Effects of Athletic Nutritional Supplements on the Human Gut Microbiota: A Narrative Review
Abstract
1. Introduction
2. Athletic Nutritional Supplements
3. Amino Acids and Protein
4. Antioxidants
5. Beetroot
6. Betaine, Citrulline, Creatine
7. Caffeine
8. Iron
9. Polyunsaturated Fatty Acids (PUFA)
10. Probiotics
11. Limitations and Challenges
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clemente, J.C.; Ursell, L.K.; Parfrey, L.W.; Knight, R. The Impact of the Gut Microbiota on Human Health: An Integrative View. Cell 2012, 148, 1258–1270. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.; Jia, W.; Pettersson, S. Host-Gut Microbiota Metabolic Interactions. Science 2012, 336, 1262–1267. [Google Scholar] [CrossRef] [PubMed]
- Sender, R.; Fuchs, S.; Milo, R. Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell 2016, 164, 337–340. [Google Scholar] [CrossRef]
- Lynch, S.V.; Pedersen, O. The Human Intestinal Microbiome in Health and Disease. N. Engl. J. Med. 2016, 375, 2369–2379. [Google Scholar] [CrossRef] [PubMed]
- Maynard, C.L.; Elson, C.O.; Hatton, R.D.; Weaver, C.T. Reciprocal Interactions of the Intestinal Microbiota and Immune System. Nature 2012, 489, 231–241. [Google Scholar] [CrossRef]
- Izcue, A.; Coombes, J.L.; Powrie, F. Regulatory Lymphocytes and Intestinal Inflammation. Annu. Rev. Immunol. 2009, 27, 313–338. [Google Scholar] [CrossRef] [PubMed]
- Said, H.M. Intestinal Absorption of Water-Soluble Vitamins in Health and Disease. Biochem. J. 2011, 437, 357–372. [Google Scholar] [CrossRef]
- Tremaroli, V.; Bäckhed, F. Functional Interactions between the Gut Microbiota and Host Metabolism. Nature 2012, 489, 242–249. [Google Scholar] [CrossRef]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet Rapidly and Reproducibly Alters the Human Gut Microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef]
- Nguyen, T.L.A.; Vieira-Silva, S.; Liston, A.; Raes, J. How Informative Is the Mouse for Human Gut Microbiota Research? DMM Dis. Model. Mech. 2015, 8, 1–16. [Google Scholar] [CrossRef]
- Kieser, S.; Zdobnov, E.M.; Trajkovski, M. Comprehensive Mouse Microbiota Genome Catalog Reveals Major Difference to Its Human Counterpart. PLoS Comput. Biol. 2022, 18, e1009947. [Google Scholar] [CrossRef]
- Chung, H.; Pamp, S.J.; Hill, J.A.; Surana, N.K.; Edelman, S.M.; Troy, E.B.; Reading, N.C.; Villablanca, E.J.; Wang, S.; Mora, J.R.; et al. Gut Immune Maturation Depends on Colonization with a Host-Specific Microbiota. Cell 2012, 149, 1578–1593. [Google Scholar] [CrossRef] [PubMed]
- Beresford-Jones, B.S.; Forster, S.C.; Stares, M.D.; Notley, G.; Viciani, E.; Browne, H.P.; Boehmler, D.J.; Soderholm, A.T.; Kumar, N.; Vervier, K.; et al. The Mouse Gastrointestinal Bacteria Catalogue Enables Translation between the Mouse and Human Gut Microbiotas via Functional Mapping. Cell Host Microbe 2022, 30, 124–138.e8. [Google Scholar] [CrossRef]
- Zeppa, S.D.; Agostini, D.; Gervasi, M.; Annibalini, G.; Amatori, S.; Ferrini, F.; Sisti, D.; Piccoli, G.; Barbieri, E.; Sestili, P.; et al. Mutual Interactions among Exercise, Sport Supplements and Microbiota. Nutrients 2020, 12, 17. [Google Scholar] [CrossRef]
- Katsimichas, T.; Antonopoulos, A.S.; Katsimichas, A.; Ohtani, T.; Sakata, Y.; Tousoulis, D. The Intestinal Microbiota and Cardiovascular Disease. Cardiovasc. Res. 2019, 115, 1471–1486. [Google Scholar] [CrossRef]
- Clarke, S.F.; Murphy, E.F.; O’Sullivan, O.; Lucey, A.J.; Humphreys, M.; Hogan, A.; Hayes, P.; O’Reilly, M.; Jeffery, I.B.; Wood-Martin, R.; et al. Exercise and Associated Dietary Extremes Impact on Gut Microbial Diversity. Gut 2014, 63, 1913–1920. [Google Scholar] [CrossRef]
- Beaumont, M.; Portune, K.J.; Steuer, N.; Lan, A.; Cerrudo, V.; Audebert, M.; Dumont, F.; Mancano, G.; Khodorova, N.; Andriamihaja, M.; et al. Quantity and Source of Dietary Protein Influence Metabolite Production by Gut Microbiota and Rectal Mucosa Gene Expression: A Randomized, Parallel, Double-Blind Trial in Overweight Humans. Am. J. Clin. Nutr. 2017, 106, 1005–1019. [Google Scholar] [CrossRef]
- Bel Lassen, P.; Belda, E.; Prifti, E.; Dao, M.C.; Specque, F.; Henegar, C.; Rinaldi, L.; Wang, X.; Kennedy, S.P.; Zucker, J.D.; et al. Protein Supplementation during an Energy-Restricted Diet Induces Visceral Fat Loss and Gut Microbiota Amino Acid Metabolism Activation: A Randomized Trial. Sci. Rep. 2021, 11, 15620. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Pérez, D.; Bressa, C.; Bailén, M.; Hamed-Bousdar, S.; Naclerio, F.; Carmona, M.; Pérez, M.; González-Soltero, R.; Montalvo-Lominchar, M.G.; Carabaña, C.; et al. Effect of a Protein Supplement on the Gut Microbiota of Endurance Athletes: A Randomized, Controlled, Double-Blind Pilot Study. Nutrients 2018, 10, 337. [Google Scholar] [CrossRef]
- Zambom de Souza, A.Z.; Zambom, A.Z.; Abboud, K.Y.; Reis, S.K.; Tannihão, F.; Guadagnini, D.; Saad, M.J.A.; Prada, P.O. Oral Supplementation with L-Glutamine Alters Gut Microbiota of Obese and Overweight Adults: A Pilot Study. Nutrition 2015, 31, 884–889. [Google Scholar] [CrossRef]
- Tian, R.; Yu, L.; Tian, F.; Zhao, J.; Chen, W.; Zhai, Q. Effect of Inulin, Galacto-Oligosaccharides, and Polyphenols on the Gut Microbiota, with a Focus on Akkermansia Muciniphila. Food Funct. 2024, 15, 4763–4772. [Google Scholar] [CrossRef]
- Tzounis, X.; Rodriguez-Mateos, A.; Vulevic, J.; Gibson, G.R.; Kwik-Uribe, C.; Spencer, J.P.E. Prebiotic Evaluation of Cocoa-Derived Flavanols in Healthy Humans by Using a Randomized, Controlled, Double-Blind, Crossover Intervention Study. Am. J. Clin. Nutr. 2011, 93, 62–72. [Google Scholar] [CrossRef]
- Queipo-Ortuño, M.I.; Boto-Ordóñez, M.; Murri, M.; Gomez-Zumaquero, J.M.; Clemente-Postigo, M.; Estruch, R.; Cardona Diaz, F.; Andrés-Lacueva, C.; Tinahones, F.J. Influence of Red Wine Polyphenols and Ethanol on the Gut Microbiota Ecology and Biochemical Biomarkers. Am. J. Clin. Nutr. 2012, 95, 1323–1334. [Google Scholar] [CrossRef]
- Vendrame, S.; Guglielmetti, S.; Riso, P.; Arioli, S.; Klimis-Zacas, D.; Porrini, M. Six-Week Consumption of a Wild Blueberry Powder Drink Increases Bifidobacteria in the Human Gut. J. Agric. Food Chem. 2011, 59, 12815–12820. [Google Scholar] [CrossRef] [PubMed]
- Gillies, N.A.; Wilson, B.C.; Miller, J.R.; Roy, N.C.; Scholey, A.; Braakhuis, A.J. Effects of a Flavonoid-Rich Blackcurrant Beverage on Markers of the Gut-Brain Axis in Healthy Females: Secondary Findings From a 4-Week Randomized Crossover Control Trial. Curr. Dev. Nutr. 2024, 8, 102158. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, P.E.; Smart, E.B.; Bouranis, J.A.; Choi, J.; Danczak, R.E.; Wong, C.P.; Paraiso, I.L.; Maier, C.S.; Ho, E.; Sharpton, T.J.; et al. Gut Enterotype-Dependent Modulation of Gut Microbiota and Their Metabolism in Response to Xanthohumol Supplementation in Healthy Adults. Gut Microbes 2024, 16, 2315633. [Google Scholar] [CrossRef]
- Istas, G.; Wood, E.; Le Sayec, M.; Rawlings, C.; Yoon, J.; Dandavate, V.; Cera, D.; Rampelli, S.; Costabile, A.; Fromentin, E.; et al. Effects of Aronia Berry (Poly)Phenols on Vascular Function and Gut Microbiota: A Double-Blind Randomized Controlled Trial in Adult Men. Am. J. Clin. Nutr. 2019, 110, 316–329. [Google Scholar] [CrossRef]
- Ni Lochlainn, M.; Bowyer, R.C.E.; Moll, J.M.; García, M.P.; Wadge, S.; Baleanu, A.F.; Nessa, A.; Sheedy, A.; Akdag, G.; Hart, D.; et al. Effect of Gut Microbiome Modulation on Muscle Function and Cognition: The PROMOTe Randomised Controlled Trial. Nat. Commun. 2024, 15, 1859. [Google Scholar] [CrossRef] [PubMed]
- Otten, A.T.; Bourgonje, A.R.; Peters, V.; Alizadeh, B.Z.; Dijkstra, G.; Harmsen, H.J.M. Vitamin c Supplementation in Healthy Individuals Leads to Shifts of Bacterial Populations in the Gut—A Pilot Study. Antioxidants 2021, 10, 1278. [Google Scholar] [CrossRef]
- Pham, V.T.; Fehlbaum, S.; Seifert, N.; Richard, N.; Bruins, M.J.; Sybesma, W.; Rehman, A.; Steinert, R.E. Effects of Colon-Targeted Vitamins on the Composition and Metabolic Activity of the Human Gut Microbiome—A Pilot Study. Gut Microbes 2021, 13, e1875774. [Google Scholar] [CrossRef]
- Sim, M.; Hong, S.; Jung, M.H.; Choi, E.Y.; Hwang, G.S.; Shin, D.M.; Kim, C.S. Gut Microbiota Links Vitamin C Supplementation to Enhanced Mental Vitality in Healthy Young Adults with Suboptimal Vitamin C Status: A Randomized, Double-Blind, Placebo-Controlled Trial. Brain Behav. Immun. 2025, 128, 179–191. [Google Scholar] [CrossRef]
- Chen, B.; Li, Y.; Li, Z.; Hu, X.; Zhen, H.; Chen, H.; Nie, C.; Hou, Y.; Zhu, S.; Xiao, L.; et al. Vitamin E Ameliorates Blood Cholesterol Level and Alters Gut Microbiota Composition: A Randomized Controlled Trial. Nutr. Metab. Cardiovasc. Dis. 2025, 35, 103964. [Google Scholar] [CrossRef]
- Wang, Y.; Do, T.; Marshall, L.J.; Boesch, C. Effect of Two-Week Red Beetroot Juice Consumption on Modulation of Gut Microbiota in Healthy Human Volunteers—A Pilot Study. Food Chem. 2023, 406, 134989. [Google Scholar] [CrossRef]
- Calvani, R.; Giampaoli, O.; Marini, F.; Del Chierico, F.; De Rosa, M.; Conta, G.; Sciubba, F.; Tosato, M.; Picca, A.; Ciciarello, F.; et al. Beetroot Juice Intake Positively Influenced Gut Microbiota and Inflammation but Failed to Improve Functional Outcomes in Adults with Long COVID: A Pilot Randomized Controlled Trial. Clin. Nutr. 2024, 43, 344–358. [Google Scholar] [CrossRef]
- Dai, A.; Hoffman, K.; Xu, A.A.; Gurwara, S.; White, D.L.; Kanwal, F.; Jang, A.; El-Serag, H.B.; Petrosino, J.F.; Jiao, L. The Association between Caffeine Intake and the Colonic Mucosa-Associated Gut Microbiota in Humans—A Preliminary Investigation. Nutrients 2023, 15, 1747. [Google Scholar] [CrossRef]
- González, S.; Salazar, N.; Ruiz-Saavedra, S.; Gómez-Martín, M.; de los Reyes-Gavilán, C.G.; Gueimonde, M. Long-Term Coffee Consumption Is Associated with Fecal Microbial Composition in Humans. Nutrients 2020, 12, 1287. [Google Scholar] [CrossRef] [PubMed]
- Shearer, J.; Shah, S.; MacInnis, M.J.; Shen-Tu, G.; Mu, C. Dose-Responsive Effects of Iron Supplementation on the Gut Microbiota in Middle-Aged Women. Nutrients 2024, 16, 786. [Google Scholar] [CrossRef]
- Lamprecht, M.; Bogner, S.; Schippinger, G.; Steinbauer, K.; Fankhauser, F.; Hallstroem, S.; Schuetz, B.; Greilberger, J.F. Probiotic Supplementation Affects Markers of Intestinal Barrier, Oxidation, and Inflammation in Trained Men; a Randomized, Double-Blinded, Placebo-Controlled Trial. J. Int. Soc. Sports Nutr. 2012, 9, 1–13. [Google Scholar] [CrossRef]
- Roberts, J.D.; Suckling, C.A.; Peedle, G.Y.; Murphy, J.A.; Dawkins, T.G.; Roberts, M.G. An Exploratory Investigation of Endotoxin Levels in Novice Long Distance Triathletes, and the Effects of a Multi-Strain Probiotic/Prebiotic, Antioxidant Intervention. Nutrients 2016, 8, 733. [Google Scholar] [CrossRef] [PubMed]
- Axelrod, C.L.; Brennan, C.J.; Cresci, G.; Paul, D.; Hull, M.; Fealy, C.E.; Kirwan, J.P. UCC118 Supplementation Reduces Exercise-Induced Gastrointestinal Permeability and Remodels the Gut Microbiome in Healthy Humans. Physiol. Rep. 2019, 7, e14276. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.C.; Hsu, Y.J.; Chen, M.T.; Kuo, Y.W.; Lin, J.H.; Hsu, Y.C.; Huang, Y.Y.; Li, C.M.; Tsai, S.Y.; Hsia, K.C.; et al. Efficacy of Lactococcus Lactis Subsp. Lactis LY-66 and Lactobacillus Plantarum PL-02 in Enhancing Explosive Strength and Endurance: A Randomized, Double-Blinded Clinical Trial. Nutrients 2024, 16, 1921. [Google Scholar] [CrossRef]
- Watson, H.; Mitra, S.; Croden, F.C.; Taylor, M.; Wood, H.M.; Perry, S.L.; Spencer, J.A.; Quirke, P.; Toogood, G.J.; Lawton, C.L.; et al. A Randomised Trial of the Effect of Omega-3 Polyunsaturated Fatty Acid Supplements on the Human Intestinal Microbiota. Gut 2018, 67, 1974–1983. [Google Scholar] [CrossRef] [PubMed]
- Pu, S.; Khazanehei, H.; Jones, P.J.; Khafipour, E. Interactions between Obesity Status and Dietary Intake of Monounsaturated and Polyunsaturated Oils on Human Gut Microbiome Profiles in the Canola Oil Multicenter Intervention Trial (COMIT). Front. Microbiol. 2016, 7, 1612. [Google Scholar] [CrossRef] [PubMed]
- NIH Dietary Supplements for Exercise and Athletic Performance: Fact Sheet for Consumers. Available online: https://ods.od.nih.gov/factsheets/ExerciseAndAthleticPerformance-HealthProfessional/ (accessed on 27 May 2025).
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M.; van Loon, L.J.C. Dietary Protein for Athletes: From Requirements to Optimum Adaptation. J. Sports Sci. 2011, 29 (Suppl. S1), S29–S38. [Google Scholar] [CrossRef]
- Agostoni, C.; Bresson, J.-L.; Fairweather-Tait, S.; Flynn, A.; Golly, I.; Korhonen, H.; Lagiou, P.; Løvik, M.; Marchelli, R.; Martin, A.; et al. Scientific Opinion on Dietary Reference Values for Protein. EFSA J. 2012, 10, 2557. [Google Scholar] [CrossRef]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and Exercise. J. Int. Soc. Sports Nutr. 2017, 14, 1–25. [Google Scholar] [CrossRef]
- Nolte, S.; Krüger, K.; Lenz, C.; Zentgraf, K. Optimizing the Gut Microbiota for Individualized Performance Development in Elite Athletes. Biology 2023, 12, 1491. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, X.; Liu, H.; Brown, M.A.; Qiao, S. Dietary Protein and Gut Microbiota Composition and Function. Curr. Protein Pept. Sci. 2018, 20, 145–154. [Google Scholar] [CrossRef]
- Abdallah, A.; Elemba, E.; Zhong, Q.; Sun, Z. Gastrointestinal Interaction between Dietary Amino Acids and Gut Microbiota: With Special Emphasis on Host Nutrition. Curr. Protein Pept. Sci. 2020, 21, 785–798. [Google Scholar] [CrossRef]
- Blachier, F.; Beaumont, M.; Portune, K.J.; Steuer, N.; Lan, A.; Audebert, M.; Khodorova, N.; Andriamihaja, M.; Airinei, G.; Benamouzig, R.; et al. High-Protein Diets for Weight Management: Interactions with the Intestinal Microbiota and Consequences for Gut Health. A Position Paper by the My New Gut Study Group. Clin. Nutr. 2019, 38, 1012–1022. [Google Scholar] [CrossRef]
- Beaumont, M.; Roura, E.; Lambert, W.; Turni, C.; Michiels, J.; Chalvon-Demersay, T. Selective Nourishing of Gut Microbiota with Amino Acids: A Novel Prebiotic Approach? Front. Nutr. 2022, 9, 1066898. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; et al. Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef]
- Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.; Fitzgerald, M.G.; Fulton, R.S.; et al. Structure, Function and Diversity of the Healthy Human Microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.A.; Fu, J.; Chang, P.V. Microbial Tryptophan Metabolites Regulate Gut Barrier Function via the Aryl Hydrocarbon Receptor. Proc. Natl. Acad. Sci. USA 2020, 117, 19376–19387. [Google Scholar] [CrossRef] [PubMed]
- Chimerel, C.; Emery, E.; Summers, D.K.; Keyser, U.; Gribble, F.M.; Reimann, F. Bacterial Metabolite Indole Modulates Incretin Secretion from Intestinal Enteroendocrine L Cells. Cell Rep. 2014, 9, 1202–1208. [Google Scholar] [CrossRef]
- Jiang, Z.; He, L.; Li, D.; Zhuo, L.; Chen, L.; Shi, R.Q.; Luo, J.; Feng, Y.; Liang, Y.; Li, D.; et al. Human Gut Microbial Aromatic Amino Acid and Related Metabolites Prevent Obesity through Intestinal Immune Control. Nat. Metab. 2025, 7, 808–822. [Google Scholar] [CrossRef]
- Andriamihaja, M.; Davila, A.M.; Eklou-Lawson, M.; Petit, N.; Delpal, S.; Allek, F.; Blais, A.; Delteil, C.; Tomé, D.; Blachier, F. Colon Luminal Content and Epithelial Cell Morphology Are Markedly Modified in Rats Fed with a High-Protein Diet. Am. J. Physiol.—Gastrointest. Liver Physiol. 2010, 299, G1030–G1037. [Google Scholar] [CrossRef]
- Blachier, F.; Beaumont, M.; Kim, E. Cysteine-Derived Hydrogen Sulfide and Gut Health: A Matter of Endogenous or Bacterial Origin. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 68–75. [Google Scholar] [CrossRef]
- Ebner, F.; Wöckel, A.; Schwentner, L.; Blettner, M.; Janni, W.; Kreienberg, R.; Wischnewsky, M. Does the Number of Removed Axillary Lymphnodes in High Risk Breast Cancer Patients Influence the Survival? BMC Cancer 2019, 19, 90. [Google Scholar] [CrossRef]
- Wu, S.; Bhat, Z.F.; Gounder, R.S.; Ahmed, I.A.M.; Al-Juhaimi, F.Y.; Ding, Y.; Bekhit, A.E.D.A. Effect of Dietary Protein and Processing on Gut Microbiota—A Systematic Review. Nutrients 2022, 14, 453. [Google Scholar] [CrossRef]
- Jardon, K.M.; Canfora, E.E.; Goossens, G.H.; Blaak, E.E. Dietary Macronutrients and the Gut Microbiome: A Precision Nutrition Approach to Improve Cardiometabolic Health. Gut 2022, 71, 1214–1226. [Google Scholar] [CrossRef]
- Procházková, N.; Laursen, M.F.; La Barbera, G.; Tsekitsidi, E.; Jørgensen, M.S.; Rasmussen, M.A.; Raes, J.; Licht, T.R.; Dragsted, L.O.; Roager, H.M. Gut Physiology and Environment Explain Variations in Human Gut Microbiome Composition and Metabolism. Nat. Microbiol. 2024, 9, 3210–3225. [Google Scholar] [CrossRef]
- Paulsen, G.; Cumming, K.T.; Holden, G.; Hallén, J.; Rønnestad, B.R.; Sveen, O.; Skaug, A.; Paur, I.; Bastani, N.E.; Østgaard, H.N.; et al. Vitamin C and E Supplementation Hampers Cellular Adaptation to Endurance Training in Humans: A Double-Blind, Randomised, Controlled Trial. J. Physiol. 2014, 592, 1887–1901. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, G.; Cumming, K.T.; Hamarsland, H.; Børsheim, E.; Berntsen, S.; Raastad, T. Can Supplementation with Vitamin C and E Alter Physiological Adaptations to Strength Training? BMC Sports Sci. Med. Rehabil. 2014, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Malm, C.; Svensson, M.; Ekblom, B.; Sjödin, B. Effects of Ubiquinone-10 Supplementation and High Intensity Training on Physical Performance in Humans. Acta Physiol. Scand. 1997, 161, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, S.; Toh, H.; Hase, K.; Oshima, K.; Nakanishi, Y.; Yoshimura, K.; Tobe, T.; Clarke, J.M.; Topping, D.L.; Suzuki, T.; et al. Bifidobacteria Can Protect from Enteropathogenic Infection through Production of Acetate. Nature 2011, 469, 543–549. [Google Scholar] [CrossRef]
- Kawabata, K.; Yoshioka, Y.; Terao, J. Role of Intestinal Microbiota in the Bioavailability and Physiological Functions of Dietary Polyphenols. Molecules 2019, 24, 370. [Google Scholar] [CrossRef]
- Mayta-Apaza, A.C.; Pottgen, E.; De Bodt, J.; Papp, N.; Marasini, D.; Howard, L.; Abranko, L.; Van de Wiele, T.; Lee, S.O.; Carbonero, F. Impact of Tart Cherries Polyphenols on the Human Gut Microbiota and Phenolic Metabolites in Vitro and in Vivo. J. Nutr. Biochem. 2018, 59, 160–172. [Google Scholar] [CrossRef]
- Henning, S.M.; Yang, J.; Hsu, M.; Lee, R.P.; Grojean, E.M.; Ly, A.; Tseng, C.H.; Heber, D.; Li, Z. Decaffeinated Green and Black Tea Polyphenols Decrease Weight Gain and Alter Microbiome Populations and Function in Diet-Induced Obese Mice. Eur. J. Nutr. 2018, 57, 2759–2769. [Google Scholar] [CrossRef]
- Mao, T.; Zhang, Y.; Kaushik, R.; Mohan, M.S. Effects of Polyphenols on Gut Microbiota and Inflammatory Markers in Individuals with Overweight or Obesity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Crit. Rev. Food Sci. Nutr. 2024. [Google Scholar] [CrossRef]
- Million, M.; Raoult, D. Linking Gut Redox to Human Microbiome. Hum. Microbiome J. 2018, 10, 27–32. [Google Scholar] [CrossRef]
- Sobko, T.; Reinders, C.I.; Jansson, E.Å.; Norin, E.; Midtvedt, T.; Lundberg, J.O. Gastrointestinal Bacteria Generate Nitric Oxide from Nitrate and Nitrite. Nitric Oxide—Biol. Chem. 2005, 13, 272–278. [Google Scholar] [CrossRef]
- Tiso, M.; Schechter, A.N. Nitrate Reduction to Nitrite, Nitric Oxide and Ammonia by Gut Bacteria under Physiological Conditions. PLoS ONE 2015, 10, e0119712. [Google Scholar] [CrossRef]
- Wyss, M.; Kaddurah-Daouk, R. Creatine and Creatinine Metabolism. Physiol. Rev. 2000, 80, 1107–1213. [Google Scholar] [CrossRef] [PubMed]
- Lowery, L.M.; Anderson, D.E.; Scanlon, K.F.; Stack, A.; Escalante, G.; Campbell, S.C.; Kerksick, C.M.; Nelson, M.T.; Ziegenfuss, T.N.; VanDusseldorp, T.A.; et al. International Society of Sports Nutrition Position Stand: Coffee and Sports Performance. J. Int. Soc. Sports Nutr. 2023, 20, 2237952. [Google Scholar] [CrossRef]
- Kleber Silveira, A.; Moresco, K.S.; Mautone Gomes, H.; da Silva Morrone, M.; Kich Grun, L.; Pens Gelain, D.; de Mattos Pereira, L.; Giongo, A.; Rodrigues De Oliveira, R.; Fonseca Moreira, J.C. Guarana (Paullinia Cupana Mart.) Alters Gut Microbiota and Modulates Redox Status, Partially via Caffeine in Wistar Rats. Phyther. Res. 2018, 32, 2466–2474. [Google Scholar] [CrossRef]
- Manghi, P.; Bhosle, A.; Wang, K.; Marconi, R.; Selma-Royo, M.; Ricci, L.; Asnicar, F.; Golzato, D.; Ma, W.; Hang, D.; et al. Coffee Consumption Is Associated with Intestinal Lawsonibacter Asaccharolyticus Abundance and Prevalence across Multiple Cohorts. Nat. Microbiol. 2024, 9, 3120–3134. [Google Scholar] [CrossRef]
- Finlayson-Trick, E.; Nearing, J.; Fischer, J.A.; Ma, Y.; Wang, S.; Krouen, H.; Goldfarb, D.M.; Karakochuk, C.D. The Effect of Oral Iron Supplementation on Gut Microbial Composition: A Secondary Analysis of a Double-Blind, Randomized Controlled Trial among Cambodian Women of Reproductive Age. Microbiol. Spectr. 2023, 11, e05273-22. [Google Scholar] [CrossRef]
- Farhang, M.; Álvarez-Aguado, I.; Celis Correa, J.; Toffoletto, M.C.; Rosello-Peñaloza, M.; Miranda-Castillo, C. Effects of Anxiety, Stress and Perceived Social Support on Depression and Loneliness Among Older People During the COVID-19 Pandemic: A Cross-Sectional Path Analysis. Sage J. 2024, 61, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jäger, R.; Heileson, J.L.; Abou Sawan, S.; Dickerson, B.L.; Leonard, M.; Kreider, R.B.; Kerksick, C.M.; Cornish, S.M.; Candow, D.G.; Cordingley, D.M.; et al. International Society of Sports Nutrition Position Stand: Long-Chain Omega-3 Polyunsaturated Fatty Acids. J. Int. Soc. Sports Nutr. 2025, 22, 2441775. [Google Scholar] [CrossRef]
- Zou, B.; Zhao, D.; Zhou, S.; Kang, J.X.; Wang, B. Insight into the Effects of Omega-3 Fatty Acids on Gut Microbiota: Impact of a Balanced Tissue Omega-6/Omega-3 Ratio. Front. Nutr. 2025, 12, 1575323. [Google Scholar] [CrossRef]
- Yao, J.; Rock, C.O. Exogenous Fatty Acid Metabolism in Bacteria. Biochimie 2017, 141, 30–39. [Google Scholar] [CrossRef]
- Roussel, C.; Lessard-Lord, J.; Nallabelli, N.; Muller, C.; Flamand, N.; Silvestri, C.; Di Marzo, V. Human Gut Microbes Produce EPA- and DHA-Derived Oxylipins, but Not N-Acyl-Ethanolamines, from Fish Oil. FASEB J. 2025, 39, e70713. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Merenstein, D.; Pot, B.; Leyer, G.; Ouwehand, A.C.; Preidis, G.A.; Elkins, C.A.; Hill, C.; Lewis, Z.T.; Shane, A.L.; Zmora, N.; et al. Emerging Issues in Probiotic Safety: 2023 Perspectives. Gut Microbes 2023, 15, 2185034. [Google Scholar] [CrossRef]
- Suez, J.; Zmora, N.; Elinav, E. Probiotics in the Next-Generation Sequencing Era. Gut Microbes 2020, 11, 77–93. [Google Scholar] [CrossRef] [PubMed]
- Zmora, N.; Zilberman-Schapira, G.; Suez, J.; Mor, U.; Dori-Bachash, M.; Bashiardes, S.; Kotler, E.; Zur, M.; Regev-Lehavi, D.; Brik, R.B.Z.; et al. Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features. Cell 2018, 174, 1388–1405.e21. [Google Scholar] [CrossRef]
- Sánchez, B.; Delgado, S.; Blanco-Míguez, A.; Lourenço, A.; Gueimonde, M.; Margolles, A. Probiotics, Gut Microbiota, and Their Influence on Host Health and Disease. Mol. Nutr. Food Res. 2017, 61, 1600240. [Google Scholar] [CrossRef] [PubMed]
- Ohland, C.L.; MacNaughton, W.K. Probiotic Bacteria and Intestinal Epithelial Barrier Function. Am. J. Physiol.—Gastrointest. Liver Physiol. 2010, 298, G807–G819. [Google Scholar] [CrossRef]
- You, Y.; Chen, Y.; Wei, M.; Tang, M.; Lu, Y.; Zhang, Q.; Cao, Q. Mediation Role of Recreational Physical Activity in the Relationship between the Dietary Intake of Live Microbes and the Systemic Immune-Inflammation Index: A Real-World Cross-Sectional Study. Nutrients 2024, 16, 777. [Google Scholar] [CrossRef]
- Khalesi, S.; Bellissimo, N.; Vandelanotte, C.; Williams, S.; Stanley, D.; Irwin, C. A Review of Probiotic Supplementation in Healthy Adults: Helpful or Hype? Eur. J. Clin. Nutr. 2019, 73, 24–37. [Google Scholar] [CrossRef]
- Porepp, O.D.S.C.; Xavier, M.G.; da Silveira, L.M.; Lindenau, I.; Schellin, A.S.; Piccoli, R.C.; Messenburger, G.P.; da Silva, P.P.; Oliveira, P.S.; Delpino, F.M.; et al. Effect of Probiotic Supplementation on Gut Microbiota and Sport Performance in Athletes and Physically Active Individuals: A Systematic Review. J. Diet. Suppl. 2024, 21, 660–676. [Google Scholar] [CrossRef]
- Mohr, A.E.; Pyne, D.B.; Leite, G.S.F.; Akins, D.; Pugh, J. A Systematic Scoping Review of Study Methodology for Randomized Controlled Trials Investigating Probiotics in Athletic and Physically Active Populations. J. Sport Health Sci. 2024, 13, 61–71. [Google Scholar] [CrossRef]
- Varliero, G.; Lebre, P.H.; Stevens, M.I.; Czechowski, P.; Makhalanyane, T.; Cowan, D.A. The Use of Different 16S RRNA Gene Variable Regions in Biogeographical Studies. Environ. Microbiol. Rep. 2023, 15, 216–228. [Google Scholar] [CrossRef] [PubMed]
- López-Aladid, R.; Fernández-Barat, L.; Alcaraz-Serrano, V.; Bueno-Freire, L.; Vázquez, N.; Pastor-Ibáñez, R.; Palomeque, A.; Oscanoa, P.; Torres, A. Determining the Most Accurate 16S RRNA Hypervariable Region for Taxonomic Identification from Respiratory Samples. Sci. Rep. 2023, 13, 3974. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Kearns, R.P.; Dooley, J.S.G.; Matthews, M.; McNeilly, A.M. Do Probiotics Mitigate GI-Induced Inflammation and Perceived Fatigue in Athletes? A Systematic Review. J. Int. Soc. Sports Nutr. 2024, 21, 2388085. [Google Scholar] [CrossRef]
Authors | Subjects | Study Design | Analysis | Main Findings |
---|---|---|---|---|
Clarke SF et al. [16] | 40 male Irish elite rugby players, 46 controls | Cross-sectional. Nutritional data based on food frequency questionnaires. | Amplicon sequencing (16S rRNA analysis). | Athletes consumed more protein than controls, accounting for 22% of energy intake. Protein consumption positively correlated with microbial alpha diversity. |
Beaumont M et al. [17] | 38 overweight individuals | Randomized, controlled, double-blind, parallel design. Three-week isocaloric supplementation with casein, soy protein, or maltodextrin as a control, corresponding to 15% of total energy intake. | Amplicon sequencing (16S rRNA analysis). Metabolite measurements. Rectal mucosa transcriptome analysis. | Microbial composition not altered. Butyrate concentrations decreased in the high protein diet arm. Modification of gene expression detected in the rectal mucosa by use of cDNA microarrays, with clear clustering of differentially expressed genes in the casein and soya group. |
Lassen PB et al. [18] | 53 overweight or obese individuals | Randomized, controlled, double-blind, parallel design. Sixteen-week isocaloric protein supplementation or control. Test subjects received protein powder preparation containing 34 g of protein (milk protein and free amino acids), 2 g of fat, and 6 g of carbohydrates (i.e., 75%, 12%, and 13% of total energy content, respectively). Controls received an isocaloric mixture containing only 7.3 g of plant and milk protein, 7.6 g of fat, and 24.5 g of carbohydrates, designed to not alter the overall balance of a conventional diet (i.e., 15% protein, 35% fat, 50% carbohydrate). | Shotgun metagenomics. | Minimal effects on microbial composition. Significant shift towards bacterial amino acid metabolism. |
Moreno-Pérez D et al. [19] | 24 male cross-country runners | Randomized, controlled, double-blind, parallel design. Ten-week isocaloric protein supplementation or control. Protein powder contained blend of 10 g whey isolate and 10 g beef hydrolysate. | Amplicon sequencing (16S rRNA analysis). Quantitative PCR for selected bacteria. Metabolite measurements. | No changes in microbial diversity; decrease in Bifidobacterium longum absolute abundance. |
de Souza AZ et al. [20] | 33 overweight or obese individuals | Randomized, controlled, double-blind. Two-week isocaloric supplementation with 30 g of L-glutamate or control (30 g of alanine). | Amplicon sequencing (16S rRNA analysis). | Reduction in the relative abundance of several genera of the Firmicutes phylum. |
Tian R et al. [21] | 451 total subjects | Meta-analysis of 6 interventional studies. Polyphenol, galacto-oligosaccharides, inulin supplementation. | Amplicon sequencing (16S rRNA analysis). | Polyphenol supplementation does not alter alpha diversity or predicted metabolic gene counts. |
Tzounis X et al. [22] | 22 healthy individuals | Randomized, controlled, double-blind, crossover. Four-week high (494 g) or low (23 g) cocoa-derived flavanol supplementation and cross-over. | Fluorescence in situ hybridization (FISH). | High flavanol supplementation increases Bifidobacterium and Lactobacillus, decreases Clostridium. |
Queipo-Ortuño MI et al. [23] | 10 healthy male volunteers | Randomized, controlled, crossover. Three 20-day periods of de-alcoholized red wine (272 mL/d), red wine (272 mL/d), or gin (100 mL/d) consumption as a source of polyphenols or control (gin). | Real-time quantitative PCR for selected bacterial genera. | Red wine polyphenol consumption significantly increased the numbers of Enterococcus, Prevotella, Bacteroides, Bifidobacterium, Bacteroides uniformis, Eggerthella lenta, and Blautia coccoides–Eubacterium rectale groups. |
Vendrame S et al. [24] | 15 healthy male volunteers | Repeated measure, cross-over. Six-week supplementation of a wild blueberry drink (25 g wild blueberry powder in 250 mL water) or control (250 mL water, 7.5 g fructose, 7 g glucose, 0.5 g citric acid, 0.03 g blueberry flavor, 280 µL Allura red AC 1%, 70 µL brilliant blue FCF 1%). | Real-time quantitative PCR for selected bacterial genera. | Increase in Bifidobacterium. |
Gillies NA et al. [25] | 40 healthy female volunteers | Randomized, controlled, double-blind, crossover. Four-week isocaloric consumption of blackcurrant beverage (containing 308 mg of polyphenols and 151 mg of anthocyanins) or control (containing 22 mg of polyphenols and 7 mg of anthocyanins). | Metagenomics. | No significant changes. |
Jamieson PE et al. [26] | 27 healthy individuals | Randomized, controlled, triple-blind. Eight-week supplementation of 24 g xanthohumol or control (rice protein). | Amplicon sequencing (16S rRNA analysis). | No significant changes. |
Istas G et al. [27] | 66 healthy male individuals | Randomized, controlled, double-blind, parallel design. Twelve-week supplementation of aronia berry capsules (75 g berries/116 mg phenolic content or 10 g berries/12 mg phenolic content) or control (maltodextrin). | Amplicon sequencing (16S rRNA analysis). | Increase in the relative abundance of Anaerostipes. |
Ni Lochlainn M et al. [28] | 72 elderly individuals (36 twin pairs) | Randomized, controlled, double-blind. Twelve-week supplementation of inulin and fructo-oligosaccharides or control [test subjects and controls received 3.32 g of branched-chain amino acid protein powder, consisting of l-leucine 1660 mg, l-isoleucine 830 mg, and l-valine 830 mg. The intervention arm supplement also contained 7.5 g of prebiotic (Darmocare Pre®, Bonusan, Numansdorp, The Netherlands), which consists of inulin (min. 3.375 mg) and fructo-oligosaccharides (FOS) (min. 3.488 mg). The placebo arm supplement contained 7.5 g of maltodextrin powder]. | Metagenomics. | Increase in the relative abundance of Bifidobacterium, numerous compositional shifts within the intervention arm. |
Otten AT et al. [29] | 14 healthy volunteers | Longitudinal, not controlled. Two-week supplementation of 1 g Vitamin C/d. | Amplicon sequencing (16S rRNA analysis). | Decrease in the relative abundance of Bacteroidetes, Enterococci, and Gemmiger formicilis. |
Pham VT et al. [30] | 96 healthy individuals | Randomized, controlled, double-blind, parallel design. Four-week supplementation of vitamins or control in colon release formulations (vitamin A as 250 µg retinol equivalents/d, vitamin B2 as 75 mg riboflavin/d, vitamin C as 500 mg ascorbic acid/d, vitamin B2 75 mg/d + vitamin C 500 mg/d, vitamin D3 as 60 µg cholecalciferol/d, vitamin E as 100 alpha-tocopherol equivalents mg/d, or placebo as 200 mg/d of microcrystalline cellulose). | Metagenomics. Metabolite measurements. | No changes in beta diversity in the Vitamin C and E arms. Vitamin C increased fecal short-chain fatty acid concentrations. |
Sim M et al. [31] | 40 healthy volunteers | Randomized, controlled, double-blind. Four-week supplementation of 1 g Vitamin C. | Amplicon sequencing (16S rRNA analysis). | No changes in alpha or beta diversity. Predictive metagenomics indicated increase in the Entner–Doudoroff (ED) metabolic pathway in the placebo group, corresponding to measured increase in lipopolysaccharide, and increase in polyamine biosynthetic pathways also in the placebo group, corresponding to spermidine levels. |
Chen B et al. [32] | 26 healthy individuals | Randomized, controlled. Twelve-week supplementation of Vitamin E (400 IU D-alpha tocopherols/d) or controls (300 mg grape seed extract and 258 mg polyphenols/d or corn amylodextrin 300 mg/d). | Metagenomics. | No changes in alpha or beta diversity. |
Wang Y et al. [33] | 18 healthy individuals | Longitudinal, not controlled. Two-week consumption of beetroot juice [30 mL concentrate/d containing betacyanins (114.5 ± 3.6 mg), polyphenols (15.6 ± 0.4 mg) and ~228.5 mg nitrate]. | Amplicon sequencing (16S rRNA analysis). Real-time quantitative PCR for selected bacterial strains. Metabolite measurements. | No changes in alpha or beta diversity. Changes in the relative abundance of 13 bacterial genera by the intervention. |
Calvani R et al. [34] | 25 individuals with long COVID | Randomized, controlled, double-blind. Two-week consumption of beetroot juice (200 mL containing ~600 mg nitrate) or control drink (solution containing 7 g of sugar, 180 mL of water, and 20 mL of beetroot juice equivalent to ~60 mg nitrate). | Amplicon sequencing (16S rRNA analysis). Metabolite measurements. | No changes in alpha or beta diversity. A statistical model accurately predicted groups based on bacterial relative abundances. Species corresponding to Akkermansia, Bacteroides, Bifidobacterium, Butyricimonas, Coriobacteriaceae, Dialister, Mogibacteriaceae, Oscillospira, Prevotella, Rikenellaceae, Roseburia, and Ruminococcaceae were higher in the beetroot juice group. Anaerostipes, Christensenellaceae, Erysipelotrichaceae, Lachno spiraceae, and Phascolarctobacterium were higher in the placebo group. Shifts also noted in fecal metabolite concentrations. |
Dai A et al. [35] | 34 individuals | Cross-sectional; caffeine consumption. | Amplicon sequencing (16S rRNA analysis). | >82.9 mg/d of caffeine associated with increased richness of the gut mucosa-adherent microbiota. |
González S et al. [36] | 147 volunteers | Cross-sectional; caffeine consumption. | Real-time quantitative PCR for selected bacterial taxa. | 45–500 mL of coffee daily associated with increase in bacteria of the Bacteroides-Prevotella-Porphyromonas group. |
Shearer J et al. [37] | 56 female individuals | Retrospective; iron supplementation [no iron, low iron (6–10 mg/d), high iron (>100 g/d) groups]. | Amplicon sequencing (16S rRNA analysis). | Negligible differences between no/low and high iron supplementation groups. |
Lamprecht M et al. [38] | 23 endurance male athletes | Randomized, double-blind, placebo controlled. Fourteen-week supplementation of a probiotic compound (4 g/d, including Bifidobacterium bifidum W23, Bifidobacterium lactis W51, Enterococcus faecium W54, Lactobacillus acidophilus W22, Lactobacillus brevis W63, and Lactococcus lactis W58). | Zonulin measurements in feces, various other blood measurements of cytokines and enzymes. | Zonulin excretion decreased in test subjects compared to controls. No other significant results. |
Roberts JD et al. [39] | 30 recreational triathletes | Randomized, repeated-measures, double-blind, placebo controlled. Twelve-week supplementation with a probiotic/prebiotic/antioxidant compound, a probiotic/prebiotic compound, or control (strains of Lactobacillus and Bifidobacterium as a probiotic, fructo-oligosaccharides as a prebiotic, 200 mg of α-lipoic-acid and 300 mg of N-acetyl-carnitine hydrochloride as antioxidants, and corn flour as a placebo). | Plasma endotoxin levels and gastrointestinal permeability assessment. | Endotoxin levels lower only in the group receiving the compound including the antioxidant. Gastrointestinal permeability statistically higher in the placebo group post-race, but not in a clinically significant way. |
Axelrod CL et al. [40] | 7 healthy volunteers | Randomized, double-blind, placebo-controlled, crossover. Four-week supplementation of a probiotic containing Lactobacillus salivarius UCC118 (2 × 108 CFU/capsule) or placebo (corn starch with magnesium stearate). | Metagenomics. Gastrointestinal permeability measurements. | Taxonomic sequencing revealed 99 differentially regulated bacteria spanning 6 taxonomic ranks in subjects receiving the supplement. Supplementation attenuated exercise-induced increase in intestinal hyperpermeability. |
Lee MC et al. [41] | 88 healthy adults | Randomized, double-blind, placebo controlled. Six-week training program and supplementation of Lactococcus lactis subsp. lactis LY-66 and Lactobacillus plantarum PL-02, or control. | Amplicon sequencing (16S rRNA analysis). | No changes in alpha or beta diversity. Increase in beneficial bacteria, especially a significant rise in Akkermansia muciniphila following supplementation with PL-02 and LY-66. |
Watson H et al. [42] | 22 healthy volunteers | Randomized, open-label, cross-over. Eight-week supplementation of 4 g/d N-3 PUFA. | Amplicon sequencing (16S rRNA analysis). | No changes in alpha or beta diversity. Increased abundance of several genera, including Bifidobacterium, Roseburia, and Lactobacillus, observed with intervention. |
Pu S et al. [43] | 25 individuals at risk for metabolic syndrome | Randomized, controlled, double-blind, cross-over. Four-week supplementation of 5 dietary oil supplements in 5 phases (60 g/d canola oil, DHA-enriched canola oil, canola oil high in oleic acid, a blend of corn oil/safflower oil, and a blend of flax oil/safflower oil). | Amplicon sequencing (16S rRNA analysis). | No changes in alpha or beta diversity. |
Supplement | Effect on Bacterial Diversity | Relative Abundance Changes | Metabolic/Functional Effects |
---|---|---|---|
Amino Acids and Protein | No major changes | ↓ Bifidobacterium longum ↓ Genera in the Firmicutes phylum | ↑ Amino acid metabolism ↑ Branched-chain fatty acids ↓ Butyrate ↑ Ammonia, H2S (potentially harmful) |
Antioxidants (Polyphenols, Vit. C/E) | No major changes | ↑ Bifidobacterium ↑ Lactobacillus ↑ Bacteroides ↑ Prevotella ↑ Anaerostipes ↓ Bacteroidetes ↓ Enterococci ↓ Gemmiger formicilis | Polyphenol metabolism → ↑ SCFA Vit. C/E → fecal redox-linked changes |
Beetroot | No major changes | ↑ Akkermansia ↑ Bacteroides ↑ Bifidobacterium ↑ Roseburia ↓ Anaerostipes ↓ Phascolarctobacterium | Possible NO-related effects; inconsistent mechanisms |
Caffeine/Coffee | Possible ↑ richness | ↑ Bacteroides–Prevotella–Porphyromonas group ↑ Lawsonibacter asaccharolyticus (independent of caffeine) | Affects transit time and gut secretions May modulate enzymatic activity in the colon |
Iron | No major changes | Potential ↑ siderophiles (e.g., E. coli) | Risk of oxidative damage Pathogenic bacterial growth |
Probiotics | No major changes | Direct ↑ of supplemented strains; sometimes ↑ relative abundance of other genera not included in the formulation | ↓ Intestinal permeability ↑ SCFA Immunomodulation |
PUFA (Polyunsaturated Fatty Acids) | No major changes | ↑ Bifidobacterium ↑ Roseburia ↑ Lactobacillus | May change fatty acid pool in the gut Substrates for bacterial phospholipid synthesis Converted to signaling molecules |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsimichas, T.; Xintarakou, A.; Vlachopoulos, C.; Tsioufis, C.; Lazaros, G. Effects of Athletic Nutritional Supplements on the Human Gut Microbiota: A Narrative Review. Nutrients 2025, 17, 3071. https://doi.org/10.3390/nu17193071
Katsimichas T, Xintarakou A, Vlachopoulos C, Tsioufis C, Lazaros G. Effects of Athletic Nutritional Supplements on the Human Gut Microbiota: A Narrative Review. Nutrients. 2025; 17(19):3071. https://doi.org/10.3390/nu17193071
Chicago/Turabian StyleKatsimichas, Themistoklis, Anastasia Xintarakou, Charalambos Vlachopoulos, Costas Tsioufis, and George Lazaros. 2025. "Effects of Athletic Nutritional Supplements on the Human Gut Microbiota: A Narrative Review" Nutrients 17, no. 19: 3071. https://doi.org/10.3390/nu17193071
APA StyleKatsimichas, T., Xintarakou, A., Vlachopoulos, C., Tsioufis, C., & Lazaros, G. (2025). Effects of Athletic Nutritional Supplements on the Human Gut Microbiota: A Narrative Review. Nutrients, 17(19), 3071. https://doi.org/10.3390/nu17193071