Assessing Dietary Consumption of Toxicant-Laden Foods and Beverages by Age and Ethnicity in California: Implications for Proposition 65
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design, Recruitment, and Sampling
2.2. Measures
2.3. Data Management and Analysis
3. Results
3.1. Descriptive Statistics
3.2. Food & Beverage Intake Consumption Patterns
3.3. Food & Beverage Intake Consumption Patterns by Age Category
3.4. Food & Beverage Intake Consumption Patterns by Race/Ethnicity
3.5. Herb & Spice Intake
4. Discussion
4.1. Food & Beverage Intake
4.2. Herb/Spice Intake
4.3. Homegrown Food & Water Intake
4.4. Policy Implications
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kell, K.P.; Judd, S.E.; Pearson, K.E.; Shikany, J.M.; Fernández, J.R. Associations between socio-economic status and dietary patterns in US black and white adults. Br. J. Nutr. 2015, 113, 1792–1799. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, H.; Gutin, B.; Dong, Y. Race, Gender, Family Structure, Socioeconomic Status, Dietary Patterns, and Cardiovascular Health in Adolescents. Curr. Dev. Nutr. 2019, 3, nzz117. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. Chemical, Metals, Natural Toxins & Pesticides Guidance Documents & Regulations. In Several Foods and Beverages are Known to Disproportionately Accumulate Contaminants; Policies and guidelines at the local, national level have therefore been enacted to help safeguard sources of food; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2025. [Google Scholar]
- European Union. Commission Regulation (EU) 2024/1756 of 25 June 2024 Amending and Correcting Regulation (EU) 2023/915 on Maximum Levels for Certain Contaminants in Food. 2024. Available online: https://eur-lex.europa.eu/eli/reg/2024/1756/oj (accessed on 1 March 2025).
- World Health Organization. Guidelines for Drinking Water: Fourth Edition Incorporating the First Addendum. 2017. Available online: https://iris.who.int/bitstream/handle/10665/254637/9789241549950-eng.pdf?sequence=1&isAllowed=y#page=365 (accessed on 1 March 2025).
- California Office of Environmental Health Hazard Assessment (OEHHA). Proposition 65 List Of Carcinogens or Reproductive Toxicants. 2023. Available online: https://oehha.ca.gov/media/downloads/proposition-65//p65chemicalslist.pdf (accessed on 1 March 2025).
- California Legislative Information. 1. CHAPTER 6.6. Safe Drinking Water and Toxic Enforcement Act of 1986: CA Health and Safety Code, Section 25249.5; California Legislative Information: Online, 2007. [Google Scholar]
- OEHHA. Proposition 65 in Plain Language|OEHHA. Ca.Gov 2013. Available online: https://oehha.ca.gov/proposition-65/general-info/proposition-65-plain-language (accessed on 28 September 2025).
- Office of Environmental Health Hazard Assessment. Proposition 65 No Significant Risk Levels (NSRLs) for Carcinogens and Maximum Allowable Dose Levels (MADLs) for Chemicals Causing Reproductive Toxicity. 2019. Available online: https://www.p65warnings.ca.gov/chemicals (accessed on 28 September 2025).
- Wu, K.G.; Chang, C.Y.; Yen, C.Y.; Lai, C.C. Associations between environmental heavy metal exposure and childhood asthma: A population-based study. J. Microbiol. Immunol. Infect. 2019, 52, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Boskabady, M.; Marefati, N.; Farkhondeh, T.; Shakeri, F.; Farshbaf, A.; Boskabady, M.H. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. Environ. Int. 2018, 120, 404–420. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.J.; Karmaus, W.J.; Yang, C.C. Lead exposure, IgE, and the risk of asthma in children. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 478–483. [Google Scholar] [CrossRef]
- Pugh Smith, P.; Nriagu, J.O. Lead poisoning and asthma among low-income and African American children in Saginaw, Michigan. Environ. Res. 2011, 111, 81–86. [Google Scholar] [CrossRef]
- Grandjean, P.; Landrigan, P.J. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014, 13, 330–338. [Google Scholar] [CrossRef]
- Reuben, A.; Caspi, A.; Belsky, D.W.; Broadbent, J.; Harrington, H.; Sugden, K.; Houts, R.M.; Ramrakha, S.; Poulton, R.; Moffitt, T.E. Association of childhood blood lead levels with cognitive function and socioeconomic status at age 38 years and with IQ change and socioeconomic mobility between childhood and adulthood. JAMA J. Am. Med. Assoc. 2017, 317, 1244–1251. [Google Scholar] [CrossRef]
- Canfield, R.L.; Henderson, C.R.; Cory-Slechta, D.A.; Cox, C.; Jusko, T.A.; Lanphear, B.P. Intellectual Impairment in Children with Blood Lead Concentrations below 10 ug per Deciliter. N. Engl. J. Med. 2003, 348, 1517–1526. [Google Scholar] [CrossRef]
- Lanphear, B.P.; Hornung, R.; Khoury, J.; Yolton, K.; Baghurst, P.; Bellinger, D.C.; Canfield, R.L.; Dietrich, K.N.; Bornschein, R.; Greene, T.; et al. Low-level environmental lead exposure and children’s intellectual function: An international pooled analysis. Environ. Health Perspect. 2005, 113, 894–899. [Google Scholar] [CrossRef]
- Kennedy, D.A.; Woodland, C.; Koren, G. Lead exposure, gestational hypertension and pre-eclampsia: A systematic review of cause and effect. J. Obstet. Gynaecol. 2012, 32, 512–517. [Google Scholar] [CrossRef]
- Poropat, A.E.; Laidlaw, M.A.S.; Lanphear, B.; Ball, A.; Mielke, H.W. Blood lead and preeclampsia: A meta-analysis and review of implications. Environ. Res. 2018, 160, 12–19. [Google Scholar] [CrossRef]
- Taylor, C.M.; Golding, J.; Emond, A.M. Adverse effects of maternal lead levels on birth outcomes in the ALSPAC study: A prospective birth cohort study. BJOG An Int. J. Obstet. Gynaecol. 2015, 22, 322–328. [Google Scholar] [CrossRef]
- Xie, X.; Ding, G.; Cui, C.; Chen, L.; Gao, Y.; Zhou, Y.; Shi, R.; Tian, Y. The effects of low-level prenatal lead exposure on birth outcomes. Environ. Pollut. 2013, 175C, 30–34. [Google Scholar] [CrossRef]
- Wu, A.H.; Wu, J.; Tseng, C.; Yang, J.; Shariff-Marco, S.; Fruin, S.; Larson, T.; Setiawan, V.W.; Masri, S.; Porcel, J.; et al. Association Between Outdoor Air Pollution and Risk of Malignant and Benign Brain Tumors: The Multiethnic Cohort Study. JNCI Cancer Spectr. 2020, 4, 1–8. [Google Scholar] [CrossRef]
- Nduka, J.K.; Kelle, H.I.; Amuka, J.O. Health risk assessment of cadmium, chromium and nickel from car paint dust from used automobiles at auto-panel workshops in Nigeria. Toxicol. Reports 2019, 6, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Järup, L.; Berglund, M.; Elinder, C.G.; Nordberg, G.; Vahter, M. Health effects of cadmium exposure—A review of the literature and a risk estimate. Scand. J. Work. Environ. Health 1998, 24, 1–51. [Google Scholar] [PubMed]
- Anetor, J.I.; Wanibuchi, H.; Fukushima, S. Arsenic exposure and its health effects and risk of cancer in developing countries: Micronutrients as host defence. Asian Pacific J. Cancer Prev. 2007, 8, 13–23. [Google Scholar]
- Hutton, M. Human Health Concerns of Lead, Mercury, Cadmium and Arsenic. In Lead, Mercury, Cadmium and Arsenic in the Environment; Hutchinson, T.C., Meema, K., Eds.; John Wiley & Sons Ltd: Hoboken, NJ, USA, 1987; pp. 53–68. [Google Scholar]
- Jang, Y.-C.; Somanna, Y.; Kim, H. Source, Distribution, Toxicity and Remediation of Arsenic in the Environment—A review. Int. J. Appl. Environ. Sci. 2016, 11, 973–6077. [Google Scholar]
- Superior Court of the State of California County of San Francisco. Whitney R. Leeman v. Starbucks Corporation; Case No. CFC-16-555322; Superior Court of the State of California County of San Francisco: San Francisco, CA, USA, 2017. [Google Scholar]
- Lynch, R.A.; Boatright, D.T.; Moss, S.K. Lead-contaminated imported tamarind candy and children’s blood lead levels. Public Health Rep. 2000, 115, 537–543. [Google Scholar] [CrossRef]
- California Environmental Protection Agency. Title 27. Environmental Protection Division 4. Office Of Environmental Health Hazard Assessment Chapter 3. Naturally Occurring Lead In Candy § 28500. Naturally Occurring Levels of Lead In Candy; California Environmental Protection Agency: Sacramento, CA, USA, 2021; Volume 25705. [Google Scholar]
- State of California Department of Justice. Annual Reports of Settlements. 2024. Available online: https://oag.ca.gov/prop65/annual-settlement-reports (accessed on 28 September 2025).
- Sultana, R.; Tanvir, R.U.; Hussain, K.A.; Chamon, A.S.; Mondol, M.N. Heavy Metals in Commonly Consumed Root and Leafy Vegetables in Dhaka City, Bangladesh, and Assessment of Associated Public Health Risks. Environ. Syst. Res. 2022, 11, 1–12. [Google Scholar] [CrossRef]
- Singh, S. Heavy metals accumulation and distribution pattern in different vegetable crops. J. Environ. Chem. Ecotoxicol. 2012, 4, 75–81. [Google Scholar] [CrossRef]
- Zwolak, A.; Sarzyńska, M.; Szpyrka, E.; Stawarczyk, K. Sources of Soil Pollution by Heavy Metals and Their Accumulation in Vegetables: A Review. Water Air Soil Pollut. 2019, 230, 1–9. [Google Scholar] [CrossRef]
- Chen, C.Y.; Serrell, N.; Evers, D.C.; Fleishman, B.J.; Lambert, K.F.; Weiss, J.; Mason, R.P.; Bank, M.S. Meeting report: Methylmercury in marine ecosystems--from sources to seafood consumers. Environ. Health Perspect. 2008, 116, 1706–1712. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.M.; Hauser, R. Bisphenol A and children’s health. Curr. Opin. Pediatr. 2011, 23, 233–239. [Google Scholar] [CrossRef]
- Zheng, J.; Tian, L.; Bayen, S. Chemical contaminants in canned food and can-packaged food: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 2687–2718. [Google Scholar] [CrossRef]
- Virk-Baker, M.K.; Nagy, T.R.; Barnes, S.; Groopman, J. Dietary acrylamide and human cancer: A systematic review of literature. Nutr. Cancer 2014, 66, 774–790. [Google Scholar] [CrossRef]
- Lineback, D.R.; Coughlin, J.R.; Stadler, R.H. Acrylamide in foods: A review of the science and future considerations. Annu. Rev. Food Sci. Technol. 2012, 3, 15–35. [Google Scholar] [CrossRef]
- Office of Environmental Health Hazard Assessment (OEHHA). § 25505. Exposures to Listed Chemicals in Cooked or Heat Processed Foods; Office of Environmental Health Hazard Assessment (OEHHA): Sacramento, CA, USA, 2022. [Google Scholar]
- U.S. Food and Drug Administration. Draft Guidance for Industry: Action Levels for Lead in Juice. 2022. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/draft-guidance-industry-action-levels-lead-juice (accessed on 28 September 2025).
- Shen, F.M.; Chen, H.W. Element composition of tea leaves and tea infusions and its impact on health. Bull. Environ. Contam. Toxicol. 2008, 80, 300–304. [Google Scholar] [CrossRef]
- Han, W.Y.; Zhao, F.J.; Shi, Y.Z.; Ma, L.F.; Ruan, J.Y. Scale and causes of lead contamination in Chinese tea. Environ. Pollut. 2006, 139, 125–132. [Google Scholar] [CrossRef]
- Mackonochie, M.; Rodriguez-Mateos, A.; Mills, S.; Rolfe, V. A Scoping Review of the Clinical Evidence for the Health Benefits of Culinary Doses of Herbs and Spices for the Prevention and Treatment of Metabolic Syndrome. Nutrients 2023, 15, 4867. [Google Scholar] [CrossRef]
- Karam, L.; Kosseifi, N.; Jaoude, M.A.; Merhi, S.; Elobeid, T.; Hassan, H.F. The influence of socio-demographic factors on patterns of thyme and thyme products consumption: The case of a Mediterranean country. Food Sci. Technol. 2022, 42, 1–12. [Google Scholar] [CrossRef]
- Sirguri, V.; Bhat, R. Assessing intake of spices by pattern of spice use, frequency of consumption and portion size ofspices consumed from routinely prepared dishesin southern India.pdf. Nutr. J. 2015, 14, 1–9. [Google Scholar]
- Bhathal, S.K.; Kaur, H.; Bains, K.; Mahal, A.K. Assessing intake and consumption level of spices among urban and rural households of Ludhiana district of Punjab, India. Nutr. J. 2020, 19, 1–12. [Google Scholar] [CrossRef]
- Carlsen, M.H.; Blomhoff, R.; Andersen, L.F. Intakes of culinary herbs and spices from a food frequency questionnaire evaluated against 28-days estimated records. Nutr. J. 2011, 10, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean diet and health: A comprehensive overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef] [PubMed]
- United States Centers for Disease Control and Prevention: National Center for Health Statistics. NHANES Questionnaires, Datasets, and Related Documentation. 2025. Available online: https://wwwn.cdc.gov/nchs/nhanes/Default.aspx (accessed on 28 September 2025).
- National Center for Health Statistics. National Health and Nutrition Examination Survey (NHANES): 2003–2004 Data Documentation, Codebook, and Frequencies; National Center for Health Statistics: Hyattsville, MD, USA, 2004; pp. 1–230. [Google Scholar]
- State of California Department of Justice. 60-Day Notice Search. Available online: https://oag.ca.gov/prop65/60-day-notice-search (accessed on 28 September 2025).
- United States Census Bureau. California: 2020 Census. Available online: https://www.census.gov/library/stories/state-by-state/california-population-change-between-census-decade.html (accessed on 1 March 2025).
- National Cancer Institute Division of Cancer Control & Population Sciences. Usual Dietary Intakes: NHANES Food Frequency Questionnaire (FFQ). Available online: https://epi.grants.cancer.gov/diet/usualintakes/ffq.html (accessed on 28 September 2025).
- National Institutes of Health. Diet History Questionnaire; National Institutes of Health: Bethesda, MD, USA, 2018; pp. 1–26. [Google Scholar]
- United States Department of Agricuture (USDA). USDA FoodData Central. 2024. Available online: https://fdc.nal.usda.gov/ (accessed on 28 September 2025).
- U.S. Food and Drug Administration. Reference Amounts Customarily Consumed: List of Products for Each Product Category: Guidance for Industry. 2018. Available online: http://www.fda.gov/FoodGuidances (accessed on 28 September 2025).
- SAS Institute Inc. SAS® 9.4 Statements: Reference, 3rd ed.; SAS Institute Inc.: Cary, NC, USA, 2014. [Google Scholar]
- Gilbert-Diamond, D.; Cottingham, K.L.; Gruber, J.F.; Punshon, T.; Sayarath, V.; Gandolfi, A.J.; Baker, E.R.; Jackson, B.P.; Folt, C.L.; Karagas, M.R. Rice consumption contributes to arsenic exposure in US women. Proc. Natl. Acad. Sci. USA 2011, 108, 20656–20660. [Google Scholar] [CrossRef] [PubMed]
- Food Surveys Research Group. Agricultural Research Service. United States Department of Agriculture. What We Eat in America: Documentation and Data Sets. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/wweia-documentation-and-data-sets/ (accessed on 28 September 2025).
- Lin, S.; Herdt-Losavio, M.L.; Chen, M.; Luo, M.; Tang, J.; Hwang, S.A. Fish consumption patterns, knowledge and potential exposure to mercury by race. Int. J. Environ. Health Res. 2014, 24, 291–303. [Google Scholar] [CrossRef]
- Emanuel, G. You’ll never guess the culprit in a global lead poisoning mystery. In National Public Radio: All Things Considered; National Public Radio: Washington, DC, USA, 23 September 2024. [Google Scholar]
- California Department of Food and Agriculture. Fertilizing Materials Inspection Program. 2025. Available online: https://www.cdfa.ca.gov/is/ffldrs/fertilizer.html (accessed on 28 September 2025).
- Masri, S.; LeBrón, A.; Logue, M.; Valencia, E.; Ruiz, A.; Reyes, A.; Lawrence, J.M.; Wu, J. Social and spatial distribution of soil lead concentrations in the City of Santa Ana, California: Implications for health inequities. Sci. Total Environ. 2020, 743, 1–11. [Google Scholar] [CrossRef]
- Roy, S.; Edwards, M.A. Preventing another lead (Pb) in drinking water crisis: Lessons from the Washington D.C. and Flint MI contamination events. Curr. Opin. Environ. Sci. Health 2019, 7, 34–44. [Google Scholar] [CrossRef]
- Boyd, G.R.; Pierson, G.L.; Kirmeyer, G.J.; English, R.J. Lead variability testing in Seattle Public Schools. J. Am. Water Work. Assoc. 2008, 100, 53–64. [Google Scholar] [CrossRef]
- Murphy, E.A. Effectiveness of Flushing on Reducing Lead and Copper Levels in School Drinking Water. Environ. Health Perspect. 1993, 101, 240–241. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (USEPA). Use of Lead Free Pipes, Fittings, Fixtures, Solder, and Flux for Drinking Water. Safe Drinking Water Act. 2025. Available online: https://www.epa.gov/sdwa/use-lead-free-pipes-fittings-fixtures-solder-and-flux-drinking-water (accessed on 28 September 2025).
- Superior Court of California County of Los Angeles. Settlement Agreement Between Plaintiffs California Rice Commission and USA Rice Federation, and Defendant Consumer Advocacy Group, Inc.; Consent Judgement; Superior Court of California County of Los Angeles: Los Angeles, CA, USA, 2018. [Google Scholar]
- Superior Court of California County of Los Angeles. Consumer Advocacy Group, Inc. v Gulf Pacific Rice Co: Lead Case No. BC553427; Superior Court of California County of Los Angeles: Los Angeles, CA, USA, 2023. [Google Scholar]
- Childs, N. Nathan Childs Americans Are Eating More Rice. Res. Agric. Appl. Econ. 1993, 16, 19–25. [Google Scholar]
- Batres-Marquez, S.P.; Jensen, H.H.; Upton, J. Rice Consumption in the United States: Recent Evidence from Food Consumption Surveys. J. Am. Diet. Assoc. 2009, 109, 1719–1727. [Google Scholar] [CrossRef]
- Superior Court of the State of California County of Fresno. Environmental Law Foundation v. Protein Supplements; Case Number: RG19031319; Superior Court of the State of California County of Fresno: Fresno, CA, USA, 2019; Volume 93721. [Google Scholar]
- Hinojosa-Nogueira, D.; Muros, J.J.; Navajas-Porras, B.; Delgado-Osorio, A.; Pérez-Burillo, S.; Pastoriza, S.; Rufián-Henares, J. Development of a food composition database of different food contaminants CONT11 and estimation of dietary exposure in children of southern Spain. Food Chem. Toxicol. 2023, 177, 113843. [Google Scholar] [CrossRef]
- Hobé, R.G.; Van Asselt, E.D.; Van Den Heuvel, L.; Hoek-van Den Hil, E.F.; Van Der Fels-Klerx, H.J. Methodology for risk-based monitoring of contaminants in food—A case study in cereals and fish. Food Res. Int. 2023, 168, 1–10. [Google Scholar] [CrossRef]
- Mikati, I.; Benson, A.F.; Luben, T.J.; Sacks, J.D.; Richmond-Bryant, J. Disparities in distribution of particulate matter emission sources by race and poverty status. Am. J. Public Health 2018, 108, 480–485. [Google Scholar] [CrossRef]
- Gaffron, P.; Niemeier, D. School locations and traffic Emissions—Environmental (In)justice findings using a new screening method. Int. J. Environ. Res. Public Health 2015, 12, 2009–2025. [Google Scholar] [CrossRef]
- United Church of Christ Commission for Racial Justice. Toxic Waste and Race in the United States: A National Report on the Racial and Socio-Economic Characteristics of Communities with Hazardous Waste Sites; United Church of Christ Commission for Racial Justice: New York, NY, USA, 1987. [Google Scholar]
- Rosofsky, A.; Levy, J.I.; Zanobetti, A.; Janulewicz, P.; Fabian, M.P. Temporal trends in air pollution exposure inequality in Massachusetts. Environ. Res. 2018, 161, 76–86. [Google Scholar] [CrossRef]
- Tamayo-Ortiz, M.; Sanders, A.P.; Rosa, M.J.; Wright, R.O.; Amarasiriwardena, C.; Mercado-García, A.; Pantic, I.; Lamadrid-Figueroa, H.; Téllez-Rojo, M.M. Lead concentrations in Mexican candy: A follow-up report. Ann. Glob. Health 2020, 86, 1–5. [Google Scholar] [CrossRef]
- Pao, E.M.; Fleming, K.H.; Guenther, P.M.; Mickle, S.J. Foods Commonly Eaten by Individuals: Amount Per Day and Per Eating Occasion; US Department of Agriculture: Washington, DC, USA, 1982; Volume 44. Available online: https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/7778/pao1982_portion_herr44.pdf (accessed on 28 September 2025).
Race/Ethnicity | % | N |
Asian/Pacific Islander | 40.9 | 76 |
Latino/Hispanic | 28.0 | 52 |
White/Caucasian | 11.8 | 22 |
Middle Eastern | 11.8 | 22 |
Indian | 6.5 | 12 |
Other | 1.1 | 2 |
Age | ||
13–17 | 39.2 | 74 |
18–24 | 46.6 | 88 |
25–39 | 10.1 | 19 |
40–59 | 4.2 | 8 |
Gender | ||
Male | 36.0 | 68 |
Female | 62.9 | 119 |
Other | 1.1 | 2 |
Education | ||
No High School Diploma | 39.9 | 75 |
High School Diploma | 20.2 | 38 |
Some College | 23.4 | 44 |
Bachelor’s Degree | 6.9 | 13 |
Graduate/Professional Degree | 9.5 | 18 |
Annual Household Income | ||
<$25 K | 21.5 | 40 |
$25–50 K | 14.5 | 27 |
$50–100 K | 24.7 | 46 |
$100–200 K | 29.6 | 55 |
>$200 K | 9.7 | 18 |
All Participants N = 186 | Among Consumers Only | |||||||
---|---|---|---|---|---|---|---|---|
N | (%) | Mean Daily Intake (g) | Median Daily Intake (g) | Mean Portion Size (g) | Mean Consumption Frequency (EO/day) | Mean Daily Intake (g) | Median Daily Intake (g) | |
Fruits/Vegetables | ||||||||
Root Vegetables | 182 | 96.3 | 83.9 | 48.3 | 128.6 | 0.55 | 87.2 | 48.3 |
Leafy Greens | 159 | 84.1 | 33.6 | 29.4 | 64.3 | 0.52 | 39.5 | 29.4 |
Potato Products (fried) | 136 | 71.4 | 29.8 | 18.9 | 126.9 | 0.32 | 41.7 | 27.7 |
Dried Fruit | 58 | 30.7 | 6.8 | 0.0 | 59.2 | 0.41 | 22.2 | 15.2 |
Grains | ||||||||
Rice (cooked) | 172 | 91.0 | 52.6 | 37.2 | 82.9 | 0.60 | 57.8 | 37.2 |
Pasta/Noodles | 153 | 81.0 | 30.9 | 22.5 | 108.2 | 0.33 | 38.0 | 33.8 |
Tostadas/Taco Shells | 56 | 29.6 | 1.3 | 0.0 | 17.9 | 0.21 | 4.2 | 2.6 |
Meat | ||||||||
Fish (fried) | 39 | 20.6 | 4.2 | 0.0 | 95.4 | 0.19 | 20.3 | 14.2 |
Fish (not fried) | 87 | 46.0 | 11.1 | 0.0 | 90.1 | 0.28 | 24.1 | 14.2 |
Other Seafood | 74 | 39.2 | 21.8 | 0.0 | 211.9 | 0.28 | 55.8 | 48.5 |
Other Meat (fried) | 107 | 56.6 | 20.2 | 6.1 | 119.1 | 0.28 | 35.7 | 20.2 |
Sauces/Pastes | ||||||||
Tomato Sauce | 125 | 65.6 | 16.9 | 11.6 | 92.0 | 0.27 | 25.8 | 11.6 |
Salsa | 84 | 44.4 | 10.4 | 0.0 | 54.1 | 0.34 | 23.2 | 12.6 |
Food Paste | 52 | 27.5 | 4.2 | 0.0 | 29.6 | 0.39 | 15.0 | 9.7 |
Snacks | ||||||||
Cookies | 124 | 65.6 | 15.3 | 5.7 | 58.5 | 0.33 | 23.3 | 13.4 |
Crackers | 74 | 39.2 | 7.7 | 0.0 | 53.2 | 0.31 | 19.7 | 8.5 |
Potato Chips | 120 | 63.5 | 8.8 | 5.4 | 38.1 | 0.34 | 13.8 | 7.5 |
Tortilla Chips | 87 | 46.0 | 5.1 | 0.0 | 37.7 | 0.29 | 11.1 | 6.4 |
Nuts/Seeds | 112 | 59.3 | 14.9 | 4.9 | 48.3 | 0.49 | 25.0 | 19.4 |
Chocolate Foods | 149 | 78.8 | 9.6 | 6.1 | 30.0 | 0.42 | 12.2 | 6.1 |
Pickled Products | 85 | 45.0 | 10.1 | 0.0 | 64.8 | 0.33 | 22.4 | 14.2 |
Popcorn | 64 | 21.7 | 1.2 | 0.0 | 17.8 | 0.31 | 5.4 | 1.1 |
Tamarind/Chili Candy | 33 | 24.1 c | 1.5 | 0.0 | 15.9 | 0.34 | 6.4 | 3.0 |
Beverages | ||||||||
Water | 186 | 100 | 1413 | 1440 | 240 a | 1.0 | 1436 | 1440 |
Juice | 113 | 59.8 | 72.4 | 68.6 | 240 a | 0.42 | 120.5 | 68.6 |
Tea | 87 | 46.0 | 70.2 | 0.0 | 240 a | 0.65 | 151.7 | 68.6 |
Wine | 14 | 7.4 | 7.9 | 0.0 | 150 a | 0.47 | 105.7 | 51.9 |
Food/Beverage Powders | ||||||||
Nutritional Powder | 52 | 27.5 | 6.8 | 0.0 | 44.3 b | 0.58 | 24.3 | 12.7 |
Traditional Drink Powder | 63 | 33.3 | 0.3 | 0.0 | 2.1 b | 0.36 | 0.8 | 0.6 |
Chocolate Drink Powder | 42 | 22.2 | 2.4 | 0.0 | 23.3 b | 0.49 | 10.8 | 6.7 |
Other | ||||||||
Mushrooms | 69 | 36.5 | 8.2 | 0.0 | 34.4 | 0.31 | 22.5 | 14.8 |
Stuffed Grape Leaves | 11 | 5.8 | 2.6 | 0.0 | 242.2 | 0.19 | 44.5 | 19.3 |
Race/ethnicity | Age Category | ||||||
---|---|---|---|---|---|---|---|
r2 | Int. | Asian | Hispanic | Indian | Middle Eastern | Adult | |
Beverages | |||||||
Juice | 0.06 | 58.17 | 38.74 | 46.28 | 22.63 | 54.10 | −36.08 |
Tea | 0.10 | 81.93 | −36.82 | −67.35 | −35.99 | 19.55 | 33.76 |
Wine | 0.05 | 29.68 | −23.91 | −26.66 | −29.68 | −23.91 | 0.00 |
Fruits/Veggies | |||||||
Root Veggies | 0.08 | 92.26 | 6.21 | −34.26 | 65.59 | 9.09 | −24.34 |
Potato Products (fried) | 0.05 | 38.85 | −13.70 | −2.44 | −17.25 | 2.09 | −1.42 |
Dried Fruit | 0.07 | 17.02 | −11.08 | −14.58 | −8.51 | −15.08 | 1.16 |
Grains | |||||||
Rice (cooked) | 0.27 | 50.93 | 59.05 | −4.16 | 20.19 | 23.79 | −41.38 |
Pasta/Noodles | 0.07 | 52.27 | −15.19 | −29.10 | −20.29 | −23.86 | −4.44 |
Tostadas/Taco Shells | 0.18 | 2.24 | −1.12 | 0.89 | −1.14 | −1.11 | −0.89 |
Meat | |||||||
Fish (fried) | 0.03 | 7.95 | −4.68 | −5.90 | −0.11 | −7.25 | 0.57 |
Sauces/Pastes | |||||||
Tomato Sauce | 0.03 | ||||||
Salsa | 0.18 | 17.42 | −10.32 | 6.15 | −8.74 | −7.48 | −4.67 |
Food Paste | 0.03 | 9.32 | −4.84 | −8.00 | 2.66 | −3.84 | −0.95 |
Snacks | |||||||
Cookies | 0.08 | 27.67 | −18.45 | −12.06 | −8.58 | −17.03 | −2.22 |
Crackers | 0.10 | 8.48 | −4.29 | −5.26 | −6.06 | −5.52 | −2.56 |
Potato Chips | 0.07 | 15.83 | −7.11 | −3.82 | −6.69 | −6.47 | −2.88 |
Tortilla Chips | 0.07 | 12.04 | −6.36 | −5.83 | −6.48 | −6.21 | −2.53 |
Chocolate Foods | 0.06 | 15.01 | −4.35 | −8.63 | −9.18 | −7.02 | 0.52 |
Popcorn | 0.13 | 5.43 | −3.16 | −4.41 | −3.58 | −2.77 | −1.89 |
Tamarind/Chili Candy | 0.13 | 0.09 | 0.70 | 3.71 | 0.00 | 0.12 | −0.21 |
Food/Beverage Powders | |||||||
Nutritional Powder | 0.12 | 17.04 | −12.27 | −13.72 | −8.01 | −18.16 | 1.83 |
Traditional Drink Powder | 0.05 | 0.10 | 0.38 | 0.16 | 0.61 | 0.46 | 0.14 |
Chocolate Drink Powder | 0.01 | 0.53 | −0.15 | −0.30 | −0.32 | −0.25 | 0.02 |
Total Herbs/Spices | 0.08 | 12.3 | −1.8 | −7.0 | 13.1 | 3.3 | −4.6 |
Other | |||||||
Stuffed Grape Leaves | 0.18 | 1.96 | −2.08 | −2.47 | −2.47 | 18.44 | 1.15 |
All Participants N = 186 | Consumers Only | |||||||
---|---|---|---|---|---|---|---|---|
N | (%) | Mean Daily Intake (g) | Median Daily Intake (g) | Unit Conversion (g/tsp) a | Mean Consumption Frequency (EO/day) | Mean Daily Intake (g) | Median Daily Intake (g) | |
Garlic Powder | 139 | 75.1 | 1.47 | 0.66 | 3.1 | 0.61 | 1.95 | 0.66 |
Basil | 108 | 59.0 | 0.28 | 0.08 | 1.1 | 0.43 | 0.47 | 0.24 |
Oregano | 98 | 53.3 | 0.31 | 0.10 | 1.4 | 0.42 | 0.58 | 0.30 |
Chili Powder | 97 | 52.7 | 1.11 | 0.19 | 2.7 | 0.61 | 2.10 | 1.16 |
Paprika | 92 | 50.0 | 0.84 | 0.08 | 2.3 | 0.62 | 1.68 | 0.49 |
Italian Mix | 88 | 48.1 | 0.34 | 0 | 1.8 b | 0.42 | 0.71 | 0.39 |
Parsley | 87 | 47.5 | 0.12 | 0 | 0.5 | 0.49 | 0.26 | 0.11 |
Other | 80 | 45.7 | 0.67 | 0 | 1.8 b | 0.74 | 1.46 | 0.84 |
Cumin | 84 | 45.2 | 0.54 | 0 | 1.8 b | 0.55 | 1.19 | 0.77 |
Cinnamon | 81 | 43.8 | 0.58 | 0 | 2.6 | 0.47 | 1.34 | 0.56 |
Cayenne | 77 | 41.8 | 0.43 | 0 | 1.8 b | 0.45 | 1.05 | 0.39 |
Turmeric | 72 | 38.9 | 0.86 | 0 | 3.0 | 0.59 | 2.23 | 0.64 |
Ginger | 68 | 36.8 | 0.39 | 0 | 1.8 | 0.51 | 1.06 | 0.39 |
Rosemary | 63 | 34.4 | 0.21 | 0 | 1.2 | 0.42 | 0.62 | 0.26 |
Curry Powder | 62 | 33.7 | 0.56 | 0 | 2.0 | 0.63 | 1.66 | 0.86 |
Thyme | 60 | 32.4 | 0.19 | 0 | 1.2 | 0.40 | 0.59 | 0.26 |
Masala Mix | 39 | 21.3 | 0.48 | 0 | 1.8 b | 0.80 | 2.26 | 0.96 |
Sage | 28 | 15.3 | 0.06 | 0 | 0.7 | 0.46 | 0.40 | 0.15 |
Za-Atar | 25 | 13.7 | 0.17 | 0 | 1.8 b | 0.53 | 1.24 | 0.45 |
Ground Mustard Seed | 24 | 13.3 | 0.19 | 0 | 2.0 | 0.56 | 1.41 | 0.64 |
Average | 0.49 | 1.8 | 0.54 | 1.21 | 0.53 |
R2 | Int. | Asian | Hispanic | Indian | Middle Eastern | Caucasian | Adult | Teenage | |
---|---|---|---|---|---|---|---|---|---|
Garlic Powder | 0.03 | 0.51 | −0.16 | −0.05 | −0.23 | −0.02 | 0.00 | 0.05 | 0.00 |
Basil | 0.08 | 0.25 | 0.02 | 0.00 | 0.38 | 0.14 | 0.00 | −0.08 | 0.00 |
Oregano | 0.05 | 0.26 | −0.06 | 0.03 | 0.07 | 0.16 | 0.00 | −0.07 | 0.00 |
Chili Powder | 0.10 | 0.42 | −0.12 | −0.16 | 0.49 | −0.19 | 0.00 | −0.03 | 0.00 |
Paprika | 0.09 | 0.33 | −0.12 | −0.10 | 0.47 | 0.17 | 0.00 | 0.01 | 0.00 |
Italian Mix | 0.04 | 0.27 | −0.13 | −0.07 | −0.06 | −0.08 | 0.00 | 0.03 | 0.00 |
Parsley | 0.14 | 0.26 | −0.01 | 0.04 | 0.11 | 0.32 | 0.00 | −0.13 | 0.00 |
Other | 0.07 | 0.28 | 0.18 | 0.10 | 0.41 | 0.47 | 0.00 | −0.22 | 0.00 |
Cumin | 0.19 | 0.14 | 0.02 | −0.01 | 0.76 | 0.18 | 0.00 | 0.06 | 0.00 |
Cinnamon | 0.05 | 0.26 | −0.16 | −0.07 | 0.12 | −0.08 | 0.00 | 0.05 | 0.00 |
Cayenne | 0.05 | 0.14 | 0.08 | −0.03 | 0.20 | 0.14 | 0.00 | −0.02 | 0.00 |
Turmeric | 0.15 | 0.13 | 0.04 | −0.05 | 0.75 | 0.12 | 0.00 | 0.04 | 0.00 |
Ginger | 0.09 | 0.08 | 0.10 | 0.02 | 0.36 | 0.19 | 0.00 | 0.02 | 0.00 |
Rosemary | 0.09 | 0.23 | 0.00 | −0.02 | 0.03 | 0.09 | 0.00 | −0.14 | 0.00 |
Curry Powder | 0.19 | 0.16 | 0.05 | −0.11 | 0.70 | −0.04 | 0.00 | 0.02 | 0.00 |
Thyme | 0.06 | 0.11 | 0.03 | 0.03 | 0.21 | 0.12 | 0.00 | −0.05 | 0.00 |
Masala Mix | 0.22 | 0.16 | 0.00 | −0.13 | 0.84 | 0.00 | 0.00 | −0.02 | 0.00 |
Sage | 0.02 | 0.10 | −0.04 | 0.00 | 0.10 | 0.01 | 0.00 | −0.04 | 0.00 |
Za-Atar | 0.21 | 0.08 | −0.03 | −0.06 | 0.07 | 0.26 | 0.00 | −0.01 | 0.00 |
Ground Mustard Seed | 0.06 | 0.04 | 0.01 | −0.02 | 0.24 | −0.06 | 0.00 | 0.03 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masri, S.; Nasla, S.; Payán, D.D.; Wu, J. Assessing Dietary Consumption of Toxicant-Laden Foods and Beverages by Age and Ethnicity in California: Implications for Proposition 65. Nutrients 2025, 17, 3149. https://doi.org/10.3390/nu17193149
Masri S, Nasla S, Payán DD, Wu J. Assessing Dietary Consumption of Toxicant-Laden Foods and Beverages by Age and Ethnicity in California: Implications for Proposition 65. Nutrients. 2025; 17(19):3149. https://doi.org/10.3390/nu17193149
Chicago/Turabian StyleMasri, Shahir, Sara Nasla, Denise Diaz Payán, and Jun Wu. 2025. "Assessing Dietary Consumption of Toxicant-Laden Foods and Beverages by Age and Ethnicity in California: Implications for Proposition 65" Nutrients 17, no. 19: 3149. https://doi.org/10.3390/nu17193149
APA StyleMasri, S., Nasla, S., Payán, D. D., & Wu, J. (2025). Assessing Dietary Consumption of Toxicant-Laden Foods and Beverages by Age and Ethnicity in California: Implications for Proposition 65. Nutrients, 17(19), 3149. https://doi.org/10.3390/nu17193149