Lipoprotein(a) Lipidome: Responses to Reduced Dietary Saturated Fat Intake in Two Randomized Controlled Feeding Trials
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Intervention Diets
2.3. Determinations of Concentrations of Lp(a) and Oxidized Phospholipids Bound to Lp(a) in Plasma
2.4. Lp(a)-Bound Oxidized Phospholipids Subspecies and Lp(a) Lipidomics Analyses
2.5. Statistics
3. Results
3.1. Participant Characteristics
3.2. Responses of Total Concentration and Individual Subspecies’ Abundance of Lp(a)-Bound Oxidized Phospholipids to Dietary Saturated Fat Reduction
3.3. Lp(a) Lipidomics Response to Dietary Saturated Fat Reduction
3.4. Correlations of Lp(a) Lipidomic Changes with Changes in Plasma Lp(a) Levels
3.5. The Roles of Properties of Triacylglycerol Species in Modulating Their Responses to Dietary Saturated Fat Reduction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAD | average American diet |
apo(a) | apolipoprotein(a) |
ALDOPC | 1-palmitoyl-2-(9′-oxo-nanonoyl)-sn-glycero-3-phosphocholine |
CHO | Carbohydrate |
DELTA | Dietary Effects on Lipoproteins and Thrombogenic Activity |
DG | diacylglycerols |
FC | fold change |
Lp(a) | lipoprotein(a) |
Log2FC | log2 transformed fold change |
Low-Sat | low-saturated-fat diet |
LPC | lysophosphatidylcholine |
OxPC | oxidized phosphocholines |
OxPL | oxidized phospholipids |
PAzPC | 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine |
PC-O | alkylphosphatidylcholine |
PGPC | 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine |
POVPC | 1-palmitoyl-2-(5′-oxo-valeroyl)-sn-glycero-3-phosphocholine |
TG | triacylglycerols |
SFA | saturated fatty acids |
References
- Reyes-Soffer, G.; Ginsberg, H.N.; Berglund, L.; Duell, P.B.; Heffron, S.P.; Kamstrup, P.R.; Lloyd-Jones, D.M.; Marcovina, S.M.; Yeang, C.; Koschinsky, M.L.; et al. Lipoprotein(a): A Genetically Determined, Causal, and Prevalent Risk Factor for Atherosclerotic Cardiovascular Disease: A Scientific Statement From the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 2022, 42, e48–e60. [Google Scholar] [CrossRef]
- Lindahl, G.; Gersdorf, E.; Menzel, H.J.; Seed, M.; Humphries, S.; Utermann, G. Variation in the size of human apolipoprotein(a) is due to a hypervariable region in the gene. Hum. Genet. 1990, 84, 563–567. [Google Scholar] [CrossRef]
- Kraft, H.G.; Kochl, S.; Menzel, H.J.; Sandholzer, C.; Utermann, G. The apolipoprotein (a) gene: A transcribed hypervariable locus controlling plasma lipoprotein (a) concentration. Hum. Genet. 1992, 90, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Coassin, S.; Kronenberg, F. Lipoprotein(a) beyond the kringle IV repeat polymorphism: The complexity of genetic variation in the LPA gene. Atherosclerosis 2022, 349, 17–35. [Google Scholar] [CrossRef] [PubMed]
- Bergmark, C.; Dewan, A.; Orsoni, A.; Merki, E.; Miller, E.R.; Shin, M.J.; Binder, C.J.; Horkko, S.; Krauss, R.M.; Chapman, M.J.; et al. A novel function of lipoprotein [a] as a preferential carrier of oxidized phospholipids in human plasma. J. Lipid Res. 2008, 49, 2230–2239. [Google Scholar] [CrossRef]
- Boffa, M.B.; Koschinsky, M.L. Oxidized phospholipids as a unifying theory for lipoprotein(a) and cardiovascular disease. Nat. Rev. Cardiol. 2019, 16, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Koschinsky, M.L.; Boffa, M.B. Oxidized phospholipid modification of lipoprotein(a): Epidemiology, biochemistry and pathophysiology. Atherosclerosis 2022, 349, 92–100. [Google Scholar] [CrossRef]
- Enkhmaa, B.; Berglund, L. Non-genetic influences on lipoprotein(a) concentrations. Atherosclerosis 2022, 349, 53–62. [Google Scholar] [CrossRef]
- Kronenberg, F. Causes and consequences of lipoprotein(a) abnormalities in kidney disease. Clin. Exp. Nephrol. 2014, 18, 234–237. [Google Scholar] [CrossRef]
- Kronenberg, F.; Lhotta, K.; Konig, P.; Margreiter, R.; Dieplinger, H.; Utermann, G. Apolipoprotein(a) isoform-specific changes of lipoprotein(a) after kidney transplantation. Eur. J. Hum. Genet. 2003, 11, 693–699. [Google Scholar] [CrossRef]
- Lamina, C.; Ward, N.C. Lipoprotein (a) and diabetes mellitus. Atherosclerosis 2022, 349, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, H.N.; Kris-Etherton, P.; Dennis, B.; Elmer, P.J.; Ershow, A.; Lefevre, M.; Pearson, T.; Roheim, P.; Ramakrishnan, R.; Reed, R.; et al. Effects of reducing dietary saturated fatty acids on plasma lipids and lipoproteins in healthy subjects: The DELTA Study, protocol 1. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Berglund, L.; Lefevre, M.; Ginsberg, H.N.; Kris-Etherton, P.M.; Elmer, P.J.; Stewart, P.W.; Ershow, A.; Pearson, T.A.; Dennis, B.H.; Roheim, P.S.; et al. Comparison of monounsaturated fat with carbohydrates as a replacement for saturated fat in subjects with a high metabolic risk profile: Studies in the fasting and postprandial states. Am. J. Clin. Nutr. 2007, 86, 1611–1620. [Google Scholar] [CrossRef] [PubMed]
- Riley, T.M.; Sapp, P.A.; Kris-Etherton, P.M.; Petersen, K.S. Effects of saturated fatty acid consumption on lipoprotein (a): A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2024, 120, 619–629. [Google Scholar] [CrossRef]
- Sempos, C.T.; Cleeman, J.I.; Carroll, M.D.; Johnson, C.L.; Bachorik, P.S.; Gordon, D.J.; Burt, V.L.; Briefel, R.R.; Brown, C.D.; Lippel, K.; et al. Prevalence of high blood cholesterol among US adults. An update based on guidelines from the second report of the National Cholesterol Education Program Adult Treatment Panel. JAMA 1993, 269, 3009–3014. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Stewart, P.W.; Ginsberg, H.N.; Tracy, R.P.; Lefevre, M.; Elmer, P.J.; Berglund, L.; Ershow, A.G.; Pearson, T.A.; Ramakrishnan, R.; et al. The Type and Amount of Dietary Fat Affect Plasma Factor VIIc, Fibrinogen, and PAI-1 in Healthy Individuals and Individuals at High Cardiovascular Disease Risk: 2 Randomized Controlled Trials. J. Nutr. 2020, 150, 2089–2100. [Google Scholar] [CrossRef]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 statement: Updated guidelines for reporting parallel group randomised trials. J. Pharmacol. Pharmacother. 2010, 1, 100–107. [Google Scholar] [CrossRef]
- Berglund, L.; Kim, K.; Zhang, W.; Prakash, N.; Truax, K.; Anuurad, E.; Enkhmaa, B. Lp(a)-Associated Oxidized Phospholipids in Healthy Black and White Participants in Relation to apo(a) Size, Age, and Family Structure. J. Am. Heart Assoc. 2021, 10, e020158. [Google Scholar] [CrossRef]
- Leibundgut, G.; Scipione, C.; Yin, H.; Schneider, M.; Boffa, M.B.; Green, S.; Yang, X.; Dennis, E.; Witztum, J.L.; Koschinsky, M.L.; et al. Determinants of binding of oxidized phospholipids on apolipoprotein (a) and lipoprotein (a). J. Lipid Res. 2013, 54, 2815–2830. [Google Scholar] [CrossRef]
- Tsimikas, S.; Witztum, J.L.; Miller, E.R.; Sasiela, W.J.; Szarek, M.; Olsson, A.G.; Schwartz, G.G.; Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL) Study Investigators. High-dose atorvastatin reduces total plasma levels of oxidized phospholipids and immune complexes present on apolipoprotein B-100 in patients with acute coronary syndromes in the MIRACL trial. Circulation 2004, 110, 1406–1412. [Google Scholar] [CrossRef]
- Faghihnia, N.; Tsimikas, S.; Miller, E.R.; Witztum, J.L.; Krauss, R.M. Changes in lipoprotein(a), oxidized phospholipids, and LDL subclasses with a low-fat high-carbohydrate diet. J. Lipid Res. 2010, 51, 3324–3330. [Google Scholar] [CrossRef]
- Diffenderfer, M.R.; Lamon-Fava, S.; Marcovina, S.M.; Barrett, P.H.; Lel, J.; Dolnikowski, G.G.; Berglund, L.; Schaefer, E.J. Distinct metabolism of apolipoproteins (a) and B-100 within plasma lipoprotein(a). Metabolism 2016, 65, 381–390. [Google Scholar] [CrossRef]
- van der Valk, F.M.; Bekkering, S.; Kroon, J.; Yeang, C.; Van den Bossche, J.; van Buul, J.D.; Ravandi, A.; Nederveen, A.J.; Verberne, H.J.; Scipione, C.; et al. Oxidized Phospholipids on Lipoprotein(a) Elicit Arterial Wall Inflammation and an Inflammatory Monocyte Response in Humans. Circulation 2016, 134, 611–624. [Google Scholar] [CrossRef]
- Li, Y.; Kind, T.; Folz, J.; Vaniya, A.; Mehta, S.S.; Fiehn, O. Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification. Nat. Methods 2021, 18, 1524–1531. [Google Scholar] [CrossRef] [PubMed]
- Quackenbush, J. Microarray data normalization and transformation. Nat. Genet. 2002, 32 (Suppl. S4), 496–501. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2019, 73, e285–e350. [Google Scholar] [CrossRef]
- Enkhmaa, B.; Petersen, K.S.; Kris-Etherton, P.M.; Berglund, L. Diet and Lp(a): Does Dietary Change Modify Residual Cardiovascular Risk Conferred by Lp(a)? Nutrients 2020, 12, 2024. [Google Scholar] [CrossRef]
- Dzobo, K.E.; Cupido, A.J.; Mol, B.M.; Stiekema, L.C.A.; Versloot, M.; Winkelmeijer, M.; Peter, J.; Pennekamp, A.M.; Havik, S.R.; Vaz, F.M.; et al. Diacylglycerols and Lysophosphatidic Acid, Enriched on Lipoprotein(a), Contribute to Monocyte Inflammation. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 720–740. [Google Scholar] [CrossRef]
- Shen, T.; Oh, Y.; Jeong, S.; Cho, S.; Fiehn, O.; Youn, J.H. High-Fat Feeding Alters Circulating Triglyceride Composition: Roles of FFA Desaturation and omega-3 Fatty Acid Availability. Int. J. Mol. Sci. 2024, 25, 8810. [Google Scholar] [CrossRef]
- Perry, R.J.; Samuel, V.T.; Petersen, K.F.; Shulman, G.I. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 2014, 510, 84–91. [Google Scholar] [CrossRef]
- Lalia, A.Z.; Lanza, I.R. Insulin-Sensitizing Effects of Omega-3 Fatty Acids: Lost in Translation? Nutrients 2016, 8, 329. [Google Scholar] [CrossRef]
- Calder, P.C. Mechanisms of action of (n-3) fatty acids. J. Nutr. 2012, 142, 592S–599S. [Google Scholar] [CrossRef]
- Qian, F.; Ardisson Korat, A.V.; Imamura, F.; Marklund, M.; Tintle, N.; Virtanen, J.K.; Zhou, X.; Bassett, J.K.; Lai, H.; Hirakawa, Y.; et al. n-3 Fatty Acid Biomarkers and Incident Type 2 Diabetes: An Individual Participant-Level Pooling Project of 20 Prospective Cohort Studies. Diabetes Care 2021, 44, 1133–1142. [Google Scholar] [CrossRef]
- Barre, E. A more detailed fatty acid composition of human lipoprotein(a)–a comparison with low density lipoprotein. Chem. Phys. Lipids 2003, 123, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Bjornson, E.; Adiels, M.; Taskinen, M.R.; Burgess, S.; Chapman, M.J.; Packard, C.J.; Boren, J. Lipoprotein(a) Is Markedly More Atherogenic Than LDL: An Apolipoprotein B-Based Genetic Analysis. J. Am. Coll. Cardiol. 2024, 83, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Greco, A.; Finocchiaro, S.; Spagnolo, M.; Faro, D.C.; Mauro, M.S.; Raffo, C.; Sangiorgio, G.; Imbesi, A.; Laudani, C.; Mazzone, P.M.; et al. Lipoprotein(a) as a Pharmacological Target: Premises, Promises, and Prospects. Circulation 2025, 151, 400–415. [Google Scholar] [CrossRef] [PubMed]
- Azrolan, N.; Gavish, D.; Breslow, J.L. Plasma lipoprotein(a) concentration is controlled by apolipoprotein(a) (apo(a)) protein size and the abundance of hepatic apo(a) mRNA in a cynomolgus monkey model. J. Biol. Chem. 1991, 266, 13866–13872. [Google Scholar] [CrossRef]
- Brousseau, M.E.; Ordovas, J.M.; Nicolosi, R.J.; Schaefer, E.J. Effects of dietary fat saturation on plasma lipoprotein(a) and hepatic apolipoprotein(a) mRNA concentrations in cynomolgus monkeys. Atherosclerosis 1994, 106, 109–118. [Google Scholar] [CrossRef]
- White, A.L.; Hixson, J.E.; Rainwater, D.L.; Lanford, R.E. Molecular basis for “null” lipoprotein(a) phenotypes and the influence of apolipoprotein(a) size on plasma lipoprotein(a) level in the baboon. J. Biol. Chem. 1994, 269, 9060–9066. [Google Scholar] [CrossRef]
- Rainwater, D.L.; Manis, G.S.; Kushwaha, R.S. Characterization of an unusual lipoprotein similar to human lipoprotein a isolated from the baboon, Papio sp. Biochim. Biophys. Acta 1986, 877, 75–78. [Google Scholar] [CrossRef]
- Laplaud, P.M.; Beaubatie, L.; Rall, S.C., Jr.; Luc, G.; Saboureau, M. Lipoprotein[a] is the major apoB-containing lipoprotein in the plasma of a hibernator, the hedgehog (Erinaceus europaeus). J. Lipid Res. 1988, 29, 1157–1170. [Google Scholar] [PubMed]
- Lawn, R.M. How often has Lp(a) evolved? Clin. Genet. 1996, 49, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Law, H.G.; Meyers, F.J.; Berglund, L.; Enkhmaa, B. Lipoprotein(a) and diet-a challenge for a role of saturated fat in cardiovascular disease risk reduction? Am. J. Clin. Nutr. 2023, 118, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Luo, W.; Xu, J.; Han, X. Recognition and Avoidance of Ion Source-Generated Artifacts in Lipidomics Analysis. Mass. Spectrom. Rev. 2022, 41, 15–31. [Google Scholar] [CrossRef]
- Horing, M.; Ejsing, C.S.; Hermansson, M.; Liebisch, G. Quantification of Cholesterol and Cholesteryl Ester by Direct Flow Injection High-Resolution Fourier Transform Mass Spectrometry Utilizing Species-Specific Response Factors. Anal. Chem. 2019, 91, 3459–3466. [Google Scholar] [CrossRef]
- Gallego, S.F.; Hojlund, K.; Ejsing, C.S. Easy, Fast, and Reproducible Quantification of Cholesterol and Other Lipids in Human Plasma by Combined High Resolution MSX and FTMS Analysis. J. Am. Soc. Mass. Spectrom. 2018, 29, 34–41. [Google Scholar] [CrossRef]
- Tsimikas, S.; Marcovina, S.M. Ancestry, Lipoprotein(a), and Cardiovascular Risk Thresholds: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2022, 80, 934–946. [Google Scholar] [CrossRef]
- Joshi, P.H.; Marcovina, S.; Orroth, K.; Lopez, J.A.G.; Kent, S.T.; Kaplan, R.; Swett, K.; Sotres-Alvarez, D.; Thyagarajan, B.; Slipczuk, L.; et al. Heterogeneity of Lipoprotein(a) Levels Among Hispanic or Latino Individuals Residing in the US. JAMA Cardiol. 2023, 8, 691–696. [Google Scholar] [CrossRef]
- Lanktree, M.B.; Anand, S.S.; Yusuf, S.; Hegele, R.A. Comprehensive analysis of genomic variation in the LPA locus and its relationship to plasma lipoprotein(a) in South Asians, Chinese, and European Caucasians. Circ. Cardiovasc. Genet. 2010, 3, 39–46. [Google Scholar] [CrossRef]
- Virani, S.S.; Brautbar, A.; Davis, B.C.; Nambi, V.; Hoogeveen, R.C.; Sharrett, A.R.; Coresh, J.; Mosley, T.H.; Morrisett, J.D.; Catellier, D.J.; et al. Associations between lipoprotein(a) levels and cardiovascular outcomes in black and white subjects: The Atherosclerosis Risk in Communities (ARIC) Study. Circulation 2012, 125, 241–249. [Google Scholar] [CrossRef]
- Guan, W.; Cao, J.; Steffen, B.T.; Post, W.S.; Stein, J.H.; Tattersall, M.C.; Kaufman, J.D.; McConnell, J.P.; Hoefner, D.M.; Warnick, R.; et al. Race is a key variable in assigning lipoprotein(a) cutoff values for coronary heart disease risk assessment: The Multi-Ethnic Study of Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 996–1001. [Google Scholar] [CrossRef]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary Fats and Cardiovascular Disease: A Presidential Advisory From the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef]
- Van Horn, L.; Carson, J.A.; Appel, L.J.; Burke, L.E.; Economos, C.; Karmally, W.; Lancaster, K.; Lichtenstein, A.H.; Johnson, R.K.; Thomas, R.J.; et al. Recommended Dietary Pattern to Achieve Adherence to the American Heart Association/American College of Cardiology (AHA/ACC) Guidelines: A Scientific Statement From the American Heart Association. Circulation 2016, 134, e505–e529. [Google Scholar] [CrossRef] [PubMed]
- Eckel, R.H.; Jakicic, J.M.; Ard, J.D.; de Jesus, J.M.; Houston Miller, N.; Hubbard, V.S.; Lee, I.M.; Lichtenstein, A.H.; Loria, C.M.; Millen, B.E.; et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129, S76–S99. [Google Scholar] [CrossRef]
Variables | DELTA 1 (n = 96) | DELTA 2 (n = 79) | ||||
---|---|---|---|---|---|---|
AAD | Step-1 | Low-Sat | AAD | MUFA | CHO | |
Lp(a) concentration (mg/dL) | 11.0 (5.0; 30.2) | 13.0 (5.0; 31.1) | 14.0 (6.0; 34.8) | 7.0 (2.0; 17.0) | 9.0 (3.0; 22.0) | 7.5 (3.0; 22.0) |
Lp(a)-OxPL total concentration (U/L) | 8.3 (5.7; 10.5) | 7.5 (5.3; 10.3) | 8.0 (5.4; 9.7) | 10.1 (7.3; 12.6) | 7.7 (6.1; 12.2) | 10.0 (7.0; 12.1) |
Lp(a)-OxPC subspecies (g/U): | ||||||
ALDOPC | 1.05 (0.34; 3.82) | 1.05 (0.27; 3.17) | 0.95 (0.23; 2.69) | 1.29 (0.38; 4.10) | 1.12 (0.33; 3.43) | 0.88 (0.37; 3.43) a |
POVPC | 0.24 (0.07; 0.70) | 0.17 (0.06; 0.60) | 0.18 (0.05; 0.67) | 0.21 (0.08; 0.88) | 0.19 (0.07; 0.72) | 0.23 (0.10; 0.75) |
PAzPC | 0.10 (0.02; 0.40) | 0.08 (0.03; 0.31) | 0.08 (0.03; 0.27) | 0.13 (0.02; 0.33) | 0.09 (0.03; 0.29) | 0.11 (0.03; 0.32) |
PGPC | 0.02 (0.01; 0.05) | 0.01 (0.01; 0.06) | 0.02 (0.00; 0.06) | 0.02 (0.01; 0.05) | 0.02 (0.01; 0.05) | 0.01 (0.00; 0.06) |
Sum of four OxPCs | 1.52 (0.43; 4.97) | 1.36 (0.36; 4.09) | 1.22 (0.32; 3.70) | 1.58 (0.51; 5.53) | 1.59 (0.42; 4.48) | 1.20 (0.49; 4.63) b |
FC b | Log2FC b | p-Value | p-Value Adjusted c | |
---|---|---|---|---|
Most increased lipids a | ||||
PC 40:7 B | 1.35 | 0.43 | 6.11× 10−6 | 0.014 |
TG 54:2 B|18:0_18:1_18:1 | 1.32 | 0.40 | 3.43 × 10−8 | 0.008 |
TG 56:5|16:0_18:1_22:4 | 1.34 | 0.42 | 5.78 × 10−4 | 0.038 |
TG 55:6 | 1.34 | 0.42 | 1.33 × 10−3 | 0.048 |
TG 54:3|18:1_18:1_18:1 | 1.36 | 0.45 | 4.65 × 10−9 | 0.005 |
TG 54:4 A|18:1_18:1_18:2 | 1.37 | 0.46 | 2.86 × 10−8 | 0.007 |
TG 56:3 B|18:1_18:1_20:1 | 1.38 | 0.46 | 1.26 × 10−5 | 0.018 |
TG 56:4 B|18:0_18:0_20:4 | 1.38 | 0.47 | 4.09 × 10−6 | 0.013 |
TG 56:4 A|18:1_18:2_20:1 | 1.39 | 0.48 | 4.90 × 10−6 | 0.014 |
TG 54:5 A|18:1_18:2_18:2 | 1.45 | 0.54 | 2.61 × 10−6 | 0.011 |
Most decreased lipids a | ||||
PC 28:0 | 0.32 | −1.64 | 4.62 × 10−12 | 0.003 |
PC 30:2 | 0.28 | −1.82 | 2.11 × 10−9 | 0.005 |
TG 48:4 A|14:0_16:0_18:4 | 0.50 | −0.99 | 8.63 × 10−5 | 0.025 |
TG 46:4|10:0_18:2_18:2 | 0.48 | −1.07 | 2.02 × 10−4 | 0.028 |
TG 46:1 B|14:0_14:0_18:1 | 0.38 | −1.41 | 2.12 × 10−6 | 0.011 |
TG 46:1 A|12:0_16:1_18:0 | 0.32 | −1.64 | 2.88 × 10−5 | 0.019 |
TG 44:0|12:0_16:0_16:0 | 0.29 | −1.77 | 1.49 × 10−6 | 0.010 |
TG 44:1|12:0_14:0_18:1 | 0.26 | −1.94 | 2.92 × 10−5 | 0.020 |
TG 42:1|12:0_12:0_18:1 | 0.15 | −2.76 | 1.27 × 10−3 | 0.047 |
TG 42:2|08:0_16:1_18:1 | 0.10 | −3.38 | 5.10 × 10−5 | 0.023 |
FC b | Log2FC b | p-Value | p-Value Adjusted c | |
---|---|---|---|---|
Most increased lipids a | ||||
TG 54:3|18:1_18:1_18:1 | 1.51 | 0.59 | 1.32 × 10−15 | 0.007 |
TG 56:8 A|18:2_18:2_20:4 | 1.52 | 0.61 | 1.59 × 10−8 | 0.034 |
TG 56:9|18:2_18:2_20:5 | 1.54 | 0.62 | 5.53 × 10−7 | 0.042 |
TG 54:5 B|18:1_18:2_18:2 | 1.55 | 0.63 | 1.68 × 10−12 | 0.014 |
TG 54:4 A|18:1_18:1_18:2 | 1.58 | 0.66 | 1.95 × 10−16 | 0.005 |
TG 55:6 | 1.61 | 0.68 | 2.06 × 10−9 | 0.025 |
TG 56:4 A|18:1_18:2_20:1 | 1.67 | 0.74 | 1.09 × 10−13 | 0.010 |
TG 54:5 A|18:1_18:2_18:2 | 1.69 | 0.75 | 1.88 × 10−13 | 0.011 |
TG 56:3 B|18:1_18:1_20:1 | 1.69 | 0.76 | 2.11 × 10−9 | 0.026 |
TG 54:6 A|18:1_18:2_18:3 | 1.83 | 0.88 | 1.08 × 10−7 | 0.038 |
Most decreased lipids a | ||||
PC 33:1 B | 0.35 | −1.51 | 5.94 × 10−23 | 0.003 |
PC 28:0 | 0.16 | −2.65 | 5.65 × 10−16 | 0.007 |
PC 30:2 | 0.15 | −2.78 | 6.86 × 10−13 | 0.013 |
PC-O 30:0 | 0.42 | −1.25 | 3.16 × 10−24 | 0.002 |
PC-O 30:1 | 0.28 | −1.81 | 2.18 × 10−25 | 0.001 |
TG 46:3 | 0.42 | −1.25 | 3.36 × 10−9 | 0.027 |
TG 46:1 B|14:0_14:0_18:1 | 0.25 | −2.02 | 3.2 × 10−10 | 0.020 |
TG 46:1 A|12:0_16:1_18:0 | 0.21 | −2.23 | 1.66 × 10−7 | 0.038 |
TG 44:0|12:0_16:0_16:0 | 0.17 | −2.55 | 4.97 × 10−9 | 0.030 |
TG 44:1|12:0_14:0_18:1 | 0.16 | −2.68 | 3.9 × 10−7 | 0.041 |
FC b | Log2FC b | p-Value | p-Value Adjusted c | |
---|---|---|---|---|
Most increased lipids a | ||||
DG 36:2 | 1.48 | 0.56 | 9.64 × 10−8 | 0.036 |
PC 42:7 | 1.50 | 0.58 | 6.67 × 10−9 | 0.028 |
PC-O 40:8 | 1.37 | 0.46 | 4.73 × 10−10 | 0.024 |
SM d38:4 | 1.33 | 0.41 | 1.61 × 10−6 | 0.047 |
TG 55:3|18:0_18:2_19:1 | 1.37 | 0.45 | 4.48 × 10−17 | 0.008 |
TG 56:4 A|18:1_18:2_20:1 | 1.41 | 0.49 | 8.93 × 10−9 | 0.030 |
TG 54:4 A|18:1_18:1_18:2 | 1.45 | 0.54 | 5.35 × 10−17 | 0.009 |
TG 56:3 B|18:1_18:1_20:1 | 1.50 | 0.59 | 1.59 × 10−7 | 0.038 |
TG 54:2 B|18:0_18:1_18:1 | 1.53 | 0.61 | 5.64 × 10−16 | 0.011 |
TG 54:3|18:1_18:1_18:1 | 1.64 | 0.72 | 9.16 × 10−17 | 0.009 |
Most decreased lipids a | ||||
PC-O 30:1 | 0.28 | −1.81 | 5.00 × 10−24 | 0.002 |
PC 30:2 | 0.14 | −2.87 | 2.11 × 10−19 | 0.006 |
PC 28:0 | 0.14 | −2.87 | 1.03 × 10−23 | 0.003 |
TG 46:3 | 0.29 | −1.79 | 2.27 × 10−9 | 0.026 |
TG 46:1 B|14:0_14:0_18:1 | 0.20 | −2.32 | 2.33 × 10−11 | 0.016 |
TG 46:1 A|12:0_16:1_18:0 | 0.18 | −2.51 | 1.67 × 10−8 | 0.034 |
TG 44:1|12:0_14:0_18:1 | 0.16 | −2.69 | 9.81 × 10−9 | 0.031 |
TG 44:0|12:0_16:0_16:0 | 0.13 | −2.91 | 1.04 × 10−11 | 0.015 |
TG 42:1|12:0_12:0_18:1 | 0.08 | −3.71 | 1.01 × 10−7 | 0.036 |
TG 42:2|08:0_16:1_18:1 | 0.06 | −4.18 | 2.25 × 10−7 | 0.038 |
FC b | Log2FC b | p-Value | p-Value Adjusted c | |
---|---|---|---|---|
Most increased lipids a | ||||
DG 36:2 | 1.53 | 0.62 | 4.44 × 10−7 | 0.025 |
PC 42:7 | 1.73 | 0.79 | 3.97 × 10−11 | 0.009 |
PC-O 44:8 | 1.97 | 0.98 | 1.23 × 10−5 | 0.036 |
SM d38:4 | 1.46 | 0.55 | 3.08 × 10−5 | 0.040 |
TG 56:4 A|18:1_18:2_20:1 | 1.45 | 0.53 | 6.83 × 10−11 | 0.010 |
TG 58:8 B | 1.46 | 0.54 | 5.83 × 10−10 | 0.013 |
TG 54:2 B|18:0_18:1_18:1 | 1.48 | 0.57 | 5.92 × 10−14 | 0.006 |
TG 56:4 B|18:0_18:0_20:4 | 1.54 | 0.63 | 3.82 × 10−6 | 0.031 |
TG 56:2|18:0_18:1_20:1 | 1.58 | 0.66 | 4.1 × 10−5 | 0.042 |
TG 54:3|18:1_18:1_18:1 | 1.61 | 0.69 | 1.33 × 10−14 | 0.005 |
Most decreased lipids a | ||||
PC 32:3 | 0.41 | −1.27 | 4.03 × 10−11 | 0.009 |
PC 28:0 | 0.19 | −2.41 | 8.59 × 10−21 | 0.002 |
PC 30:2 | 0.15 | −2.69 | 6.58 × 10−17 | 0.003 |
PC-O 30:1 | 0.40 | −1.34 | 1.16 × 10−20 | 0.002 |
TG 46:3 | 0.39 | −1.34 | 7.04 × 10−5 | 0.047 |
TG 48:4 A|14:0_16:0_18:4 | 0.39 | −1.35 | 2.31 × 10−8 | 0.017 |
TG 46:1 B|14:0_14:0_18:1 | 0.30 | −1.74 | 2.15 × 10−7 | 0.023 |
TG 46:1 A|12:0_16:1_18:0 | 0.26 | −1.96 | 1.3 × 10−5 | 0.036 |
TG 44:1|12:0_14:0_18:1 | 0.22 | −2.16 | 5.14 × 10−5 | 0.045 |
TG 44:0|12:0_16:0_16:0 | 0.19 | −2.42 | 2.51 × 10−8 | 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myagmarsuren, M.; Law, H.G.; Zhang, W.; Anuurad, T.; Bang, H.; Bishop, L.M.; Shen, T.; Fiehn, O.; Petersen, K.S.; Berglund, L.; et al. Lipoprotein(a) Lipidome: Responses to Reduced Dietary Saturated Fat Intake in Two Randomized Controlled Feeding Trials. Nutrients 2025, 17, 3113. https://doi.org/10.3390/nu17193113
Myagmarsuren M, Law HG, Zhang W, Anuurad T, Bang H, Bishop LM, Shen T, Fiehn O, Petersen KS, Berglund L, et al. Lipoprotein(a) Lipidome: Responses to Reduced Dietary Saturated Fat Intake in Two Randomized Controlled Feeding Trials. Nutrients. 2025; 17(19):3113. https://doi.org/10.3390/nu17193113
Chicago/Turabian StyleMyagmarsuren, Munkhtuya, Hayley G. Law, Wei Zhang, Tselmen Anuurad, Heejung Bang, Lauren M. Bishop, Tong Shen, Oliver Fiehn, Kristina S. Petersen, Lars Berglund, and et al. 2025. "Lipoprotein(a) Lipidome: Responses to Reduced Dietary Saturated Fat Intake in Two Randomized Controlled Feeding Trials" Nutrients 17, no. 19: 3113. https://doi.org/10.3390/nu17193113
APA StyleMyagmarsuren, M., Law, H. G., Zhang, W., Anuurad, T., Bang, H., Bishop, L. M., Shen, T., Fiehn, O., Petersen, K. S., Berglund, L., & Enkhmaa, B. (2025). Lipoprotein(a) Lipidome: Responses to Reduced Dietary Saturated Fat Intake in Two Randomized Controlled Feeding Trials. Nutrients, 17(19), 3113. https://doi.org/10.3390/nu17193113