Freeze-Dried Donor Milk for Fortification of Mother’s Own Milk in Preterm Infants: A Preliminary Observational Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Participants
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.2.3. Matching Criteria
2.3. Feeding Routines
2.3.1. Freeze-Dried Human Milk Fortifier (Exposed Cohort)
2.3.2. Bovine Protein-Based Fortifier (Matched Cohort)
2.3.3. Feed Preparation and Administration
2.3.4. Feeding Protocol
2.4. Outcome Measures
2.4.1. Primary Outcomes
2.4.2. Secondary Outcomes
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Growth and Anthropometric Outcomes
3.3. Feeding Tolerance
3.4. Safety-Related Blood Parameters and Urinary Electrolyte Parameters
3.5. Nutritional Intake and Feeding Advancement
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CaPh-suppl. | calcium–glycerophosphate supplementation |
HELLP | hemolysis, elevated liver enzymes, and low platelet count |
References
- Ohuma, E.O.; Moller, A.-B.; Bradley, E.; Chakwera, S.; Hussain-Alkhateeb, L.; Lewin, A.; Okwaraji, Y.B.; Mahanani, W.R.; Johansson, E.W.; Lavin, T.; et al. National, Regional, and Global Estimates of Preterm Birth in 2020, with Trends from 2010: A Systematic Analysis. Lancet 2023, 402, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
- Weeks, C.L.; Marino, L.V.; Johnson, M.J. A Systematic Review of the Definitions and Prevalence of Feeding Intolerance in Preterm Infants. Clin. Nutr. 2021, 40, 5576–5586. [Google Scholar] [CrossRef] [PubMed]
- Embleton, N.D. Fifteen-Minute Consultation: ABCDE Approach to Nutritional Assessment in Preterm Infants. Arch. Dis. Child. Educ. Pract. Ed. 2022, 107, 314–319. [Google Scholar] [CrossRef]
- Kunz, S.N.; Bell, K.; Belfort, M.B. Early Nutrition in Preterm Infants: Effects on Neurodevelopment and Cardiometabolic Health. NeoReviews 2016, 17, e386–e393. [Google Scholar] [CrossRef]
- Ballard, O.; Morrow, A.L. Human Milk Composition. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef]
- Fusch, S.; Fusch, G.; Yousuf, E.I.; Rochow, M.; So, H.Y.; Fusch, C.; Rochow, N. Individualized Target Fortification of Breast Milk: Optimizing Macronutrient Content Using Different Fortifiers and Approaches. Front. Nutr. 2021, 8, 652641. [Google Scholar] [CrossRef]
- Kim, J.H.; Chan, G.; Schanler, R.; Groh-Wargo, S.; Bloom, B.; Dimmit, R.; Williams, L.; Baggs, G.; Barrett-Reis, B. Growth and Tolerance of Preterm Infants Fed a New Extensively Hydrolyzed Liquid Human Milk Fortifier. J. Pediatr. Gastroenterol. Nutr. 2015, 61, 665–671. [Google Scholar] [CrossRef]
- Nagel, E.M.; Elgersma, K.M.; Gallagher, T.T.; Johnson, K.E.; Demerath, E.; Gale, C.A. Importance of Human Milk for Infants in the Clinical Setting: Updates and Mechanistic Links. Nutr. Clin. Pract. 2023, 38, S39–S55. [Google Scholar] [CrossRef]
- Masi, A.C.; Embleton, N.D.; Lamb, C.A.; Young, G.; Granger, C.L.; Najera, J.; Smith, D.P.; Hoffman, K.L.; Petrosino, J.F.; Bode, L.; et al. Human Milk Oligosaccharide DSLNT and Gut Microbiome in Preterm Infants Predicts Necrotising Enterocolitis. Gut 2021, 70, 2273–2282. [Google Scholar] [CrossRef]
- Szyller, H.; Antosz, K.; Batko, J.; Mytych, A.; Dziedziak, M.; Wrześniewska, M.; Braksator, J.; Pytrus, T. Bioactive Components of Human Milk and Their Impact on Child’s Health and Development, Literature Review. Nutrients 2024, 16, 1487. [Google Scholar] [CrossRef]
- Hair, A.B.; Peluso, A.M.; Hawthorne, K.M.; Perez, J.; Smith, D.P.; Khan, J.Y.; O’Donnell, A.; Powers, R.J.; Lee, M.L.; Abrams, S.A. Beyond Necrotizing Enterocolitis Prevention: Improving Outcomes with an Exclusive Human Milk–Based Diet. Breastfeed. Med. 2016, 11, 70–74. [Google Scholar] [CrossRef]
- Sullivan, S.; Schanler, R.J.; Kim, J.H.; Patel, A.L.; Trawöger, R.; Kiechl-Kohlendorfer, U.; Chan, G.M.; Blanco, C.L.; Abrams, S.; Cotten, C.M.; et al. An Exclusively Human Milk-Based Diet Is Associated with a Lower Rate of Necrotizing Enterocolitis than a Diet of Human Milk and Bovine Milk-Based Products. J. Pediatr. 2010, 156, 562–567.e1. [Google Scholar] [CrossRef] [PubMed]
- Lapidaire, W.; Lucas, A.; Clayden, J.D.; Clark, C.; Fewtrell, M.S. Human Milk Feeding and Cognitive Outcome in Preterm Infants: The Role of Infection and NEC Reduction. Pediatr. Res. 2022, 91, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Embleton, N.D.; Jennifer Moltu, S.; Lapillonne, A.; Van Den Akker, C.H.P.; Carnielli, V.; Fusch, C.; Gerasimidis, K.; Van Goudoever, J.B.; Haiden, N.; Iacobelli, S.; et al. Enteral Nutrition in Preterm Infants (2022): A Position Paper from the ESPGHAN Committee on Nutrition and Invited Experts. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 248–268. [Google Scholar] [CrossRef] [PubMed]
- Moro, G.E.; Arslanoglu, S.; Bertino, E.; Corvaglia, L.; Montirosso, R.; Picaud, J.; Polberger, S.; Schanler, R.J.; Steel, C.; Van Goudoever, J.; et al. XII. Human Milk in Feeding Premature Infants: Consensus Statement. J. Pediatr. Gastroenterol. Nutr. 2015, 61, S16–S19. [Google Scholar] [CrossRef]
- Hay, W.W. Nutritional Requirements of Extremely Low Birthweight Infants. Acta Paediatr. 1994, 83, 94–99. [Google Scholar] [CrossRef]
- Fu, T.T.; Poindexter, B.B. Human Milk Fortification Strategies in the Neonatal Intensive Care Unit. Clin. Perinatol. 2023, 50, 643–652. [Google Scholar] [CrossRef]
- Cristofalo, E.A.; Schanler, R.J.; Blanco, C.L.; Sullivan, S.; Trawoeger, R.; Kiechl-Kohlendorfer, U.; Dudell, G.; Rechtman, D.J.; Lee, M.L.; Lucas, A.; et al. Randomized Trial of Exclusive Human Milk versus Preterm Formula Diets in Extremely Premature Infants. J. Pediatr. 2013, 163, 1592–1595.e1. [Google Scholar] [CrossRef]
- Corpeleijn, W.E.; Kouwenhoven, S.M.P.; Paap, M.C.; Van Vliet, I.; Scheerder, I.; Muizer, Y.; Helder, O.K.; Van Goudoever, J.B.; Vermeulen, M.J. Intake of Own Mother’s Milk during the First Days of Life Is Associated with Decreased Morbidity and Mortality in Very Low Birth Weight Infants during the First 60 Days of Life. Neonatology 2012, 102, 276–281. [Google Scholar] [CrossRef]
- Swanson, J.R.; Becker, A.; Fox, J.; Horgan, M.; Moores, R.; Pardalos, J.; Pinheiro, J.; Stewart, D.; Robinson, T. Implementing an Exclusive Human Milk Diet for Preterm Infants: Real-World Experience in Diverse NICUs. BMC Pediatr. 2023, 23, 237. [Google Scholar] [CrossRef]
- Arslanoglu, S.; Boquien, C.-Y.; King, C.; Lamireau, D.; Tonetto, P.; Barnett, D.; Bertino, E.; Gaya, A.; Gebauer, C.; Grovslien, A.; et al. Fortification of Human Milk for Preterm Infants: Update and Recommendations of the European Milk Bank Association (EMBA) Working Group on Human Milk Fortification. Front. Pediatr. 2019, 7, 76. [Google Scholar] [CrossRef]
- Sproat, T.D.R.; Ghosh, A.; Alshaikh, B.N. Lyophilized (Freeze-Dried) Human Milk for Preterm Infants: A Scoping Review. J. Perinatol. 2024, 44, 612–627. [Google Scholar] [CrossRef] [PubMed]
- Blackshaw, K.; Wu, J.; Proschogo, N.; Davies, J.; Oldfield, D.; Schindeler, A.; Banati, R.B.; Dehghani, F.; Valtchev, P. The Effect of Thermal Pasteurization, Freeze-Drying, and Gamma Irradiation on Donor Human Milk. Food Chem. 2022, 373, 131402. [Google Scholar] [CrossRef]
- Jarzynka, S.; Strom, K.; Barbarska, O.; Pawlikowska, E.; Minkiewicz-Zochniak, A.; Rosiak, E.; Oledzka, G.; Wesolowska, A. Combination of High-Pressure Processing and Freeze-Drying as the Most Effective Techniques in Maintaining Biological Values and Microbiological Safety of Donor Milk. Int. J. Environ. Res. Public Health 2021, 18, 2147. [Google Scholar] [CrossRef] [PubMed]
- Cheema, S.K.; Grimwade-Mann, M.; Weaver, G.; Collins, B.; Shenker, N.; Cameron, S. Freeze-Drying Donor Human Milk Allows Compositional Stability for 12 Months at Ambient Temperatures. J. Food Compos. Anal. 2025, 137, 106936. [Google Scholar] [CrossRef]
- Agostoni, C.; Buonocore, G.; Carnielli, V.; De Curtis, M.; Darmaun, D.; Decsi, T.; Domellöf, M.; Embleton, N.; Fusch, C.; Genzel-Boroviczeny, O.; et al. Enteral Nutrient Supply for Preterm Infants: Commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 85–91. [Google Scholar] [CrossRef]
- Mazahery, H.; Von Hurst, P.R.; McKinlay, C.J.D.; Cormack, B.E.; Conlon, C.A. Air Displacement Plethysmography (Pea Pod) in Full-Term and Pre-Term Infants: A Comprehensive Review of Accuracy, Reproducibility, and Practical Challenges. Matern. Health Neonatol. Perinatol. 2018, 4, 12. [Google Scholar] [CrossRef]
- Demerath, E.W.; Johnson, W.; Davern, B.A.; Anderson, C.G.; Shenberger, J.S.; Misra, S.; Ramel, S.E. New Body Composition Reference Charts for Preterm Infants. Am. J. Clin. Nutr. 2017, 105, 70–77. [Google Scholar] [CrossRef]
- Fenton, T.R.; Nasser, R.; Eliasziw, M.; Kim, J.H.; Bilan, D.; Sauve, R. Validating the Weight Gain of Preterm Infants between the Reference Growth Curve of the Fetus and the Term Infant. BMC Pediatr. 2013, 13, 92. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research Electronic Data Capture (REDCap)—A Metadata-Driven Methodology and Workflow Process for Providing Translational Research Informatics Support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025. [Google Scholar]
- Rabinowich, A.; Avisdris, N.; Yehuda, B.; Vanetik, S.; Khawaja, J.; Graziani, T.; Neeman, B.; Wexler, Y.; Specktor-Fadida, B.; Herzlich, J.; et al. Fetal Body Composition Reference Charts and Sexual Dimorphism Using Magnetic Resonance Imaging. Am. J. Clin. Nutr. 2024, 120, 1364–1372. [Google Scholar] [CrossRef]
- Simon, L.; Borrego, P.; Darmaun, D.; Legrand, A.; Rozé, J.-C.; Chauty-Frondas, A. Effect of Sex and Gestational Age on Neonatal Body Composition. Br. J. Nutr. 2013, 109, 1105–1108. [Google Scholar] [CrossRef]
- Hamatschek, C.; Yousuf, E.I.; Möllers, L.S.; So, H.Y.; Morrison, K.M.; Fusch, C.; Rochow, N. Fat and Fat-Free Mass of Preterm and Term Infants from Birth to Six Months: A Review of Current Evidence. Nutrients 2020, 12, 288. [Google Scholar] [CrossRef] [PubMed]
- Rochow, N.; Möller, S.; Fusch, G.; Drogies, T.; Fusch, C. Levels of Lipids in Preterm Infants Fed Breast Milk. Clin. Nutr. 2010, 29, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Embleton, N.D.; Cooke, R.J. Protein Requirements in Preterm Infants: Effect of Different Levels of Protein Intake on Growth and Body Composition. Pediatr. Res. 2005, 58, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Moak, R.; Boone, N.; Eidson, N.; Rohrer, A.; Engevik, M.; Williams, K.; Chetta, K. Exploring the Links between Necrotizing Enterocolitis and Cow’s Milk Protein Allergy in Preterm Infants: A Narrative Review. Front. Pediatr. 2023, 11, 1274146. [Google Scholar] [CrossRef]
- Köttgen, U.; Braun, E.; Friedberg, V. Gefriertrocknung zur Konservierung von Frauenmilch. Dtsch. Med. Wochenschr. 1955, 80, 923–925. [Google Scholar] [CrossRef]
- Martysiak-Żurowska, D.; Rożek, P.; Puta, M. The Effect of Freeze-Drying and Storage on Lysozyme Activity, Lactoferrin Content, Superoxide Dismutase Activity, Total Antioxidant Capacity and Fatty Acid Profile of Freeze-Dried Human Milk. Dry. Technol. 2022, 40, 615–625. [Google Scholar] [CrossRef]
- Cortez, M.V.; Soria, E.A. The Effect of Freeze-Drying on the Nutrient, Polyphenol, and Oxidant Levels of Breast Milk. Breastfeed. Med. 2016, 11, 551–554. [Google Scholar] [CrossRef]
- Tsang, R.C. (Ed.) Nutrition of the Preterm Infant: Scientific Basis and Practical Guidelines, 2nd ed.; Digital Educational Publishing: Cincinnati, OH, USA, 2005; ISBN 978-1-58352-100-7. [Google Scholar]
- Kashyap, S.; Schulze, K.F.; Forsyth, M.; Zucker, C.; Dell, R.B.; Ramakrishnan, R.; Heird, W.C. Growth, Nutrient Retention, and Metabolic Response in Low Birth Weight Infants Fed Varying Intakes of Protein and Energy. J. Pediatr. 1988, 113, 713–721. [Google Scholar] [CrossRef]
- Kashyap, S. Enteral Intake for Very Low Birth Weight Infants: What Should the Composition Be? Semin. Perinatol. 2007, 31, 74–82. [Google Scholar] [CrossRef]
- Ziegler, E.E. Protein Requirements of Very Low Birth Weight Infants. J. Pediatr. Gastroenterol. Nutr. 2007, 45, S170–S174. [Google Scholar] [CrossRef]
- Gates, A.; Hair, A.B.; Salas, A.A.; Thompson, A.B.; Stansfield, B.K. Nutrient Composition of Donor Human Milk and Comparisons to Preterm Human Milk. J. Nutr. 2023, 153, 2622–2630. [Google Scholar] [CrossRef]
- Lithoxopoulou, M.; Gkampeta, A.; Rallis, D.; Tzafilkou, K.; Drogouti, E.; Tsakalidis, C. Determination of Macronutrient Profile and Energy Composition in Human Milk via Mid-Infrared Spectrometer Analysis: An Experimental Study. J. Parenter. Enter. Nutr. 2025, 49, 517–527. [Google Scholar] [CrossRef]
Parameter | Exposed Cohort | Comparison Cohort | p-Value |
---|---|---|---|
Birth parameters | n = 32 | n = 32 | |
C-section/spontaneous birth | 20/12 | 19/13 | 1.0 |
Sex (male) | 20 | 18 | 0.8 |
Gestational age (weeks) | 32.8 ± 1.0 | 33.0 ± 1.2 | 0.53 |
Weight (g) | 1900 ± 380 | 1840 ± 370 | 0.52 |
Weight percentile | 48 ± 28 | 44 ± 23 | 0.54 |
Length (cm) | 43.3 ± 2.6 | 43.0 ± 3.0 | 0.68 |
Head circumference (cm) | 30.5 ± 1.5 | 30.6 ± 1.3 | 0.78 |
Discharge parameters | n = 32 | n = 32 | |
Length of stay (days) | 27 ± 7 | 27 ± 10 | 0.95 |
Postmenstrual age (weeks) | 36.5 ± 0.9 | 36.6 ± 1.2 | 0.73 |
Weight (g) | 2500 ± 380 | 2490 ± 360 | 0.91 |
Weight percentile | 30 ± 24 | 26 ± 18 | 0.45 |
Length (cm) | 46.5 ± 2.5 | 47.1 ± 2.3 | 0.34 |
Head circumference (cm) | 32.5 ± 1.4 | 32.5 ± 1.5 | 0.98 |
Body composition | n = 25 | ||
Postmenstrual age (weeks) | 35.7 | ||
Body weight (g) | 2310 ± 420 | ||
Length (cm) | 45.4 ± 2.3 | ||
Head circumference (cm) | 31.8 ± 1.2 | ||
% Fat mass | 12 ± 3 | ||
Fat mass (g) | 290 ± 110 | ||
Fat-free mass (g) | 2050 ± 240 |
Parameter | Exposed Cohort (n = 32) | Comparison Cohort (n = 32) | p-Value |
---|---|---|---|
Pregnancy risks | |||
Gestational diabetes (diet-controlled/insulin) | 1 (0/1) | 6 (5/1) | 0.1 |
Maternal diabetes Type 1 | 1 | 0 | 1.0 |
Preeclampsia | 4 | 2 | 0.67 |
HELLP syndrome | 2 | 0 | 0.49 |
Chorioamnionitis | 0 | 0 | n.a. |
Neonatal morbidities | |||
Necrotizing enterocolitis | 0 | 0 | n.a. |
Early-onset sepsis | 2 | 3 | 1.0 |
Oxygen therapy and respiratory support | 25 (78%) | 27 (84%) | 0.75 |
Duration of respiratory support (median, 1st quartile, 3rd quartile) | 7 (3, 13) | 7 (4, 10) | 1.0 |
Parameter | Exposed Cohort (n = 32) | Comparison Cohort (n = 32) | p-Value |
---|---|---|---|
Feeding intolerance | |||
Gastric residual (%) | 0 (0, 0) | 0 (0, 0) | n.a. |
Spitting (%) | 3 (0, 8) | 2 (0, 6) | 0.55 |
Emesis (%) | 0 (0, 0) | 0 (0, 0) | n.a. |
Abdominal score | |||
Days with normal score (%) | 94 (85, 100) | 100 (94, 100) | 0.98 |
Days with moderate bloating (%) | 5 (0, 13) | 0 (0, 6) | 0.96 |
Days with abnormal score (%) | 0 (0, 3) | 0 (0, 3) | n.a. |
Parameter | Exposed Cohort | Comparison Cohort | p-Value | ||
---|---|---|---|---|---|
n = 32 | Without CaPh-suppl. n = 12 | with CaPh-suppl. n = 20 | n = 32 | ||
Blood parameters | |||||
Glucose (mg/dL) | 86 ± 19 | 87 ± 17 | 0.17 | ||
Triglycerides (mg/dL) | 105 ± 36 | ||||
Urea (mg/dL) | 21 ± 12 | 22 ± 12 | 0.62 | ||
Urinary levels | |||||
Calcium (mmol/L) | 3.3 ± 4.6 | 2.6 ± 2.2 | 3.8 ± 5.7 | 2.5 ± 1.8 | 0.64 |
Phosphate (mmol/L) | 3.8 ± 4.6 | 2.3 ± 2.1 | 4.7 ± 5.4 | 7.8 ± 5.4 | 1.0 |
Parameter | Exposed Cohort (n = 32) | Comparison Cohort (n = 32) | p-Value |
---|---|---|---|
Early feeding advancement | |||
Days until full enteral feeding | 5.0 ± 1.3 | 5.2 ± 1.5 | 0.43 |
Start of fortification (day of life) | 6.8 ± 1.8 | 6.8 ± 2.7 | 1.0 |
Mother’s own milk composition | |||
Energy (kcal/100 mL) | 67.7 ± 9.1 | ||
Protein (g/100 mL) | 1.5 ± 0.3 | ||
Carbohydrates (g/100 mL) | 6.8 ± 0.4 | ||
Fat (g/100 mL) | 3.8 ± 1.0 | ||
Protein per energy (g/100 kcal) | 2.3 ± 0.3 | ||
Nutritional intake | |||
Energy intake (kcal/kg/d) | 141 ± 18 | ||
Fluid intake (mL/kg/d) | 151 ± 12 | 158 ± 10 | 0.04 |
Protein (g/kg/d) | 3.1 ± 0.5 | ||
Carbohydrates (g/kg/d) | 14.4 ± 1.2 | ||
Fat (g/kg/d) | 7.8 ± 1.7 | ||
Protein per energy (g/100 kcal) | 2.2 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rochow, N.; Weiss, G.A.; Knab, K.; Prothmann, I.; Schäfer, S.; Zimmermann, J.L.; Meis, A.; Lohmüller-Weiß, S.; Simon, K.; Schäfer, S.; et al. Freeze-Dried Donor Milk for Fortification of Mother’s Own Milk in Preterm Infants: A Preliminary Observational Study. Nutrients 2025, 17, 3057. https://doi.org/10.3390/nu17193057
Rochow N, Weiss GA, Knab K, Prothmann I, Schäfer S, Zimmermann JL, Meis A, Lohmüller-Weiß S, Simon K, Schäfer S, et al. Freeze-Dried Donor Milk for Fortification of Mother’s Own Milk in Preterm Infants: A Preliminary Observational Study. Nutrients. 2025; 17(19):3057. https://doi.org/10.3390/nu17193057
Chicago/Turabian StyleRochow, Niels, Gisela Adrienne Weiss, Katja Knab, Isabell Prothmann, Stefan Schäfer, Jasper L. Zimmermann, Anastasia Meis, Stefanie Lohmüller-Weiß, Kerstin Simon, Simone Schäfer, and et al. 2025. "Freeze-Dried Donor Milk for Fortification of Mother’s Own Milk in Preterm Infants: A Preliminary Observational Study" Nutrients 17, no. 19: 3057. https://doi.org/10.3390/nu17193057
APA StyleRochow, N., Weiss, G. A., Knab, K., Prothmann, I., Schäfer, S., Zimmermann, J. L., Meis, A., Lohmüller-Weiß, S., Simon, K., Schäfer, S., Welsch, J., & Fusch, C. (2025). Freeze-Dried Donor Milk for Fortification of Mother’s Own Milk in Preterm Infants: A Preliminary Observational Study. Nutrients, 17(19), 3057. https://doi.org/10.3390/nu17193057