Recent Progress in Exploring Dietary Nutrition and Dietary Patterns in Periodontitis with a Focus on SCFAs
Abstract
1. Introduction
2. Methods
3. Dietary Patterns Rich in Fibers and the Effects on Periodontal Condition
3.1. Mediterranean Diet
3.2. DASH and Diets High in Fruits and Vegetables
3.3. Whole-Food Plant-Based Regimes
3.4. Low-Carbohydrate/Ketogenic Diets
4. Biological Association Between Dietary Fiber and the Periodontium
4.1. Classification of Dietary Fiber
4.1.1. Solubility Versus Matrix Entrapment
4.1.2. Viscosity/Rheology
4.1.3. Fermentability and Gas Kinetics
Physicochemical Class | Key Properties and Effects | Examples | Ref. |
---|---|---|---|
Soluble Fiber | Delays gastric emptying and reduces post-meal blood sugar and cholesterol levels | Pectins, β-glucans, guar galactomannan, and inulin-type fructans | [5] |
Insoluble Fiber | Removes dental plaque, increases saliva production, and inhibits pathogens | Wheat bran, chicory root fiber, or apple pomace | [5] |
Viscous Fiber | Forms a high-viscosity solution (5–15 Pa·s), which slows down the absorption of glucose and fat, and improves blood sugar control | Oat β-glucan (molecular weight > 200 kDa), psyllium arabinoxylan, and high-methoxyl pectin | [38] |
Fermentable Fiber | Rapid fermentation can increase the content of short-chain fatty acids in the proximal colon, while slow fermentation can support distal microbiota | Fructooligosaccharide (FOS) is a highly fermentable fiber and resistant starch (RS3) is a slowly fermentable fiber | [40] |
4.2. Short-Chain Fatty Acids (SCFAs)
5. Host–Microbe Crosstalk: Fiber-Driven Modulation of Oral and Gut Microbiomes
6. Mechanistic Pathways Linking Fiber to Periodontal Homeostasis
6.1. Immune Modulation
6.1.1. Regulatory T Cell Induction and Cytokine Re-Balancing
6.1.2. Neutrophil Chemotaxis, NET Formation, and Oxidative-Burst Control
6.2. Barrier Integrity and Connective Tissue Preservation
6.2.1. Reinforcement of Epithelial Tight Junctions
6.2.2. Collagen Synthesis and Matrix Metalloproteinase Inhibition
6.3. Metabolic Regulation: Glycemic Control and Insulin Signaling
7. Limitations of Current Evidence and Knowledge Gaps
8. Future Research Directions
8.1. Long-Term Pragmatic Trials with Tooth Loss Endpoints
8.2. Multi-Omics Mapping of Fiber–Microbe–Host Interactions in the Periodontium
8.3. Precision Nutrition: Microbiome-Guided Fiber Prescriptions
8.4. Development of Functional Foods Targeting Oral Health
9. Conclusions and Clinical Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Darby, I. Risk factors for periodontitis & peri-implantitis. Periodontology 2000 2022, 90, 9–12. [Google Scholar] [CrossRef]
- Woelber, J.P.; Bremer, K.; Vach, K.; König, D.; Hellwig, E.; Ratka-Krüger, P.; Al-Ahmad, A.; Tennert, C. An oral health optimized diet can reduce gingival and periodontal inflammation in humans—A randomized controlled pilot study. BMC Oral Health 2016, 17, 28, Erratum in BMC Oral Health 2016, 16, 109. [Google Scholar] [CrossRef] [PubMed]
- Al-Zahrani, M.S.; Bissada, N.F.; Borawski, E.A. Diet and periodontitis. J. Int. Acad. Periodontol. 2005, 7, 21–26. [Google Scholar] [PubMed]
- Cui, J.; Lian, Y.; Zhao, C.; Du, H.; Han, Y.; Gao, W.; Xiao, H.; Zheng, J. Dietary Fibers from Fruits and Vegetables and Their Health Benefits via Modulation of Gut Microbiota. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1514–1532. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.K.; Rossi, M.; Bajka, B.; Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 101–116. [Google Scholar] [CrossRef]
- Jayasinghe, T.; Jenkins, J.; Medara, N.; Choowong, P.; Dharmarathne, G.; Kong, F.; Cho, H.; Kim, S.H.; Zhang, Y.; Franco-Duarte, R.; et al. Dietary Fibre Modulates Body Composition, Blood Glucose, Inflammation, Microbiome, and Metabolome in a Murine Model of Periodontitis. Nutrients 2025, 17, 1146. [Google Scholar] [CrossRef]
- Li, A.; Qiu, B.; Goettsch, M.; Chen, Y.; Ge, S.; Xu, S.; Tjakkes, G.-H.E. Association between the quality of plant-based diets and periodontitis in the U.S. general population. J. Clin. Periodontol. 2023, 50, 591–603. [Google Scholar] [CrossRef]
- Millen, A.E.; Dahhan, R.; Freudenheim, J.L.; Hovey, K.M.; Li, L.; McSkimming, D.I.; Andrews, C.A.; Buck, M.J.; LaMonte, M.J.; Kirkwood, K.L.; et al. Dietary carbohydrate intake is associated with the subgingival plaque oral microbiome abundance and diversity in a cohort of postmenopausal women. Sci. Rep. 2022, 12, 2643. [Google Scholar] [CrossRef]
- Thomas, M.S.; Calle, M.; Fernandez, M.L. Healthy plant-based diets improve dyslipidemias, insulin resistance, and inflammation in metabolic syndrome. A narrative review. Adv. Nutr. 2023, 14, 44–54. [Google Scholar] [CrossRef]
- Santonocito, S.; Giudice, A.; Polizzi, A.; Troiano, G.; Merlo, E.M.; Sclafani, R.; Grosso, G.; Isola, G. A Cross-Talk between Diet and the Oral Microbiome: Balance of Nutrition on Inflammation and Immune System’s Response during Periodontitis. Nutrients 2022, 14, 2426. [Google Scholar] [CrossRef]
- Abbasi, F.; Lamendola, C.; Harris, C.S.; Harris, V.; Tsai, M.S.; Tripathi, P.; Abbas, F.; Reaven, G.M.; Reaven, P.D.; Snyder, M.P.; et al. Statins Are Associated With Increased Insulin Resistance and Secretion. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 2786–2797. [Google Scholar] [CrossRef]
- Shi, X.; Zhu, P.; Du, M.; Deng, K.; Li, P.; Sáenz-Ravello, G.; Xu, S.; Li, A. Dietary patterns and periodontitis: A systematic review. J. Periodontal Res. 2025, 60, 300–314. [Google Scholar] [CrossRef] [PubMed]
- Godny, L.; Reshef, L.; Sharar Fischler, T.; Elial-Fatal, S.; Pfeffer-Gik, T.; Raykhel, B.; Rabinowitz, K.; Levi-Barda, A.; Perets, T.T.; Barkan, R.; et al. Increasing adherence to the Mediterranean diet and lifestyle is associated with reduced fecal calprotectin and intra-individual changes in microbial composition of healthy subjects. Gut Microbes 2022, 14, 2120749. [Google Scholar] [CrossRef] [PubMed]
- Kiani, A.K.; Medori, M.C.; Bonetti, G.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Stuppia, L.; Connelly, S.T.; Herbst, K.L.; et al. Modern vision of the Mediterranean diet. J. Prev. Med. Hyg. 2022, 63, E36–E43. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, M.; Ennibi, O.K.; Bouziane, A.; Erraji, S.; Lakhdar, L.; Rhissassi, M.; Ansai, T.; Yoshida, A.; Miyazaki, H. Association between periodontitis and the Mediterranean diet in young Moroccan individuals. J. Periodontal Res. 2021, 56, 408–414. [Google Scholar] [CrossRef]
- Makki, K.; Deehan, E.C.; Walter, J.; Bäckhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef]
- Hyde, E.R.; Andrade, F.; Vaksman, Z.; Parthasarathy, K.; Jiang, H.; Parthasarathy, D.K.; Torregrossa, A.C.; Tribble, G.; Kaplan, H.B.; Petrosino, J.F.; et al. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: Implications for nitric oxide homeostasis. PloS ONE 2014, 9, e88645. [Google Scholar] [CrossRef] [PubMed]
- Altun, E.; Walther, C.; Borof, K.; Petersen, E.; Lieske, B.; Kasapoudis, D.; Jalilvand, N.; Beikler, T.; Jagemann, B.; Zyriax, B.C.; et al. Association between Dietary Pattern and Periodontitis—A Cross-Sectional Study. Nutrients 2021, 13, 4167. [Google Scholar] [CrossRef]
- Yue, Y.; Hovey, K.M.; LaMonte, M.J.; Wactawski-Wende, J.; Andrews, C.A.; Millen, A.E. Association between dietary patterns and periodontal disease: The OsteoPerio cohort study. J. Clin. Periodontol. 2024, 51, 863–873. [Google Scholar] [CrossRef]
- Nielsen, S.J.; Trak-Fellermeier, M.A.; Joshipura, K.; Dye, B.A. Dietary Fiber Intake Is Inversely Associated with Periodontal Disease among US Adults. J. Nutr. 2016, 146, 2530–2536. [Google Scholar] [CrossRef]
- Lari, A.; Sohouli, M.H.; Fatahi, S.; Cerqueira, H.S.; Santos, H.O.; Pourrajab, B.; Rezaei, M.; Saneie, S.; Rahideh, S.T. The effects of the Dietary Approaches to Stop Hypertension (DASH) diet on metabolic risk factors in patients with chronic disease: A systematic review and meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. NMCD 2021, 31, 2766–2778. [Google Scholar] [CrossRef] [PubMed]
- Woelber, J.P.; Gärtner, M.; Breuninger, L.; Anderson, A.; König, D.; Hellwig, E.; Al-Ahmad, A.; Vach, K.; Dötsch, A.; Ratka-Krüger, P.; et al. The influence of an anti-inflammatory diet on gingivitis. A randomized controlled trial. J. Clin. Periodontol. 2019, 46, 481–490. [Google Scholar] [CrossRef]
- Herter, J.; Stübing, F.; Lüth, V.; Zimmermann, J.; Lederer, A.K.; Hannibal, L.; Huber, R.; Storz, M.A. Bowel health, defecation patterns and nutrient intake following adoption of a vegan diet: A randomized-controlled trial. Ann. Med. 2024, 56, 2305693. [Google Scholar] [CrossRef]
- Dressler, J.; Storz, M.A.; Müller, C.; Kandil, F.I.; Kessler, C.S.; Michalsen, A.; Jeitler, M. Does a Plant-Based Diet Stand Out for Its Favorable Composition for Heart Health? Dietary Intake Data from a Randomized Controlled Trial. Nutrients 2022, 14, 4597. [Google Scholar] [CrossRef]
- Campbell, T.M.; Campbell, E.K.; Attia, J.; Ventura, K.; Mathews, T.; Chhabra, K.H.; Blanchard, L.M.; Wixom, N.; Faniyan, T.S.; Peterson, D.R.; et al. The acute effects of a DASH diet and whole food, plant-based diet on insulin requirements and related cardiometabolic markers in individuals with insulin-treated type 2 diabetes. Diabetes Res. Clin. Pract. 2023, 202, 110814. [Google Scholar] [CrossRef]
- Musial, S.; Burns, Z.; Bertman, J.; Fitzgibbon, M.; Mashek, R.; Risica, P.M. One Month Whole Food Plant-Based Nutrition Educational Program Lowers LDL, A1C, and Decreases Inflammatory Markers. Am. J. Lifestyle Med. 2024, 2024, 15598276241291490. [Google Scholar] [CrossRef]
- Kazeminasab, F.; Miraghajani, M.; Khalafi, M.; Sakhaei, M.H.; Rosenkranz, S.K.; Santos, H.O. Effects of low-carbohydrate diets, with and without caloric restriction, on inflammatory markers in adults: A systematic review and meta-analysis of randomized clinical trials. Eur. J. Clin. Nutr. 2024, 78, 569–584. [Google Scholar] [CrossRef]
- Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon, N.; Muller, A.; et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell 2016, 167, 1339–1353.e21. [Google Scholar] [CrossRef] [PubMed]
- Woelber, J.P.; Tennert, C.; Ernst, S.F.; Vach, K.; Ratka-Krüger, P.; Bertz, H.; Urbain, P. Effects of a Non-Energy-Restricted Ketogenic Diet on Clinical Oral Parameters. An Exploratory Pilot Trial. Nutrients 2021, 13, 4229. [Google Scholar] [CrossRef]
- Taher, H.A.; Salah, A.; Rammal, C.; Varma, S.R. Role of ketogenic diet and its effect on the periodontium. A scoping review. Front. Oral Health 2024, 5, 1364578. [Google Scholar] [CrossRef] [PubMed]
- Berg, Y.; Gabay, E.; Božić, D.; Shibli, J.A.; Ginesin, O.; Asbi, T.; Takakura, L.; Mayer, Y. The Impact of Nutritional Components on Periodontal Health: A Literature Review. Nutrients 2024, 16, 3901. [Google Scholar] [CrossRef] [PubMed]
- Daungsupawong, H.; Wiwanitkit, V. Dietary Flavonoid Intake and Periodontitis. Int. Dent. J. 2025, 75, 1455. [Google Scholar] [CrossRef] [PubMed]
- Glavin, C.; Gartshore, J.; Jackson, G.; Bonsor, S. Does adopting a healthy diet improve periodontal parameters in patients susceptible to periodontal disease? A systematic review. Evid. Based Dent. 2025, 26, 111. [Google Scholar] [CrossRef]
- Raninen, K.; Lappi, J.; Mykkänen, H.; Poutanen, K. Dietary fiber type reflects physiological functionality: Comparison of grain fiber, inulin, and polydextrose. Nutr. Rev. 2011, 69, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Mumford, S.L.; Schisterman, E.F.; Siega-Riz, A.M.; Gaskins, A.J.; Wactawski-Wende, J.; VanderWeele, T.J. Effect of dietary fiber intake on lipoprotein cholesterol levels independent of estradiol in healthy premenopausal women. Am. J. Epidemiol. 2011, 173, 145–156. [Google Scholar] [CrossRef]
- Feng, Y.; Jin, Q.; Liu, X.; Lin, T.; Johnson, A.; Huang, H. Advances in understanding dietary fiber: Classification, structural characterization, modification, and gut microbiome interactions. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70092. [Google Scholar] [CrossRef]
- Wagner, C.E.; Richter, J.K.; Ikuse, M.; Ganjyal, G.M. Classification of select functional dietary fiber ingredients based on quantitative properties and latent qualitative criteria. J. Food Sci. 2024, 89, 6098–6112. [Google Scholar] [CrossRef]
- Regand, A.; Chowdhury, Z.; Tosh, S.M.; Wolever, T.M.S.; Wood, P. The molecular weight, solubility and viscosity of oat beta-glucan affect human glycemic response by modifying starch digestibility. Food Chem. 2011, 129, 297–304. [Google Scholar] [CrossRef]
- Klostermann, C.E.; Endika, M.F.; Ten Cate, E.; Buwalda, P.L.; de Vos, P.; Bitter, J.H.; Zoetendal, E.G.; Schols, H.A. Type of intrinsic resistant starch type 3 determines in vitro fermentation by pooled adult faecal inoculum. Carbohydr. Polym. 2023, 319, 121187. [Google Scholar] [CrossRef]
- Swarnamali, H.; Medara, N.; Chopra, A.; Spahr, A.; Jayasinghe, T.N. Role of Dietary Fibre in Managing Periodontal Diseases—A Systematic Review and Meta-Analysis of Human Intervention Studies. Nutrients 2023, 15, 4034. [Google Scholar] [CrossRef]
- Benvenuti, L.; D’Antongiovanni, V.; Pellegrini, C.; Fornai, M.; Bernardini, N.; Ippolito, C.; Segnani, C.; Di Salvo, C.; Colucci, R.; Martelli, A.; et al. Dietary Supplementation with the Probiotic SF68 Reinforces Intestinal Epithelial Barrier in Obese Mice by Improving Butyrate Bioavailability. Mol. Nutr. Food Res. 2023, 67, e2200442. [Google Scholar] [CrossRef]
- Guertin, D.A.; Wellen, K.E. Acetyl-CoA metabolism in cancer. Nat. Rev. Cancer 2023, 23, 156–172. [Google Scholar] [CrossRef]
- Aznar, N.; Patel, A.; Rohena, C.C.; Dunkel, Y.; Joosen, L.P.; Taupin, V.; Kufareva, I.; Farquhar, M.G.; Ghosh, P. AMP-activated protein kinase fortifies epithelial tight junctions during energetic stress via its effector GIV/Girdin. eLife 2016, 5, e20795. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xia, M.; Yang, L.; He, Y.; Liu, H.; Xie, M.; Yu, M. The decreased interface tension increased the transmembrane transport of soy hull polysaccharide-derived SCFAs in the Caco-2 cells. Int. J. Biol. Macromol. 2024, 266, 131261. [Google Scholar] [CrossRef]
- Mukhopadhya, I.; Louis, P. Gut microbiota-derived short-chain fatty acids and their role in human health and disease. Nat. Rev. Microbiol. 2025, 23, 635–651. [Google Scholar] [CrossRef] [PubMed]
- Bolognini, D.; Dedeo, D.; Milligan, G. Metabolic and inflammatory functions of short-chain fatty acid receptors. Curr. Opin. Endocr. Metab. Res. 2021, 16, 1–9. [Google Scholar] [CrossRef]
- Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; van der Veeken, J.; deRoos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013, 504, 451–455. [Google Scholar] [CrossRef]
- Dieterle, M.P.; Husari, A.; Steinberg, T.; Wang, X.; Ramminger, I.; Tomakidi, P. Role of Mechanotransduction in Periodontal Homeostasis and Disease. J. Dent. Res. 2021, 100, 1210–1219. [Google Scholar] [CrossRef]
- Abusleme, L.; Hoare, A.; Hong, B.Y.; Diaz, P.I. Microbial signatures of health, gingivitis, and periodontitis. Periodontology 2000 2021, 86, 57–78. [Google Scholar] [CrossRef]
- Wzatek, M.; Bahammam, S.; Buiga, P.; Haddad, K.; Sima, C. Oral Neutrophil Free Fatty Acid Receptors Expression May Link Oral Host and Microbiome Lipid Metabolism. Front. Oral Health 2022, 3, 821326. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhao, R.; Zhang, Y. Association between adjustable dietary factors and periodontitis: NHANES 2009-2014 and Mendelian randomization. J. Transl. Med. 2025, 23, 353. [Google Scholar] [CrossRef]
- Joseph, S.; Carda-Diéguez, M.; Aduse-Opoku, J.; Alsam, A.; Mira, A.; Curtis, M.A. The Murine Oral Metatranscriptome Reveals Microbial and Host Signatures of Periodontal Disease. J. Dent. Res. 2023, 102, 565–573. [Google Scholar] [CrossRef]
- Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Eom, J.E.; Shin, D.U.; Kim, G.D.; Yoon, J.H.; Shin, H.S.; Lee, S.Y. Pediococcus pentosaceus KF159 alleviates house dust mite-induced atopic dermatitis by promoting IL10 production and regulatory T cell induction. Food Funct. 2024, 15, 6975–6987. [Google Scholar] [CrossRef]
- Adrover, J.M.; Del Fresno, C.; Crainiciuc, G.; Cuartero, M.I.; Casanova-Acebes, M.; Weiss, L.A.; Huerga-Encabo, H.; Silvestre-Roig, C.; Rossaint, J.; Cossío, I.; et al. A Neutrophil Timer Coordinates Immune Defense and Vascular Protection. Immunity 2019, 50, 390–402.e10. [Google Scholar] [CrossRef]
- Leonov, G.E.; Varaeva, Y.R.; Livantsova, E.N.; Starodubova, A.V. The Complicated Relationship of Short-Chain Fatty Acids and Oral Microbiome: A Narrative Review. Biomedicines 2023, 11, 2749. [Google Scholar] [CrossRef] [PubMed]
- Dahlstrand Rudin, A.; Khamzeh, A.; Venkatakrishnan, V.; Persson, T.; Gabl, M.; Savolainen, O.; Forsman, H.; Dahlgren, C.; Christenson, K.; Bylund, J. Porphyromonas gingivalis Produce Neutrophil Specific Chemoattractants Including Short Chain Fatty Acids. Front. Cell. Infect. Microbiol. 2020, 10, 620681. [Google Scholar] [CrossRef]
- Petri, B.; Sanz, M.J. Neutrophil chemotaxis. Cell Tissue Res. 2018, 371, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Dahlstrand Rudin, A.; Khamzeh, A.; Venkatakrishnan, V.; Basic, A.; Christenson, K.; Bylund, J. Short chain fatty acids released by Fusobacterium nucleatum are neutrophil chemoattractants acting via free fatty acid receptor 2 (FFAR2). Cell. Microbiol. 2021, 23, e13348. [Google Scholar] [CrossRef]
- Côté, O.; Clark, M.E.; Viel, L.; Labbé, G.; Seah, S.Y.; Khan, M.A.; Douda, D.N.; Palaniyar, N.; Bienzle, D. Secretoglobin 1A1 and 1A1A differentially regulate neutrophil reactive oxygen species production, phagocytosis and extracellular trap formation. PloS ONE 2014, 9, e96217. [Google Scholar] [CrossRef]
- Moyes, K.M.; Drackley, J.K.; Salak-Johnson, J.L.; Morin, D.E.; Hope, J.C.; Loor, J.J. Dietary-induced negative energy balance has minimal effects on innate immunity during a Streptococcus uberis mastitis challenge in dairy cows during midlactation. J. Dairy Sci. 2009, 92, 4301–4316. [Google Scholar] [CrossRef]
- Alvarez, C.S.; Badia, J.; Bosch, M.; Giménez, R.; Baldomà, L. Outer Membrane Vesicles and Soluble Factors Released by Probiotic Escherichia coli Nissle 1917 and Commensal ECOR63 Enhance Barrier Function by Regulating Expression of Tight Junction Proteins in Intestinal Epithelial Cells. Front. Microbiol. 2016, 7, 1981. [Google Scholar] [CrossRef] [PubMed]
- Genoni, A.; Lo, J.; Lyons-Wall, P.; Boyce, M.C.; Christophersen, C.T.; Bird, A.; Devine, A. A Paleolithic diet lowers resistant starch intake but does not affect serum trimethylamine-N-oxide concentrations in healthy women. Br. J. Nutr. 2019, 121, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, P.M.; Ganesan, A.; Varma, S.R.; Shetty, N.Y. Delving into Matrix Metalloproteinase-1 (MMP-1) and its Significance in Periodontal Diseases. J. Pharm. Bioallied Sci. 2024, 16, S1080–S1083. [Google Scholar] [CrossRef]
- Namba, T.; Ichii, O.; Natsuga, K.; Nakamura, T.; Otani, Y.; Kon, Y. Collagen 17A1 in the Urothelium Regulates Epithelial Cell Integrity and Local Immunologic Responses in Obstructive Uropathy. Am. J. Pathol. 2024, 194, 1550–1570. [Google Scholar] [CrossRef] [PubMed]
- Magrin, G.L.; Strauss, F.J.; Benfatti, C.A.; Maia, L.C.; Gruber, R. Effects of Short-Chain Fatty Acids on Human Oral Epithelial Cells and the Potential Impact on Periodontal Disease: A Systematic Review of In Vitro Studies. Int. J. Mol. Sci. 2020, 21, 4895. [Google Scholar] [CrossRef]
- Alatorre, C.; Fernández Landó, L.; Yu, M.; Brown, K.; Montejano, L.; Juneau, P.; Mody, R.; Swindle, R. Treatment patterns in patients with type 2 diabetes mellitus treated with glucagon-like peptide-1 receptor agonists: Higher adherence and persistence with dulaglutide compared with once-weekly exenatide and liraglutide. Diabetes Obes. Metab. 2017, 19, 953–961. [Google Scholar] [CrossRef]
- O, C.K.; Fan, Y.N.; Fan, B.; Lim, C.; Lau, E.S.H.; Tsoi, S.T.F.; Wan, R.; Lai, W.Y.; Poon, E.W.; Ho, J.; et al. Precision Medicine to Redefine Insulin Secretion and Monogenic Diabetes-Randomized Controlled Trial (PRISM-RCT) in Chinese patients with young-onset diabetes: Design, methods and baseline characteristics. BMJ Open Diabetes Res. Care 2024, 12, e004120. [Google Scholar] [CrossRef]
- Thomsen, M.N.; Skytte, M.J.; Samkani, A.; Carl, M.H.; Weber, P.; Astrup, A.; Chabanova, E.; Fenger, M.; Frystyk, J.; Hartmann, B.; et al. Dietary carbohydrate restriction augments weight loss-induced improvements in glycaemic control and liver fat in individuals with type 2 diabetes: A randomised controlled trial. Diabetologia 2022, 65, 506–517. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, H.; Jin, H.; Liu, K. Role of Inflammatory Factors in Mediating the Effect of Lipids on Nonalcoholic Fatty Liver Disease: A Two-Step, Multivariable Mendelian Randomization Study. Nutrients 2022, 14, 4434. [Google Scholar] [CrossRef]
- Al-Alimi, A.; Taiyeb-Ali, T.; Jaafar, N.; Al-hebshi, N.N. Qat Chewing and Periodontal Pathogens in Health and Disease: Further Evidence for a Prebiotic-Like Effect. BioMed Res. Int. 2015, 2015, 291305. [Google Scholar] [CrossRef] [PubMed]
- Vega-López, S.; Ayers, S.; Gonzalvez, A.; Campos, A.P.; Marsiglia, F.F.; Bruening, M.; Rankin, L.; Vega Luna, B.; Biggs, E.; Perilla, A. Diet Outcomes from a Randomized Controlled Trial Assessing a Parenting Intervention Simultaneously Targeting Healthy Eating and Substance Use Prevention among Hispanic Middle-School Adolescents. Nutrients 2023, 15, 3790. [Google Scholar] [CrossRef] [PubMed]
- Elson, C.O.; Alexander, K.L. Host-microbiota interactions in the intestine. Dig. Dis. 2015, 33, 131–136. [Google Scholar] [CrossRef]
- Gardner, C.D.; Landry, M.J.; Perelman, D.; Petlura, C.; Durand, L.R.; Aronica, L.; Crimarco, A.; Cunanan, K.M.; Chang, A.; Dant, C.C.; et al. Effect of a ketogenic diet versus Mediterranean diet on glycated hemoglobin in individuals with prediabetes and type 2 diabetes mellitus: The interventional Keto-Med randomized crossover trial. Am. J. Clin. Nutr. 2022, 116, 640–652. [Google Scholar] [CrossRef]
- Fresno Baquero, M.; Álvarez Ríos, S.; Rodríguez Rodríguez, E.; Díaz Romero, C.; Darias Martín, J. Influence of diet and rennet on the composition of goats’ milk and cheese. J. Dairy Res. 2011, 78, 250–256. [Google Scholar] [CrossRef] [PubMed]
Key Actions for Clinicians | Examples and Targets | |
---|---|---|
Assessment | Routinely screen for dietary fiber intake when taking patient history. | Ask about daily fruit, vegetable, legume, and whole-grain consumption. Target: 30–38 g per day. |
Counseling | Advise a gradual increase in fiber intake from diverse food sources. Emphasize the benefits for oral and systemic health. | Suggest adding one serving of legumes, berries, or whole grains per day; encourage adequate water intake. |
Meal Examples | Provide simple, practical meal ideas to help patients achieve the daily target. | Breakfast: Oatmeal with berries and nuts (10 g fiber) Lunch: Salad with leafy greens, chickpeas, and quinoa (15 g of fiber) Dinner: Stir-fried vegetables with brown rice and lentils (13 g of fiber) |
Monitoring and Follow-up | Schedule follow-ups to assess tolerance and adherence. Address GI symptoms if they arise. | Re-evaluate dietary habits at periodontal maintenance visits (3–6 months). Adjust recommendations based on individual tolerance. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, J.-S.; Cui, H.-Y.; Zhou, X.-Z.; Zhang, S.-W. Recent Progress in Exploring Dietary Nutrition and Dietary Patterns in Periodontitis with a Focus on SCFAs. Nutrients 2025, 17, 3150. https://doi.org/10.3390/nu17193150
Mao J-S, Cui H-Y, Zhou X-Z, Zhang S-W. Recent Progress in Exploring Dietary Nutrition and Dietary Patterns in Periodontitis with a Focus on SCFAs. Nutrients. 2025; 17(19):3150. https://doi.org/10.3390/nu17193150
Chicago/Turabian StyleMao, Jing-Song, Hao-Yue Cui, Xuan-Zhu Zhou, and Shu-Wei Zhang. 2025. "Recent Progress in Exploring Dietary Nutrition and Dietary Patterns in Periodontitis with a Focus on SCFAs" Nutrients 17, no. 19: 3150. https://doi.org/10.3390/nu17193150
APA StyleMao, J.-S., Cui, H.-Y., Zhou, X.-Z., & Zhang, S.-W. (2025). Recent Progress in Exploring Dietary Nutrition and Dietary Patterns in Periodontitis with a Focus on SCFAs. Nutrients, 17(19), 3150. https://doi.org/10.3390/nu17193150