Adhering to Healthy Dietary Patterns Prevents Cognitive Decline of Older Adults with Sarcopenia: The Mr. OS and Ms. OS Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Cognitive Outcomes
2.3. Sarcopenia Assessment
2.4. Dietary Assessment
2.5. Justification for Inclusion of Dietary Patterns
2.6. High-Sensitivity C-Reactive Protein (hs-CRP)
2.7. Covariates
2.8. Statistical Analysis
3. Results
3.1. Characteristics of OS Study Participants
3.2. Sarcopenia and Cognitive Outcomes
3.3. Protein Intake, Dietary Patterns, and Cognitive Outcomes
3.4. Mediation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef]
- Rabin, L.A.; Smart, C.M.; Amariglio, R.E. Subjective Cognitive Decline in Preclinical Alzheimer’s Disease. Annu. Rev. Clin. Psychol. 2017, 13, 369–396. [Google Scholar] [CrossRef]
- Beaudart, C.; Zaaria, M.; Pasleau, F.; Reginster, J.Y.; Bruyere, O. Health Outcomes of Sarcopenia: A Systematic Review and Meta-Analysis. PLoS ONE 2017, 12, e0169548. [Google Scholar] [CrossRef]
- Mayhew, A.J.; Amog, K.; Phillips, S.; Parise, G.; McNicholas, P.D.; de Souza, R.J.; Thabane, L.; Raina, P. The prevalence of sarcopenia in community-dwelling older adults, an exploration of differences between studies and within definitions: A systematic review and meta-analyses. Age Ageing 2019, 48, 48–56. [Google Scholar] [CrossRef]
- Jo, D.; Yoon, G.; Kim, O.Y.; Song, J. A new paradigm in sarcopenia: Cognitive impairment caused by imbalanced myokine secretion and vascular dysfunction. Biomed. Pharmacother. 2022, 147, 112636. [Google Scholar] [CrossRef]
- Chen, X.; Cao, M.; Liu, M.; Liu, S.; Zhao, Z.; Chen, H. Association between sarcopenia and cognitive impairment in the older people: A meta-analysis. Eur. Geriatr. Med. 2022, 13, 771–787. [Google Scholar] [CrossRef]
- Orchard, S.G.; Polekhina, G.; Ryan, J.; Shah, R.C.; Storey, E.; Chong, T.T.; Lockery, J.E.; Ward, S.A.; Wolfe, R.; Nelson, M.R.; et al. Combination of gait speed and grip strength to predict cognitive decline and dementia. Alzheimer’s Dement. 2022, 14, e12353. [Google Scholar] [CrossRef]
- Tessier, A.-J.; Wing, S.S.; Rahme, E.; Morais, J.A.; Chevalier, S. Association of low muscle mass with cognitive function during a 3-year follow-up among adults aged 65 to 86 years in the Canadian longitudinal study on aging. JAMA Netw. Open 2022, 5, e2219926. [Google Scholar] [CrossRef]
- Maniscalco, L.; Veronese, N.; Ragusa, F.S.; Vernuccio, L.; Dominguez, L.J.; Smith, L.; Matranga, D.; Barbagallo, M. Sarcopenia using muscle mass prediction model and cognitive impairment: A longitudinal analysis from the English longitudinal study on ageing. Arch. Gerontol. Geriatr. 2024, 117, 105160. [Google Scholar] [CrossRef]
- Chung, J.; Byun, S. Motoric cognitive risk and incident dementia in older adults. JAMA Netw. Open 2023, 6, e2338534. [Google Scholar] [CrossRef]
- Papadopoulou, S.K.; Papadimitriou, K.; Voulgaridou, G.; Georgaki, E.; Tsotidou, E.; Zantidou, O.; Papandreou, D. Exercise and nutrition impact on osteoporosis and sarcopenia—The incidence of osteosarcopenia: A narrative review. Nutrients 2021, 13, 4499. [Google Scholar] [CrossRef]
- Mocini, E.; Cardinali, L.; Di Vincenzo, O.; Moretti, A.; Baldari, C.; Iolascon, G.; Migliaccio, S. An Integrated Nutritional and Physical Activity Approach for Osteosarcopenia. Nutrients 2025, 17, 2842. [Google Scholar] [CrossRef]
- Gadgil, M.D.; Appel, L.J.; Yeung, E.; Anderson, C.A.; Sacks, F.M.; Miller, E.R., 3rd. The effects of carbohydrate, unsaturated fat, and protein intake on measures of insulin sensitivity: Results from the OmniHeart trial. Diabetes Care 2013, 36, 1132–1137. [Google Scholar] [CrossRef] [PubMed]
- Azadbakht, L.; Surkan, P.J.; Esmaillzadeh, A.; Willett, W.C. The Dietary Approaches to Stop Hypertension eating plan affects C-reactive protein, coagulation abnormalities, and hepatic function tests among type 2 diabetic patients. J. Nutr. 2011, 141, 1083–1088. [Google Scholar] [CrossRef] [PubMed]
- Sikkes, S.A.M.; Tang, Y.; Jutten, R.J.; Wesselman, L.M.P.; Turkstra, L.S.; Brodaty, H.; Clare, L.; Cassidy-Eagle, E.; Cox, K.L.; Chetelat, G.; et al. Toward a theory-based specification of non-pharmacological treatments in aging and dementia: Focused reviews and methodological recommendations. Alzheimer’s Dement. 2021, 17, 255–270. [Google Scholar] [CrossRef]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Song, Y.; Cheng, F.; Du, Y.; Zheng, J.; An, Y.; Lu, Y. Higher Adherence to the AMED, DASH, and CHFP Dietary Patterns Is Associated with Better Cognition among Chinese Middle-Aged and Elderly Adults. Nutrients 2023, 15, 3974. [Google Scholar] [CrossRef]
- Chen, X.; Maguire, B.; Brodaty, H.; O’Leary, F. Dietary Patterns and Cognitive Health in Older Adults: A Systematic Review. J. Alzheimer’s Dis. 2019, 67, 583–619. [Google Scholar] [CrossRef]
- Huang, L.; Tao, Y.; Chen, H.; Chen, X.; Shen, J.; Zhao, C.; Xu, X.; He, M.; Zhu, D.; Zhang, R.; et al. Mediterranean-Dietary Approaches to Stop Hypertension Intervention for Neurodegenerative Delay (MIND) Diet and Cognitive Function and its Decline: A Prospective Study and Meta-analysis of Cohort Studies. Am. J. Clin. Nutr. 2023, 118, 174–182. [Google Scholar] [CrossRef]
- Yeh, T.S.; Yuan, C.; Ascherio, A.; Rosner, B.A.; Blacker, D.; Willett, W.C. Long-term dietary protein intake and subjective cognitive decline in US men and women. Am. J. Clin. Nutr. 2022, 115, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jin, X.; Lutz, M.W.; Ju, S.Y.; Liu, K.; Guo, G.; Zeng, Y.; Yao, Y. Interaction between APOE epsilon4 and dietary protein intake on cognitive decline: A longitudinal cohort study. Clin. Nutr. 2021, 40, 2716–2725. [Google Scholar] [CrossRef]
- Yang, J.; Yang, A.; Yeung, S.; Woo, J.; Lo, K. Joint Associations of Food Groups with All-Cause and Cause-Specific Mortality in the Mr. OS and Ms. OS Study: A Prospective Cohort. Nutrients 2022, 14, 3915. [Google Scholar] [CrossRef]
- Chiu, H.F.; Lee, H.; Chung, W.; Kwong, P. Reliability and validity of the Cantonese version of Mini-Mental State Examination. East Asian Arch. Psychiatry 1994, 4, 25. [Google Scholar]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e302. [Google Scholar] [CrossRef]
- Woo, J.; Leung, S.S.F.; Ho, S.C.; Lam, T.H.; Janus, E.D. A food frequency questionnaire for use in the Chinese population in Hong Kong: Description and examination of validity. Nutr. Res. 1997, 17, 1633–1641. [Google Scholar] [CrossRef]
- Chan, R.S.; Yu, B.; Leung, J.; Lee, J.; Auyeung, T.; Kwok, T.; Woo, J. How dietary patterns are related to inflammaging and mortality in community-dwelling older Chinese adults in Hong Kong—A prospective analysis. J. Nutr. Health Aging 2019, 23, 181–194. [Google Scholar] [CrossRef]
- Paul, A.; Southgate, D.A. McCance and Widdowson’s the Composition of Foods; HM Stationery Office: London, UK, 1978. [Google Scholar]
- Yang, Y.; Wang, G.; Pan, X. China Food Composition; Peking University Medical Press: Beijing, China, 2009; Volume 42, pp. 795–799. [Google Scholar]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S. [Google Scholar] [CrossRef]
- Li, S.-Y.; Lu, Z.-H.; Leung, J.C.; Kwok, T.C. Association of dietary protein intake, inflammation with muscle mass, physical performance and incident sarcopenia in Chinese community-dwelling older adults. J. Nutr. Health Aging 2024, 28, 100163. [Google Scholar] [CrossRef]
- Mellen, P.B.; Gao, S.K.; Vitolins, M.Z.; Goff, D.C. Deteriorating dietary habits among adults with hypertension: DASH dietary accordance, NHANES 1988–1994 and 1999–2004. Arch. Intern. Med. 2008, 168, 308–314. [Google Scholar] [CrossRef]
- Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Barnes, L.L.; Bennett, D.A.; Aggarwal, N.T. MIND diet slows cognitive decline with aging. Alzheimer’s Dement. 2015, 11, 1015–1022. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hebert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef]
- Puri, S.; Shaheen, M.; Grover, B. Nutrition and cognitive health: A life course approach. Front. Public Health 2023, 11, 1023907. [Google Scholar] [CrossRef]
- Tessier, A.-J.; Wang, F.; Korat, A.A.; Eliassen, A.H.; Chavarro, J.; Grodstein, F.; Li, J.; Liang, L.; Willett, W.C.; Sun, Q. Optimal dietary patterns for healthy aging. Nat. Med. 2025, 31, 1644–1652. [Google Scholar] [CrossRef]
- Chan, R.; Leung, J.; Woo, J. Dietary patterns and risk of frailty in Chinese community-dwelling older people in Hong Kong: A prospective cohort study. Nutrients 2015, 7, 7070–7084. [Google Scholar] [CrossRef]
- Jia, Y.; Yan, S.; Sun, M.; Yang, Y.; Wang, L.; Wu, C.; Li, P. Association between dietary inflammatory index and cognitive impairment: A meta-analysis. Front. Aging Neurosci. 2023, 14, 1007629. [Google Scholar] [CrossRef]
- Fang, B.; Wang, Z.; Nan, G. Dietary inflammatory potential and the risk of cognitive impairment: A meta-analysis of prospective cohort studies. J. Nutr. Health Aging 2025, 29, 100428. [Google Scholar] [CrossRef]
- Li, S.-Y.; Lu, Z.-H.; Leung, J.; Su, Y.; Yu, B.; Kwok, T. Dietary patterns modify the association between body mass index and mortality in older adults. Clin. Nutr. 2025, 46, 20–29. [Google Scholar] [CrossRef]
- Washburn, R.A.; Smith, K.W.; Jette, A.M.; Janney, C.A. The Physical Activity Scale for the Elderly (PASE): Development and evaluation. J. Clin. Epidemiol. 1993, 46, 153–162. [Google Scholar] [CrossRef]
- VanderWeele, T.J. Mediation Analysis: A Practitioner’s Guide. Annu. Rev. Public Health 2016, 37, 17–32. [Google Scholar] [CrossRef]
- Gong, J.H.; Lo, K.; Liu, Q.; Li, J.; Lai, S.; Shadyab, A.H.; Arcan, C.; Snetselaar, L.; Liu, S. Dietary Manganese, Plasma Markers of Inflammation, and the Development of Type 2 Diabetes in Postmenopausal Women: Findings From the Women’s Health Initiative. Diabetes Care 2020, 43, 1344–1351. [Google Scholar] [CrossRef]
- Hu, Y.; Peng, W.; Ren, R.; Wang, Y.; Wang, G. Sarcopenia and mild cognitive impairment among elderly adults: The first longitudinal evidence from CHARLS. J. Cachexia Sarcopenia Muscle 2022, 13, 2944–2952. [Google Scholar] [CrossRef]
- Salinas-Rodríguez, A.; Palazuelos-González, R.; Rivera-Almaraz, A.; Manrique-Espinoza, B. Longitudinal association of sarcopenia and mild cognitive impairment among older Mexican adults. J. Cachexia Sarcopenia Muscle 2021, 12, 1848–1859. [Google Scholar] [CrossRef]
- Beeri, M.S.; Leugrans, S.E.; Delbono, O.; Bennett, D.A.; Buchman, A.S. Sarcopenia is associated with incident Alzheimer’s dementia, mild cognitive impairment, and cognitive decline. J. Am. Geriatr. Soc. 2021, 69, 1826–1835. [Google Scholar] [CrossRef]
- Moon, J.H.; Moon, J.H.; Kim, K.M.; Choi, S.H.; Lim, S.; Park, K.S.; Kim, K.W.; Jang, H.C. Sarcopenia as a Predictor of Future Cognitive Impairment in Older Adults. J. Nutr. Health Aging 2016, 20, 496–502. [Google Scholar] [CrossRef]
- Mazza, E.; Fava, A.; Ferro, Y.; Moraca, M.; Rotundo, S.; Colica, C.; Provenzano, F.; Terracciano, R.; Greco, M.; Foti, D.; et al. Impact of legumes and plant proteins consumption on cognitive performances in the elderly. J. Transl. Med. 2017, 15, 109. [Google Scholar] [CrossRef]
- van de Rest, O.; van der Zwaluw, N.L.; de Groot, L.C. Literature review on the role of dietary protein and amino acids in cognitive functioning and cognitive decline. Amino Acids 2013, 45, 1035–1045. [Google Scholar] [CrossRef]
- Schernhammer, E.S.; Feskanich, D.; Niu, C.; Dopfel, R.; Holmes, M.D.; Hankinson, S.E. Dietary correlates of urinary 6-sulfatoxymelatonin concentrations in the Nurses’ Health Study cohorts. Am. J. Clin. Nutr. 2009, 90, 975–985. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Wang, W.; Zhang, D. Association between Dietary Protein Intake and Cognitive Function in Adults Aged 60 Years and Older. J. Nutr. Health Aging 2020, 24, 223–229. [Google Scholar] [CrossRef]
- Lee, L.; Kang, S.A.; Lee, H.O.; Lee, B.H.; Park, J.S.; Kim, J.H.; Jung, I.K.; Park, Y.J.; Lee, J.E. Relationships between dietary intake and cognitive function level in Korean elderly people. Public Health 2001, 115, 133–138. [Google Scholar] [CrossRef]
- Wohlgemuth, K.J.; Arieta, L.R.; Brewer, G.J.; Hoselton, A.L.; Gould, L.M.; Smith-Ryan, A.E. Sex differences and considerations for female specific nutritional strategies: A narrative review. J. Int. Soc. Sports Nutr. 2021, 18, 27. [Google Scholar] [CrossRef]
- Vercambre, M.N.; Boutron-Ruault, M.C.; Ritchie, K.; Clavel-Chapelon, F.; Berr, C. Long-term association of food and nutrient intakes with cognitive and functional decline: A 13-year follow-up study of elderly French women. Br. J. Nutr. 2009, 102, 419–427. [Google Scholar] [CrossRef]
- Ding, B.; Xiao, R.; Ma, W.; Zhao, L.; Bi, Y.; Zhang, Y. The association between macronutrient intake and cognition in individuals aged under 65 in China: A cross-sectional study. BMJ Open 2018, 8, e018573. [Google Scholar] [CrossRef]
- Scarmeas, N.; Anastasiou, C.A.; Yannakoulia, M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 2018, 17, 1006–1015. [Google Scholar] [CrossRef]
- Song, Y.; Wu, F.; Sharma, S.; Clendenen, T.V.; India-Aldana, S.; Afanasyeva, Y.; Gu, Y.; Koenig, K.L.; Zeleniuch-Jacquotte, A.; Chen, Y. Mid-life adherence to the Dietary Approaches to Stop Hypertension (DASH) diet and late-life subjective cognitive complaints in women. Alzheimer’s Dement. 2024, 20, 1076–1088. [Google Scholar] [CrossRef]
- Nakamoto, M.; Otsuka, R.; Nishita, Y.; Tange, C.; Tomida, M.; Kato, Y.; Imai, T.; Sakai, T.; Ando, F.; Shimokata, H. Soy food and isoflavone intake reduces the risk of cognitive impairment in elderly Japanese women. Eur. J. Clin. Nutr. 2018, 72, 1458–1462. [Google Scholar] [CrossRef]
- Cherbuin, N. Higher dietary intakes of potassium, calcium and magnesium are associated with a reduced risk of developing vascular dementia. Evid. Based Ment. Health 2013, 16, 26. [Google Scholar] [CrossRef]
- Talaei, M.; Feng, L.; Yuan, J.M.; Pan, A.; Koh, W.P. Dairy, soy, and calcium consumption and risk of cognitive impairment: The Singapore Chinese Health Study. Eur. J. Nutr. 2020, 59, 1541–1552. [Google Scholar] [CrossRef]
- Cornelis, M.C.; Agarwal, P.; Holland, T.M.; van Dam, R.M. MIND Dietary Pattern and Its Association with Cognition and Incident Dementia in the UK Biobank. Nutrients 2022, 15, 32. [Google Scholar] [CrossRef]
- Berendsen, A.M.; Kang, J.H.; Feskens, E.J.M.; de Groot, C.; Grodstein, F.; van de Rest, O. Association of Long-Term Adherence to the MIND Diet with Cognitive Function and Cognitive Decline in American Women. J. Nutr. Health Aging 2018, 22, 222–229. [Google Scholar] [CrossRef]
- Canon, M.E.; Crimmins, E.M. Sex differences in the association between muscle quality, inflammatory markers, and cognitive decline. J. Nutr. Health Aging 2011, 15, 695–698. [Google Scholar] [CrossRef]
- Ezzati, A.; Katz, M.J.; Lipton, M.L.; Lipton, R.B.; Verghese, J. The association of brain structure with gait velocity in older adults: A quantitative volumetric analysis of brain MRI. Neuroradiology 2015, 57, 851–861. [Google Scholar] [CrossRef]
- Nadkarni, N.K.; Nunley, K.A.; Aizenstein, H.; Harris, T.B.; Yaffe, K.; Satterfield, S.; Newman, A.B.; Rosano, C.; Health, A.B.C.S. Association between cerebellar gray matter volumes, gait speed, and information-processing ability in older adults enrolled in the Health ABC study. J. Gerontol. Ser. A 2014, 69, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Semba, R.D.; Tian, Q.; Carlson, M.C.; Xue, Q.L.; Ferrucci, L. Motoric cognitive risk syndrome: Integration of two early harbingers of dementia in older adults. Ageing Res. Rev. 2020, 58, 101022. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, H.; Meng, G.; Zhang, Q.; Liu, L.; Wu, H.; Gu, Y.; Zhang, S.; Wang, X.; Zhang, J.; et al. Anti-inflammatory dietary pattern is associated with handgrip strength decline: A prospective cohort study. Eur. J. Nutr. 2023, 62, 3207–3216. [Google Scholar] [CrossRef] [PubMed]
- Bibiloni, M.D.M.; Julibert, A.; Argelich, E.; Aparicio-Ugarriza, R.; Palacios, G.; Pons, A.; Gonzalez-Gross, M.; Tur, J.A. Western and Mediterranean Dietary Patterns and Physical Activity and Fitness among Spanish Older Adults. Nutrients 2017, 9, 704. [Google Scholar] [CrossRef]
- Shahar, D.R.; Houston, D.K.; Hue, T.F.; Lee, J.S.; Sahyoun, N.R.; Tylavsky, F.A.; Geva, D.; Vardi, H.; Harris, T.B. Adherence to mediterranean diet and decline in walking speed over 8 years in community-dwelling older adults. J. Am. Geriatr. Soc. 2012, 60, 1881–1888. [Google Scholar] [CrossRef]
- Talegawkar, S.A.; Jin, Y.; Simonsick, E.M.; Tucker, K.L.; Ferrucci, L.; Tanaka, T. The Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet is associated with physical function and grip strength in older men and women. Am. J. Clin. Nutr. 2022, 115, 625–632. [Google Scholar] [CrossRef]
- Pasdar, Y.; Moradi, S.; Saedi, S.; Moradinazar, M.; Rahmani, N.; Hamzeh, B.; Najafi, F. Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet in relation to age-associated poor muscle strength; a cross-sectional study from the Kurdish cohort study. Sci. Rep. 2022, 12, 11866. [Google Scholar] [CrossRef]
- Ciesielska, N.; Sokołowski, R.; Mazur, E.; Podhorecka, M.; Polak-Szabela, A.; Kędziora-Kornatowska, K. Is the Montreal Cognitive Assessment (MoCA) test better suited than the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis. Psychiatr. Pol. 2016, 50, 1039–1052. [Google Scholar] [CrossRef]
Healthy (N = 998) | Probable Sarcopenia (N = 1572) | Sarcopenia/Severe Sarcopenia (N = 576) | p Value | |
---|---|---|---|---|
Mean (SD)/N (%) | ||||
Sex (female) | 437 (43.8) | 966 (61.5) | 179 (31.1) | <0.001 |
Age (years) | 70.31 ± 4.16 | 72.41 ± 4.83 | 73.27 ± 5.41 | <0.001 |
Post-secondary education | 163 (16.3) | 108 (6.9) | 58 (10.1) | <0.001 |
Physical activity (PASE score) | 100.51 ± 46.53 | 91.76 ± 41.42 | 87.37 ± 41.58 | <0.001 |
Smoking habit | <0.001 | |||
Former smoker | 271 (27.2) | 421 (26.8) | 224 (38.9) | |
Current smoker | 73 (7.3) | 57 (3.6) | 66 (11.5) | |
Drank > 12 alcoholic drinks in the past year | 158 (15.8) | 177 (11.3) | 90 (15.6) | 0.001 |
Dietary energy (kcal) | 1916.58 ± 600.98 | 1790.86 ± 572.29 | 1917.66 ± 575.86 | <0.001 |
Body mass index (kg/m2) | 23.53 ± 3.11 | 24.90 ± 2.90 | 20.96 ± 2.34 | <0.001 |
Systolic blood pressure | 141.78 ± 19.16 | 143.34 ± 18.45 | 139.81 ± 18.85 | <0.001 |
History of diabetes | 131 (13.1) | 252 (16.0) | 59 (10.2) | 0.002 |
History of stroke | 24 (2.4) | 69 (4.4) | 31 (5.4) | 0.006 |
History of heart attack | 84 (8.4) | 161 (10.2) | 48 (8.3) | 0.201 |
History of angina | 76 (7.6) | 143 (9.1) | 42 (7.3) | 0.260 |
History of congestive heart failure | 27 (2.7) | 71 (4.5) | 21 (3.6) | 0.063 |
History of cancer | 33 (3.3) | 77 (4.9) | 19 (3.3) | 0.079 |
Baseline MMSE | 26.50 (3.12) | 25.39 (3.68) | 26.36 (3.05) | <0.001 |
MMSE change | 0.38 (3.12) | 0.17 (3.41) | −0.38 (3.71) | <0.001 |
Protein (g) per day/kg | 1.38 ± 0.61 | 1.24 ± 0.52 | 1.51 ± 0.65 | <0.001 |
Animal protein (g) per day/kg | 0.77 ± 0.46 | 0.70 ± 0.40 | 0.87 ± 0.50 | <0.001 |
Plant protein (g) per day/kg | 0.60 ± 0.27 | 0.54 ± 0.25 | 0.64 ± 0.30 | <0.001 |
Diet Quality Index— International | 65.53 ± 9.06 | 64.77 ± 9.28 | 63.56 ± 9.65 | <0.001 |
DASH diet score | 4.05 ± 1.28 | 4.05 ± 1.26 | 3.80 ± 1.22 | <0.001 |
MIND diet score | 4.70 ± 0.93 | 4.63 ± 0.89 | 4.48 ± 1.00 | <0.001 |
Mediterranean diet score | 4.12 ± 1.56 | 4.15 ± 1.52 | 3.94 ± 1.57 | 0.021 |
DII score | −0.76 ± 1.39 | −0.43 ± 1.50 | −0.52 ± 1.43 | <0.001 |
Baseline MMSE (N = 3146) | MMSE Change (N = 3146) | |
---|---|---|
Sarcopenic Status | Coefficient (95% CI) | Coefficient (95% CI) |
Normal | 0.00 | 0.00 |
Probable sarcopenia | −0.15 (−0.40, 0.11) | −0.51 (−0.76, −0.26) * |
Sarcopenia/severe sarcopenia | 0.09 (−0.25, 0.42) | −0.52 (−0.85, −0.19) * |
Diagnosis components | ||
Low handgrip strength | −0.25 (−0.61, 0.11) | −0.61 (−0.97, −0.25) * |
Handgrip strength (per 1 unit increase) | 0.03 (0.01, 0.05) * | 0.04 (0.02, 0.06) * |
Low physical performance | −0.12 (−0.35, 0.11) | −0.46 (−0.69, −0.23) * |
Walking speed (per 1 unit increase) | 0.83 (0.30, 1.36) * | 0.71 (0.17, 1.24) * |
Time to complete 5 stands (per 1 unit increase) | −0.02 (−0.04, 0.01) | −0.04 (−0.07, −0.02) * |
Low muscle mass | 0.17 (−0.12, 0.46) | −0.03 (−0.32, 0.26) |
Muscle mass (per 1 unit increase) | −0.25 (−0.47, −0.02) * | 0.12 (−0.11, 0.34) |
Coefficient (95% CI) | Proportion Mediated (%) | Coefficient (95% CI) | Proportion Mediated (%) | |
---|---|---|---|---|
All participants | Baseline MMSE (N = 3146) | MMSE change (N = 3146) | ||
DQI-I | ||||
Walking speed | 0.0011 (0.0003, 0.0023) * | 8.04 | ||
Time to complete 5 stands | 0.0009 (0.0001, 0.0019) * | 9.31 | ||
DII | ||||
Walking speed | −0.0131 (−0.0248, −0.0030) * | 7.43 | ||
Time to complete 5 stands | −0.0100 (−0.0205, −0.0015) * | 37.22 | ||
Animal protein | ||||
Handgrip strength | −0.0324 (−0.0694, −0.0009) * | 8.05 | ||
All males | Baseline MMSE (N = 1564) | |||
Total protein | ||||
Handgrip strength | −0.0560 (−0.1094, −0.0148) * | 13.36 | ||
DII | ||||
Time to complete 5 stands | −0.0165 (−0.0328, −0.0030) * | 15.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Lai, G.; Li, S.; Lee, J.; Chan, V.; Lu, Z.; Leung, J.; Lai, K.; Lam, K.; Auyeung, T.W.; et al. Adhering to Healthy Dietary Patterns Prevents Cognitive Decline of Older Adults with Sarcopenia: The Mr. OS and Ms. OS Study. Nutrients 2025, 17, 3070. https://doi.org/10.3390/nu17193070
Jin Y, Lai G, Li S, Lee J, Chan V, Lu Z, Leung J, Lai K, Lam K, Auyeung TW, et al. Adhering to Healthy Dietary Patterns Prevents Cognitive Decline of Older Adults with Sarcopenia: The Mr. OS and Ms. OS Study. Nutrients. 2025; 17(19):3070. https://doi.org/10.3390/nu17193070
Chicago/Turabian StyleJin, Yichen, Gianna Lai, Shuyi Li, Jenny Lee, Vicky Chan, Zhihui Lu, Jason Leung, Kingson Lai, Kuen Lam, Tung Wai Auyeung, and et al. 2025. "Adhering to Healthy Dietary Patterns Prevents Cognitive Decline of Older Adults with Sarcopenia: The Mr. OS and Ms. OS Study" Nutrients 17, no. 19: 3070. https://doi.org/10.3390/nu17193070
APA StyleJin, Y., Lai, G., Li, S., Lee, J., Chan, V., Lu, Z., Leung, J., Lai, K., Lam, K., Auyeung, T. W., Kwok, T., Chui, K. T., Woo, J., & Lo, K. K.-h. (2025). Adhering to Healthy Dietary Patterns Prevents Cognitive Decline of Older Adults with Sarcopenia: The Mr. OS and Ms. OS Study. Nutrients, 17(19), 3070. https://doi.org/10.3390/nu17193070