and mutant Weissella confusa strains. Biotechnol. Rep. 2018, 19, e00271. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.S.; Lee, N.K.; Choi, A.J.; Choe, J.S.; Bae, C.H.; Paik, H.D. Antagonistic and antioxidant effect of probiotic Weissella cibaria JW15. Food Sci. Biotechnol. 2019, 28, 851–855. [Google Scholar] [CrossRef]
- Kibar, H.; Arslan, Y.E.; Ceylan, A.; Karaca, B.; Haliscelik, O.; Kiran, F. Weissella cibaria EIR/p2-derived exopolysaccharide: A novel alternative to conventional biomaterials targeting periodontal regeneration. Int. J. Biol. Macromol. 2020, 165, 2900–2908. [Google Scholar] [CrossRef]
- Pelyuntha, W.; Chaiyasut, C.; Kantachote, D.; Sirilun, S. Organic acids and 2,4-di-tert-butylphenol: Major compounds of Weissella confusa WM36 cell-free supernatant against growth, survival and virulence of salmonella typhi. PeerJ 2020, 8, e8410. [Google Scholar] [CrossRef]
- Malik, A.; Sumayyah, S.; Yeh, C.W.; Heng, N. Identification and sequence analysis of pWcMBF8-1, a bacteriocin-encoding plasmid from the lactic acid bacterium Weissella confusa. FEMS Microbiol. Lett. 2016, 363, fnw059. [Google Scholar] [CrossRef]
- Parappilly, S.J.; Idicula, D.V.; Chandran, A.; Radhakrishnan, K.M.; George, S.M. Antifungal activity of human gut lactic acid bacteria against aflatoxigenic aspergillus flavus MTCC 2798 and their potential application as food biopreservative. J. Food Saf. 2021, 41, e12942. [Google Scholar] [CrossRef]
- Yao, D.; Wang, X.Y.; Ma, L.X.; Wu, M.N.; Xu, L.; Yu, Q.R.; Zhang, L.Y.; Zheng, X.Q. Impact of Weissella cibaria BYL4.2 and its supernatants on penicillium chrysogenum metabolism. Front. Microbiol. 2022, 13, e12942. [Google Scholar] [CrossRef]
- Caggia, C.; De Angelis, M.; Pitino, I.; Pino, A.; Randazzo, C.L. Probiotic features of lactobacillus strains isolated from ragusano and pecorino siciliano cheeses. Food Microbiol. 2015, 50, 109–117. [Google Scholar] [CrossRef]
- Ji, S.X.; Yang, Y.; Li, H.P.; Li, Z.; Suo, B.; Fan, M.H.; Ai, Z.L. Enhancement of the quality and in vitro starch digestibility of fried-free instant noodles with rapid rehydration using sourdough fermented with exopolysaccharide-producing Weissella confusa. Food Chem. 2025, 464, e12942. [Google Scholar] [CrossRef]
- Thant, E.P.; Surachat, K.; Chusri, S.; Romyasamit, C.; Pomwised, R.; Wonglapsuwan, M.; Yaikhan, T.; Suwannasin, S.; Singkhamanan, K. Exploring Weissella confusa w1 and w2 strains isolated from khao-mahk as probiotic candidates: From phenotypic traits to genomic insights. Antibiotics 2024, 13, 604. [Google Scholar] [CrossRef] [PubMed]
- Rocha, B.; Sabino, Y.; de Almeida, T.C.; Palacio, F.B.; Rotta, I.S.; Dias, V.C.; Da Silva, V.L.; Diniz, C.G.; Azevedo, V.; Brenig, B.; et al. Unlocking probiotic potential: Genomic insights into Weissella paramesenteroides UFTM 2.6.1. Probiotics Antimicrob. Proteins 2024, 2024, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Wu, Y.J.; Hu, C.Y. Monosaccharide composition influence and immunomodulatory effects of probiotic exopolysaccharides. Int. J. Biol. Macromol. 2019, 133, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Kavitake, D.; Devi, P.B.; Shetty, P.H. Overviewof exopolysaccharides produced by Weissella genus—A review. Int. J. Biol. Macromol. 2020, 164, 2964–2973. [Google Scholar] [CrossRef]
- Zheng, W.; Chen, C.; Cheng, Q.; Wang, Y.; Chu, C. Oral administration of exopolysaccharide from aphanothece halophytica (Chroococcales) significantly inhibits influenza virus (h1n1)-induced pneumonia in mice. Int. Immunopharmacol. 2006, 6, 1093–1099. [Google Scholar] [CrossRef]
- Liu, X.T.; Yao, T. Types, synthesis pathways, purification, characterization, and agroecological physiological functions of microbial exopolysaccharides: A review. Int. J. Biol. Macromol. 2024, 281, 136317. [Google Scholar] [CrossRef]
- Ferrari, M.; Hameleers, L.; Stuart, M.; Oerlemans, M.; de Vos, P.; Jurak, E.; Walvoort, M. Efficient isolation of membrane-associated exopolysaccharides of four commercial bifidobacterial strains. Carbohydr. Polym. 2022, 278, 118913. [Google Scholar] [CrossRef]
- Ruas-Madiedo, P.; de Los Reyes-Gavilán, C.G. invited review: Methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J. Dairy. Sci. 2005, 88, 843–856. [Google Scholar] [CrossRef]
- Buksa, K.; Kowalczyk, M.; Boreczek, J. Extraction, purification and characterisation of exopolysaccharides produced by newly isolated lactic acid bacteria strains and the examination of their influence on resistant starch formation. Food Chem. 2021, 362, 130221. [Google Scholar] [CrossRef]
- Le, B.; Yang, S.H. Production of prebiotic xylooligosaccharide from aqueous ammonia-pretreated rice straw by β-xylosidase of Weissella cibaria. J. Appl. Microbiol. 2019, 126, 1861–1868. [Google Scholar] [CrossRef] [PubMed]
- Ingerslev, H.C.; Jorgensen, L.V.; Strube, M.L.; Larsen, N.; Dalsgaard, I.; Boye, M.; Madsen, L. The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture 2014, 424, 24–34. [Google Scholar] [CrossRef]
- Wang, F.; Yuan, J.; Wang, X.R.; Xuan, H.Z. Antibacterial and antibiofilm activities of chinese propolis essential oil microemulsion against streptococcus mutans. J. Appl. Microbiol. 2023, 134, lxad056. [Google Scholar] [CrossRef]
- Devi, P.B.; Kavitake, D.; Jayamanohar, J.; Shetty, P.H. Preferential growth stimulation of probiotic bacteria by galactan exopolysaccharide from Weissella confusa KR780676. Food Res. Int. 2021, 143, 110333. [Google Scholar] [CrossRef]
- Baruah, R.; Maina, N.H.; Katina, K.; Juvonen, R.; Goyal, A. Functional food applications of dextran from weissella cibaria RBA12 from pummelo (Citrus maxima). Int. J. Food Microbiol. 2017, 242, 124–131. [Google Scholar] [CrossRef]
- Zhao, H.; Abbas, S.; Ren, J.; Huang, H.; Song, Y.; Su, X.; Wu, Q.; Ma, Y.; Tang, H.; Gao, Y.Z. Dextran from human feces-derived Weissella cibaria facilitates intestinal mucosal barrier function by modulating gut bacteria and propionate levels. Carbohydr. Polym. 2025, 354, 123330. [Google Scholar] [CrossRef]
- He, K.Y.; Lei, X.Y.; Wu, D.H.; Zhang, L.; Li, J.Q.; Li, Q.T.; Yin, W.T.; Zhao, Z.L.; Liu, H.; Xiang, X.Y. Akkermansia muciniphila protects the intestine from irradiation-induced injury by secretion of propionic acid. Gut Microbes 2023, 15, 2293312. [Google Scholar] [CrossRef]
- Zhu, Y.T.; Wang, C.T.; Jia, S.S.; Wang, B.Y.; Zhou, K.; Chen, S.J.; Yang, Y.; Liu, S.L. Purification, characterization and antioxidant activity of the exopolysaccharide from Weissella cibaria SJ14 isolated from sichuan paocai. Int. J. Biol. Macromol. 2018, 115, 820–828. [Google Scholar] [CrossRef]
- Huang, L.; Cui, K.; Mao, W.; Du, Y.; Yao, N.; Li, Z.; Zhao, H.; Ma, W. Weissella cibaria attenuated LPS-induced dysfunction of intestinal epithelial barrier in a caco-2 cell monolayer model. Front. Microbiol. 2020, 11, 2039. [Google Scholar] [CrossRef]
- Bagul, P.K.; Deepthi, N.; Sultana, R.; Banerjee, S.K. Resveratrol ameliorates cardiac oxidative stress in diabetes through deacetylation of NFkB-p65 and histone 3. J. Nutr. Biochem. 2015, 26, 1298–1307. [Google Scholar] [CrossRef]
- Li, S.; Chen, J.; Zheng, Y.; Zhang, Y. Weissella paramesenteroides NRIC1542 inhibits dextran sodium sulfate-induced colitis in mice through regulating gut microbiota and SIRT1/NF-κb signaling pathway. FASEB J. 2024, 38, e23791. [Google Scholar] [CrossRef]
- Lakra, A.K.; Ramatchandirane, M.; Kumar, S.; Suchiang, K.; Arul, V. Physico-chemical characterization and aging effects of fructan exopolysaccharide produced by Weissella cibaria MD2 on caenorhabditis elegans. Lebensm. Wiss. Technol. 2021, 143, 111100. [Google Scholar] [CrossRef]
- Fatmawati, N.N.D.; Gotoh, K.; Mayura, I.P.B.; Nocianitri, K.A.; Suwardana, G.N.R.; Komalasari, N.L.G.Y.; Ramona, Y.; Sakaguchi, M.; Matsushita, O.; Sujaya, I.N. Enhancement of intestinal epithelial barrier function by Weissella confusa f213 and Lactobacillus rhamnosus FBB81 probiotic candidates in an in vitro model of hydrogen peroxide-induced inflammatory bowel disease. BMC Res. Notes 2020, 13, 489. [Google Scholar] [CrossRef]
- Moon, Y.J.; Soh, J.R.; Yu, J.J.; Sohn, H.S.; Cha, Y.S.; Oh, S.H. Intracellular lipid accumulation inhibitory effect of Weissella koreensis OK1-6 isolated from kimchi on differentiating adipocyte. J. Appl. Microbiol. 2012, 113, 652–658. [Google Scholar] [CrossRef]
- Choi, S.I.; You, S.H.; Kim, S.; Won, G.; Kang, C.H.; Kim, G.H. Weissella cibaria MG5285 and Lactobacillus reuteri MG5149 attenuated fat accumulation in adipose and hepatic steatosis in high-fat diet-induced c57BL/6j obese mice. Food Nutr. Res. 2021, 65, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Bhatia, R.; Singh, A.; Singh, P.; Kaur, R.; Khare, P.; Purama, R.K.; Boparai, R.K.; Rishi, P.; Ambalam, P.; et al. Probiotic attributes and prevention of LPS-induced pro-inflammatory stress in RAW264.7 macrophages and human intestinal epithelial cell line (caco-2) by newly isolated Weissella cibaria strains. Food Funct. 2018, 9, 1254–1264. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.K.; Kwon, M.; Lee, J.; Oh, Y.J.; Jang, J.; Lee, J.; Park, H.W.; Nam, Y.; Seo, M.; Roh, S.W.; et al. Weissella cibaria WIKIM28 ameliorates atopic dermatitis-like skin lesions by inducing tolerogenic dendritic cells and regulatory t cells in BALB/c mice. Sci. Rep. 2017, 7, 40040. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.F.; Lee, Y.D.; Park, J.Y.; Kim, S.; Lee, Y.W.; Jeon, B.; Jagdish, D.; Kim, H.; Chung, D.K. Lipoteichoic acid isolated from Weissella cibaria increases cytokine production in human monocyte-like THP-1 cells and mouse splenocytes. J. Microbiol. Biotechnol. 2016, 26, 1198–1205. [Google Scholar] [CrossRef]
- Shimizu, Y.; Nakamura, K.; Kikuchi, M.; Ukawa, S.; Nakamura, K.; Okada, E.; Imae, A.; Nakagawa, T.; Yamamura, R.; Tamakoshi, A.; et al. Lower human defensin 5 in elderly people compared to middle-aged is associated with differences in the intestinal microbiota composition: The DOSANCO health study. Geroscience 2022, 44, 997–1009. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, L.; Zhang, N.; Zhao, Y.; Che, H.; Wang, Y.; Zhang, T.; Wen, M. DHA and EPA alleviate epileptic depression in PTZ-treated young mice model by inhibiting neuroinflammation through regulating microglial m2 polarization and improving mitochondrial metabolism. Antioxidants 2023, 12, 2079. [Google Scholar] [CrossRef]
- Lv, X.H.; Ye, T.; Yang, W.W.; Zhu, Z.C.; Xiang, K.; Zhan, L.; Sun, J.; Liu, J.M. Weissella confusa attenuates cognitive deficits in alzheimer’s disease by reducing oxidative stress via the SIRT1/PGC-1α signaling pathway. Neurochem. Res. 2025, 50, 175. [Google Scholar] [CrossRef]
- Ojekunle, O.; Banwo, K.; Sanni, A.I. In vitro and invivo evaluation of Weissella cibaria and lactobacillus plantarum for their protective effect against cadmium and lead toxicities. Lett. Appl. Microbiol. 2017, 64, 379–385. [Google Scholar] [CrossRef]
- Li, Y.Q.; Tian, W.L.; Gu, C.T. Weissella sagaensis sp. Nov., Isolated from traditiona chinese yogurt. Int. J. Syst. Evol. Microbiol. 2020, 70, 2485–2492. [Google Scholar] [CrossRef]
- Kang, M.; Park, G. In vitro inactivation of respiratory viruses and rotavirus by the oral probiotic strain Weissella cibaria CMS1. Probiotics Antimicrob. Proteins 2022, 14, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.; Ha, M.; Bae, O.; Lee, Y. Effect of Weissella confusa strain PL9001 on the adherence and growth of helicobacter pylori. Appl. Environ. Microbiol. 2002, 68, 4642–4645. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Sunita; Shukla, P. Probiotic potential of Weissella paramesenteroides MYPS5.1 isolated from customary dairy products and its therapeutic application. 3 Biotech 2022, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Espinoza-Monje, M.; Campos, J.; Alvarez Villamil, E.; Jerez, A.; Dentice Maidana, S.; Elean, M.; Salva, S.; Kitazawa, H.; Villena, J.; García-Cancino, A. Characterization of Weissella viridescens UCO-SMC3 as a potential probiotic for the skin: Its beneficial role in the pathogenesis of acne vulgaris. Microorganisms 2021, 9, 1486. [Google Scholar] [CrossRef]
- Kang, M.; Lee, D.; Lee, S.; Kim, M.; Nam, S. Effects of probiotic bacterium Weissella cibaria CMU on periodontal health and microbiota: A randomised, double-blind, placebo-controlled trial. BMC Oral Health 2020, 20, 243. [Google Scholar] [CrossRef]
- Han, J.W.; Lee, N.; Kim, H.J.; Moon, S.J.; Lee, S.C.; Kim, H.J. Weissella sp. SNUL2 as potential probiotics with broad-spectrum antimicrobial activities. Heliyon 2024, 10, e28481. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, R.; Wang, R.; Lu, Y.; Xu, M.; Lin, X.; Lan, R.; Zhang, S.; Tang, H.; Fan, Q.; et al. Weissella viridescens attenuates hepatic injury, oxidative stress, and inflammation in a rat model of high-fat diet-induced MASLD. Nutrients 2025, 17, 1585. [Google Scholar] [CrossRef]
- Anas, A.; Sukumaran, V.; Devarajan, D.N.; Maniyath, S.; Chekidhenkuzhiyil, J.; Mary, A.; Kuttan, S.P.; Tharakan, B. Probiotics inspired from natural ecosystem to inhibit the growth of vibrio spp. Causing white gut syndrome in litopenaeus vannamei. 3 Biotech 2021, 11, 66. [Google Scholar] [CrossRef]
- Medina, M.; Fernandez-Espinel, C.; Sotil, G.; Yunis-Aguinaga, J.; Flores-Dominick, V. First description of Weissella ceti associated with mortalities in farmed rainbow trout (Oncorhynchus mykiss) in peru. Aquaculture 2020, 529, 735608. [Google Scholar] [CrossRef]
- Dolan, L.C.; Arceneaux, B.G.; Do, K.H.; Lee, W.K.; Park, G.Y.; Kang, M.S.; Choi, K.C. Toxicological and safety evaluations of Weissella cibaria strain CMU in animal toxicity and genotoxicity. Toxicol. Res. 2022, 38, 293–310. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.J.; Gwon, H.M.; Jeong, W.S.; Yeo, S.H.; Kim, S.Y. Safety evaluation of Weissella cibaria JW15 by phenotypic and genotypic property analysis. Microorganisms 2021, 9, 2450. [Google Scholar] [CrossRef] [PubMed]
- Fhoula, I.; Boumaiza, M.; Tayh, G.; Rehaiem, A.; Klibi, N.; Ouzari, I.H. Antimicrobial activity and safety features assessment of Weissella spp. From environmental sources. Food Sci. Nutr. 2022, 10, 2896–2910. [Google Scholar] [CrossRef]


| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.; Liu, X.; Jing, Y.; Zhang, M.; Zhang, X.; Wang, C.; Khan, M.Z.; Zhu, M. Weissella: From Beneficial Probiotics to Opportunistic Pathogens—A Review. Nutrients 2025, 17, 3162. https://doi.org/10.3390/nu17193162
Ma W, Liu X, Jing Y, Zhang M, Zhang X, Wang C, Khan MZ, Zhu M. Weissella: From Beneficial Probiotics to Opportunistic Pathogens—A Review. Nutrients. 2025; 17(19):3162. https://doi.org/10.3390/nu17193162
Chicago/Turabian StyleMa, Weiqing, Xiang Liu, Yadi Jing, Meixia Zhang, Xin Zhang, Changfa Wang, Muhammad Zahoor Khan, and Mingxia Zhu. 2025. "Weissella: From Beneficial Probiotics to Opportunistic Pathogens—A Review" Nutrients 17, no. 19: 3162. https://doi.org/10.3390/nu17193162
APA StyleMa, W., Liu, X., Jing, Y., Zhang, M., Zhang, X., Wang, C., Khan, M. Z., & Zhu, M. (2025). Weissella: From Beneficial Probiotics to Opportunistic Pathogens—A Review. Nutrients, 17(19), 3162. https://doi.org/10.3390/nu17193162
 
        



 
       