Association Between Reduced Daily Protein Intake and Sarcopenic Obesity in Men Living with HIV: A New Screening Tool
Abstract
1. Introduction
2. Materials and Methods
2.1. Demographics and Clinical Status
2.2. Body Weight and Height
2.3. Body Composition
excluded, expressed in kg).
2.4. Definition of Sarcopenic Obesity (SO)
- Muscle strength: muscle strength was assessed through handgrip strength (HGS) measured by Jamar dynamometer, asking the patient to squeeze the dynamometer tightly with maximum force, then to release it. Measurements were made three times in each hand, and the average of the three measurements was used for analysis. Low muscle strength was defined according to BMI-adjusted cut-off points suitable for PLWH [27]:
- ➢
- For males: HGS/BMI < 1.05.
- Low muscle mass was established according to the ratio of the appendicular lean mass divided by weight (ALM/W) [10]:
- ➢
- For males ALM/W < 28.27%.
- Obesity was defined according to adiposity based on age- and male-specific BF% cut-offs [28]:
- ➢
- 18–39 years: BF% ≥ 26%.
- ➢
- 40–59 years: BF% ≥ 29%.
- ➢
- 60–98 years: BF ≥ 31%.
2.5. Food Intake
- Total caloric intake (kcal/day): the total calories from all food and beverages consumed in 24 h expressed as kcal/day.
- CHO g/day: the daily total quantity of carbohydrate consumed in 24 h expressed in grams.
- CHO% of total kcal/day: the proportion of total carbohydrate out of total calories consumed in 24 h expressed as a percentage.
- Complex CHO g/day: the daily total quantity of complex carbohydrate consumed in 24 h expressed in grams.
- Complex CHO% of total kcal/day: the proportion of complex carbohydrate out of total calories consumed in 24 h expressed as a percentage.
- Simple CHO g/day: the daily total quantity of simple carbohydrate consumed in 24 h expressed in grams.
- Simple CHO% of total kcal/day: the proportion of simple carbohydrate out of total calories consumed in 24 h expressed as a percentage.
- Fiber g/1000 kcal: the quantity of total fiber in 1000 calories in the 24 h expressed in grams per 1000 kcal.
- Fiber daily intake (fiber < 28 g/day or fiber ≥ 28 g/day): participants were classified according to their daily total fiber intake, above or below the cut-off point of 28 g/day.
- Total protein intake (g/day): the daily total quantity of proteins consumed in 24 h expressed in grams.
- Protein (g/kg/day): the daily quantity of total proteins consumed in 24 h expressed in grams per kilogram of body weight per day.
- Protein% of total kcal/day: the proportion of total protein out of total calories consumed in 24 h expressed as a percentage.
- Total fat g/day: the daily total quantity of fat consumed in 24 h expressed in grams.
- Fat% of total kcal/day: the proportion of total fat out of total calories consumed in 24 h expressed as a percentage.
- PUFA g/day: the daily total quantity of polyunsaturated fat consumed in 24 h expressed in grams.
- PUFA% of total kcal/day: the proportion of polyunsaturated fat out of total calories consumed in 24 h expressed as a percentage.
- MUFA g/day: the daily total quantity of monounsaturated fat consumed in 24 h expressed in grams.
- MUFA% of total kcal/day: the proportion of monounsaturated fat out of total calories consumed in 24 h expressed as a percentage.
- Saturated fat g/day: the daily total quantity of saturated fat consumed in 24 h expressed in grams.
- Saturated fat % of total kcal/day: the proportion of saturated fat out of total calories consumed in 24 h expressed as a percentage.
- Dietary cholesterol (mg/day): the daily total quantity of cholesterol consumed in 24 h expressed in milligrams per day.
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Findings and Concordance with Previous Studies
4.2. Strengths and Limitations
4.3. Clinical Implications and New Directions for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Payagala, S.; Pozniak, A. The global burden of HIV. Clin. Dermatol. 2024, 42, 119–127. [Google Scholar] [CrossRef]
- U.S. Centers for Diseases Control. Preventing HIV. 2024. Available online: https://www.cdc.gov/hiv/prevention/index.html (accessed on 15 July 2025).
- Solomon, D.A.; Sax, P. Advances in the Management of HIV. Infect. Dis. Clin. N. Am. 2024, 38, xiii–xiv. [Google Scholar] [CrossRef]
- Chu, C.; Pollock, L.C.; Selwyn, P. HIV-Associated Complications: A Systems-Based Approach. Am. Fam. Physician 2017, 96, 161–169. [Google Scholar] [PubMed]
- Ji, J.; Zhang, Y.; Ma, Y.; Jia, L.; Cai, M.; Li, Z.; Zhang, T.; Guo, C. People who living with HIV/AIDS also have a high prevalence of anxiety disorders: A systematic review and meta-analysis. Front. Psychiatry 2024, 15, 1259290. [Google Scholar] [CrossRef] [PubMed]
- Skogen, V.; Rohde, G.E.; Langseth, R.; Rysstad, O.; Sørlie, T.; Lie, B. Factors associated with health-related quality of life in people living with HIV in Norway. Health Qual. Life Outcomes 2023, 21, 14. [Google Scholar] [CrossRef] [PubMed]
- García-Ruiz de Morales, A.G.; Suárez Robles, M.; Pérez-Elías, M.J.; Negredo, E.; Alcamí, J.; Gómez Rodríguez, C.E.; González-Ruano, P.; de Zárraga Fernández, M.A.; Gutiérrez, C.D.; Guillén, S.M.; et al. Metabolic Complications After Initiating BIC/FTC/TAF Versus DTG + 3TC in ART-naive Adults with Human Immunodeficiency Virus (HIV): A Multicenter Prospective Cohort Study. Clin. Infect. Dis. 2025, 81, 263–270. [Google Scholar] [CrossRef]
- Perna, S.; Spadaccini, D.; Rondanelli, M. Sarcopenic obesity: Time to target the phenotypes. J. Cachexia Sarcopenia Muscle 2019, 10, 710–711. [Google Scholar] [CrossRef]
- Zamboni, M.; Mazzali, G.; Fantin, F.; Rossi, A.; Di Francesco, V. Sarcopenic obesity: A new category of obesity in the elderly. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 388–395. [Google Scholar] [CrossRef]
- Donini, L.M.; Busetto, L.; Bischoff, S.C.; Cederholm, T.; Ballesteros-Pomar, M.D.; Batsis, J.A.; Bauer, J.M.; Boirie, Y.; Cruz-Jentoft, A.J.; Dicker, D.; et al. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obes. Facts 2022, 15, 321–335. [Google Scholar] [CrossRef]
- Ciudin, A.; Simó-Servat, A.; Palmas, F.; Barahona, M. Sarcopenic obesity: A new challenge in the clinical practice. Endocrinol. Diabetes Nutr. 2020, 67, 672–681. [Google Scholar]
- Yu, B.; Jia, S.; Sun, T.; Liu, J.; Jin, J.; Zhang, S.; Xiao, Q.; Dong, H.; Ou, Y. Sarcopenic obesity is associated with cardiometabolic multimorbidity in Chinese middle-aged and older adults: A cross-sectional and longitudinal study. J. Nutr. Health Aging 2024, 28, 100353. [Google Scholar] [CrossRef]
- Khatoon, B.S.; Saravanan, D.; Ganamurali, N.; Sabarathinam, S. A narrative review on the impact of sarcopenic obesity and its psychological consequence in quality of life. Diabetes Metab. Syndr. 2023, 17, 102846. [Google Scholar] [CrossRef]
- Milic, J.; Calza, S.; Cantergiani, S.; Albertini, M.; Gallerani, A.; Menozzi, M.; Barp, N.; Todisco, V.; Renzetti, R.; Motta, F.; et al. Sarcopenic Obesity Phenotypes in Patients With HIV: Implications for Cardiovascular Prevention and Rehabilitation. Can. J. Cardiol. 2023, 39, 359–367. [Google Scholar] [CrossRef]
- De Vincentis, S.; Greco, C.; Fanelli, F.; Decaroli, M.C.; Diazzi, C.; Mezzullo, M.; Milic, J.; De Santis, M.C.; Roli, L.; Pagotto, U.; et al. Sarcopenic obesity and reduced BMD in young men living with HIV: Body composition and sex steroids interplay. J. Endocrinol. Investig. 2024, 47, 2715–2730. [Google Scholar] [CrossRef]
- Hawkins, K.L.Z.L.; Ng, D.K.; Althoff, K.N.; Palella, F.J., Jr.; Kingsley, L.A.; Jacobson, L.P.; Margolick, J.B.; Lake, J.E.; Brown, T.T.; Erlandson, K.M. Abdominal obesity, sarcopenia, and osteoporosis are associated with frailty in men living with and without HIV. AIDS 2018, 32, 1257–1266. [Google Scholar] [CrossRef]
- Osuna Padilla, I.A.; Aguilar Vargas, A.; Villazon de la Rosa, A.; Rodriguez Moguel, N.C.; Vargas Infante, Y.; Reyes Teran, G. Sarcopenic obesity is associated with lower frequency of CD4+ T Cells and high prevalence of metabolic syndrome in people living with HIV. Clin. Nutr. 2018, 37, S1–S23. [Google Scholar] [CrossRef]
- Gnanaskandan, S.; Srikanth, P. Nuclear Factor Kappa B p65: A Possible Biomarker for Persistent Inflammation in HIV-1 Infection? Cureus 2024, 16, e71308. [Google Scholar] [CrossRef]
- Pasco, J.A.; Berk, M.; Penninx, B.; Hyde, N.K.; Holloway-Kew, K.L.; West, E.C.; Kotowicz, M.A.; Anderson, K.B.; O’Neil, A.; Rufus-Membere, P.G.; et al. Obesity and sarcopenic obesity characterized by low-grade inflammation are associated with increased risk for major depression in women. Front. Nutr. 2023, 10, 1222019. [Google Scholar] [CrossRef]
- Cheng, Y.; Lin, S.; Cao, Z.; Yu, R.; Fan, Y.; Chen, J. The role of chronic low-grade inflammation in the development of sarcopenia: Advances in molecular mechanisms. Int. Immunopharmacol. 2025, 147, 114056. [Google Scholar] [CrossRef]
- Abiri, B.; Hosseinpanah, F.; Seifi, Z.; Amini, S.; Valizadeh, M. The Implication of Nutrition on the Prevention and Improvement of Age-Related Sarcopenic Obesity: A Systematic Review. J. Nutr. Health Aging 2023, 27, 842–852. [Google Scholar] [CrossRef]
- Okusanya, T.R.O.E.; Kuyebi, M.A.; Oyadiran, O.T.; Kowe, T.; Noor, R.A.; Omotayo, M.O.; Abioye, A.I. Nutrition counselling and clinical outcomes in HIV: A systematic review and meta-analysis. HIV Med. 2024, 25, 462–478. [Google Scholar] [CrossRef]
- Cheah, J.K.; Khang, J. Nutrition Requirements and Nutrition Intervention for People Living with HIV/AIDS (Adults). J. Health Allied Sci. NU 2025, 15, 11–16. [Google Scholar] [CrossRef]
- Sawyer, S.M.; Azzopardi, P.S.; Wickremarathne, D.; Patton, G. The age of adolescence. Lancet Child Adolesc. Health 2018, 2, 223–228. [Google Scholar] [CrossRef]
- Nuttall, F. Body Mass Index: Obesity, BMI, and Health: A Critical Review. Nutr. Today 2015, 50, 117–128. [Google Scholar] [CrossRef]
- Slart, R.H.J.A.; Punda, M.; Ali, D.S.; Bazzocchi, A.; Bock, O.; Camacho, P.; Carey, J.J.; Colquhoun, A.; Compston, J.; Engelke, K.; et al. Updated practice guideline for dual-energy X-ray absorptiometry (DXA). Eur. J. Nucl. Med. Mol. Imaging 2025, 52, 539–563. [Google Scholar] [CrossRef]
- Erlandson, K.M.T.T.; Zhu, H.; Magaziner, J.; Correa-de-Araujo, R.; Cawthon, P.M.; Bhasin, S.; Manini, T.; Fielding, R.A.; Palella, F.J.; Kingsley, L.; et al. Application of Selected Muscle Strength and Body Mass Cut Points for the Diagnosis of Sarcopenia in Men and Women With or at Risk for HIV Infection. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 1338–1345. [Google Scholar] [CrossRef]
- Gallagher, D.; Heymsfield, S.B.; Heo, M.; Jebb, S.A.; Murgatroyd, P.R.; Sakamoto, Y. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 2000, 72, 694–701. [Google Scholar] [CrossRef]
- Royston, P. Approximating the Shapiro-Wilk W-test for non-normality. Stat. Comput. 1992, 2, 117–119. [Google Scholar] [CrossRef]
- Razali, N.M.; Wah, Y. ower comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors, and Anderson-Darling tests. J. Stat. Model. Anal. 2011, 2, 21–33. [Google Scholar]
- Ghasemi, A.; Zahediasl, S. Normality tests for statistical analysis: A guide for non-statisticians. Int. J. Endocrinol. Metab. 2012, 10, 486–489. [Google Scholar] [CrossRef]
- McHugh, M. The Chi-Square Test of Independence. Lessons in Biostatistics; Department of Nursing, School of Health and Human Services, National University, Aero Court: San Diego, CA, USA, 2013. [Google Scholar]
- Bursac, Z.; Gauss, C.H.; Williams, D.K.; Hosmer, D. Purposeful selection of variables in logistic regression. Source Code Biol. Med. 2008, 3, 17. [Google Scholar] [CrossRef]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220–1228. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. Sturdivant R. In Applied Logistic Regression, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 153–225. [Google Scholar]
- Austin, P.C.; Steyerberg, E. Interpreting the concordance statistic of a logistic regression model: Relation to the variance and odds ratio of a continuous explanatory variable. BMC Med. Res. Methodol. 2012, 12, 82. [Google Scholar]
- Chan, Y. Biostatistics 202: Logistic regression analysis. Singap. Med. J. 2004, 45, 173–180. [Google Scholar]
- Midi, H.; Sarkar, S.K.; Rana, S. Collinearity diagnostics of binary logistic regression model. J. Interdiscip. Math. 2013, 13, 253–267. [Google Scholar]
- Vatcheva, K.P.; Lee, M.; McCormick, J.B.; Rahbar, M. Multicollinearity in regression analyses conducted in epidemiologic studies. Epidemiology 2016, 6, 227. [Google Scholar] [CrossRef]
- Mandrekar, J. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef]
- NCSS 2023 Statistical Software; NCSS, LLC.: Kaysville, UT, USA, 2023; Available online: http://ncss.com/software/ncss (accessed on 5 July 2025).
- Posit Team. RStudio: Integrated Development Environment for R; Version 2025.05.1.513; Posit Software, PBC: Boston, MA, USA, 2025; Available online: http://www.posit.co/ (accessed on 5 July 2025).
- Seyed Alinaghi, S.; Mehraeen, E.; Mirzapour, P.; Rahimzadeh, P.; Abbasi Yazdi, A.; Roozbahani, M.M.; Mirzaee Godarzee, H.; Molla, A.; Soltanali, Z.; Ghayomzadeh, M.; et al. Effectiveness of exercise on sarcopenia in HIV patients: A systematic review of current literature. AIDS Care 2025, 37, 349–361. [Google Scholar] [CrossRef]
- Jäger, J.; Callensee, L.; Albayrak-Rena, S.; Esser, S.; Witzke, O.; Schönfeld, A. Prevalence of sarcopenia among people living with HIV defined by the revised European working group on sarcopenia in older people. Int. J. STD AIDS 2024, 35, 902–909. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, H.M.; Lee, Y. Using Dietary Macronutrient Patterns to Predict Sarcopenic Obesity in Older Adults: A Representative Korean Nationwide Population-Based Study. Nutrients 2021, 13, 4031. [Google Scholar] [CrossRef]
- Fazal, F.; Saleem, T.; Ur Rehman, M.E.; Haider, T.; Khalid, A.R.; Tanveer, U.; Mustafa, H.; Tanveer, J.; Noor, A. The rising cost of healthcare and its contribution to the worsening disease burden in developing countries. Ann. Med. Surg. 2022, 82, 104683. [Google Scholar] [CrossRef]
- Cavalcanti, R.B.; Cheung, A.M.; Raboud, J.; Walmsley, S. Reproducibility of DXA estimations of body fat in HIV lipodystrophy: Implications for clinical research. J. Clin. Densitom. 2005, 8, 293–297. [Google Scholar] [CrossRef]
- Murad, M.H.; Katabi, A.; Benkhadra, R.; Montori, V. External validity, generalisability, applicability and directness: A brief primer. BMJ Evid. Based Med. 2018, 23, 17–19. [Google Scholar] [CrossRef]
- Bradbury, K.E.; Guo, W.; Cairns, B.J.; Armstrong, M.E.G.; Key, T. Association between physical activity and body fat percentage, with adjustment for BMI: A large cross-sectional analysis of UK Biobank. BMJ Open 2017, 7, e011843. [Google Scholar] [CrossRef]
- Song, J.; Park, S.J.; Choi, S.; Han, M.; Cho, Y.; Oh, Y.H.; Park, S. Effect of changes in sleeping behavior on skeletal muscle and fat mass: A retrospective cohort study. BMC Public Health 2023, 23, 1879. [Google Scholar] [CrossRef]
- Audrain-McGovern, J.; Benowitz, N. Cigarette Smoking, Nicotine, and Body Weight. Clin. Pharmacol. Ther. 2011, 90, 164–168. [Google Scholar] [CrossRef]
- Solem, R. Limitation of a cross-sectional study. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 205. [Google Scholar] [CrossRef]
- Caruana, E.J.; Roman, M.; Hernández-Sánchez, J.; Solli, P. Longitudinal studies. J. Thorac. Dis. 2015, 7, 537–540. [Google Scholar]
- Drummen, M.; Tischmann, L.; Gatta-Cherifi, B.; Adam, T.; Westerterp-Plantenga, M. Dietary Protein and Energy Balance in Relation to Obesity and Co-morbidities. Front. Endocrinol. 2018, 9, 443. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Nutrient Requirements for People Living with HIV/AIDS: Report of a Technical Consultation. 2003. Available online: https://www.who.int/publications/i/item/9241591196 (accessed on 15 July 2025).
SO (n = 45) | NSO (n = 33) | NSNO (n = 138) | Total (n = 216) | Significance | |
---|---|---|---|---|---|
Anthropometric parameters | |||||
Age (years) | 56.02 (10.30) a | 43.76 (10.54) b | 49.50 (10.00) c | 49.98 (10.76) | <0.05 £ |
Weight (kg) | 87.00 (76.75–102.50) a | 77.00 (73.50–83.00) a | 70.00 (64.00–75.50) b | 74.00 (66.70–81.93) | <0.05 ¥ |
Height (cm) | 169.47 (6.76) a | 177.27 (6.02) b | 174.93 (6.17) b | 174.15 (6.74) | <0.05 £ |
BMI (kg/m2) | 30.85 (27.75–34.76) a | 24.34 (22.85–26.24) b | 23.06 (21.41–24.24) c | 23.92 (21.96–26.79) | <0.05 ¥ |
χ2: 80.075; p < 0.001 | |||||
BMI < 25.0 kg/m2 | 4 (8.9) | 19 (57.6) | 114 (82.6) | 137 (63.4) | |
BMI ≥ 25.0 kg/m2 | 41 (91.1) | 14 (42.4) | 24 (17.4) | 79 (36.6) | |
BF (kg) | 32.27 (27.33–39.82) a | 22.70 (21.72–25.57) b | 17.05 (13.88–19.95) c | 19.84 (15.77–24.78) | <0.05 ¥ |
BF (%) | 37.66 (34.62–40.09) a | 29.66 (28.40–31.06) b | 24.46 (21.47–26.82) c | 26.88 (23.09–30.88) | <0.05 ¥ |
ALM (kg) | 21.26 (18.97–24.99) | 23.52 (21.31–24.85) | 21.53 (20.17–23.60) | 21.65 (20.02–23.84) | >0.05 ¥ |
ALM/weight (%) | 24.24 (22.55–25.94) a | 28.92 (28.69–30.16) b | 30.60 (29.52–32.11) c | 29.65 (28.46–31.27) | <0.05 ¥ |
HGS (kg) | 26.02 (5.85) a | 40.08 (8.32) b | 39.79 (7.20) b | 39.96 (9.05) | <0.05 £ |
HGS/BMI | 0.84 (0.75–0.95) a | 1.65 (1.43–1.83) b | 1.70 (1.52–1.96) b | 1.59 (1.17–1.87) | <0.05 ¥ |
HIV-related variables | |||||
Time since HIV diagnosis (years) | 14.17 (6.60–22.81) | 11.54 (5.29–20.48) | 12.13 (4.96–23.85) | 12.50 (5.25–22.69) | >0.05 ¥ |
ART exposure (years) | 13.00 (6.50–21.00) | 11.00 (5.00–19.00) | 9.00 (4.00–21.50) | 11.00 (5.00–21.00) | >0.05 ¥ |
HIV viral load (copies/mL) | 24.00 (20.00–40.00) | 40.00 (20.00–40.00) | 38.00 (20.00–40.00) | 38.00 (20.00–40.00) | >0.05 ¥ |
χ2: 2.271; p = 0.321 | |||||
Undetectable (<50) | 44 (97.8) | 33 (100) | 131 (94.9) | 208 (96.3) | |
Detectable (≥50) | 1 (2.2) | 0 (0.0) | 7 (5.1) | 8 (3.7) | |
Lymphocytes CD4 absolute value (cells/μL) | 669.00 (316.60) | 730.39 (255.38) | 763.21 (657.55) | 738.27 (553.90) | >0.05 £ |
Lymphocytes CD4 (%) | 30.59 (9.82) | 35.26 (7.92) | 33.89 (9.33) | 33.39 (9.33) | >0.05 £ |
CD4:CD8 ratio | 0.84 (0.49) | 1.71 (3.86) | 1.12 (1.40) | 1.15 (1.90) | >0.05 £ |
Dietary Variable (n = 216) | SO (n = 45) | NSO (n = 33) | NSNO (n = 138) | Total (n = 216) | Significance ¥ |
---|---|---|---|---|---|
Caloric intake (kcal/day) | 1850.00 (1410.00–2100.00) a | 2050.00 (1707.50–2329.50) a,b | 1972.00 (1730.00–2321.00) b | 1917.50 (1650.00–2211.25) | <0.05 |
Carbohydrate | |||||
Total CHO (g/day) | 218.00 (156.00–259.00) | 242.00 (179.00–293.50) | 248.50 (198.00–287.00) | 234.00 (183.75–280.50) | >0.05 |
CHO% of total (kcal/day) | 48.08 (41.17–54.05) | 48.98 (43.93–52.22) | 49.58 (43.53–54.84) | 49.27 (42.71–53.61) | >0.05 |
Complex CHO (g/day) | 153.50 (120.75–189.00) | 160.00 (129.00–193.50) | 171.50 (128.75–218.25) | 160.00 (123.75–205.00) | >0.05 |
Complex CHO% of total kcal/day | 33.87 (28.23–40.68) | 33.72 (27.83–36.51) | 33.56 (28.79–39.69) | 33.80 (28.79–38.92) | >0.05 |
Simple CHO (g/day) | 58.00 (34.50–81.50) a | 72.00 (52.50–108.50) a,b | 72.50 (57.75–86.75) b | 68.00 (50.00–86.00) | <0.05 |
Simple CHO% of total kcal/day | 13.71 (8.25–18.02) | 14.51 (12.97–17.26) | 14.09 (11.16–17.94) | 14.31 (10.63–17.95) | >0.05 |
Fibers (g/1000 kcal) | 8.89 (6.88–10.96) | 10.63 (7.78–13.12) | 9.98 (7.78–12.74) | 9.98 (7.50–12.80) | >0.05 |
Fibers daily intake † | χ2:6.917; p < 0.009 | ||||
Fibers < 28 (g/day) | 42 (93.3) | 22 (66.7) | 107 (77.5) | 171 (79.2) | |
Fibers ≥ 28 (g/day) | 3 (6.7) | 11 (24.4) | 31 (22.5) | 45 (20.8) | |
Protein | |||||
Total Protein (g/day) | 77.00 (57.00–88.00) a | 82.00 (69.50–95.50) a,b | 85.00 (66.75–104.25) b | 80.50 (66.75–98.00) | <0.05 |
Protein (g/kg/day) | 0.87 (0.63–1.01) a | 1.08 (0.87–1.28) b | 1.17 (0.99–1.51) b | 1.05 (0.86–1.27) | <0.05 |
Protein (% of total kcal/day) | 16.84 (14.30–18.67) | 16.54 (14.41–18.79) | 17.12 (14.72–19.81) | 16.77 (14.26–19.47) | >0.05 |
Fat | |||||
Total Fat (g/day) | 70.00 (50.00–78.00) | 73.00 (54.00–88.00) | 71.00 (59.75–86.00) | 70.00 (57.00–82.00) | >0.05 |
Fat% of total kcal/day | 32.91 (29.17–37.39) | 34.37 (28.58–37.69) | 32.27 (28.44–36.97) | 32.77 (28.76–37.01) | >0.05 |
PUFA (g/day) | 8.00 (5.00–11.25) | 9.00 (7.00–13.25) | 9.00 (7.00–13.75) | 9.00 (7.00–12.00) | >0.05 |
PUFA (% of total kcal/day) | 4.02 (2.88–5.64) | 3.82 (3.35–5.46) | 4.08 (3.24–5.40) | 4.00 (3.21–5.40) | >0.05 |
MUFA (g/day) | 32.00 (25.75–37.00) | 37.00 (30.00–44.00) | 34.00 (29.00–40.00) | 34.00 (29.00–39.50) | >0.05 |
MUFA (% of total kcal/day) | 15.25 (13.48–19.24) | 16.26 (13.19–20.06) | 14.93 (12.97–17.84) | 15.52 (13.55–18.42) | >0.05 |
Saturated fat (g/day) | 19.50 (13.75–24.25) | 16.00 (12.75–26.50) | 20.50 (14.25–26.00) | 19.00 (14.50–25.00) | >0.05 |
Saturated fat (% of total kcal/day) | 9.51 (7.36–11.72) | 7.86 (6.53–10.14) | 9.17 (7.06–11.03) | 9.10 (7.24–11.25) | >0.05 |
Dietary cholesterol (mg/day) | 198.00 (141.00–264.50) | 199.50 (147.00–260.50) | 194.00 (129.25–268.75) | 190.00 (133.00–250.00) | >0.05 |
Variable | Simple Univariate Model 1 | Adjusted Multivariate Model 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Coefficient | SE | Wald | p-Value | OR (95%CI) | Coefficient | SE | Wald | p-Value | OR (95%CI) | |
Age (years) | 0.076 | 0.19 | 16.14 | <0.001 | 1.08 (1.04–1.12) | 0.050 | 0.02 | 6.324 | 0.012 | 1.051 (1.011–1.093) |
Protein g/kg/day | −3.919 | 0.725 | 29.184 | <0.001 | 0.020 (0.005–0.082) | −4.082 | 0.877 | 21.681 | <0.001 | 0.017 (0.003–0.094) |
Caloric intake kcal/day | −0.001 | 3.70 × 10−4 | 6.962 | 0.008 | 0.999 (0.998–1.00) | 0.001 | 4.97 × 10−4 | 1.627 | 0.202 | 1.001 (1.000–1.002) |
Fibers g/1000 kcal | ||||||||||
Fibers < 28 g/day | 1.00 | 1.00 | ||||||||
Fibers ≥ 28 g/day | −1.517 | 0.623 | 5.920 | 0.015 | 0.219 (0.065–0.745) | −1.215 | 0.667 | 3.316 | 0.069 | 0.297 (0.08–1.097) |
Model | n | AUC | p Value | Cut-Off Point | Sensitivity | Specificity | Specificity at 90% Sensitivity | Sensitivity at 90% Specificity |
---|---|---|---|---|---|---|---|---|
Simple model | 45/216 (20.8%) | 0.8049 | <0.0001 | 0.99 | 0.73 | 0.73 | 0.45 | 0.42 |
Age-adjusted model | 45/216 (20.8%) | 0.8149 | <0.0001 | 0.98 | 0.71 | 0.70 | 0.51 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, C.; Itani, L.; Milic, J.; Belli, M.; Gabriele, S.; Conti, M.; Valoriani, F.; Guaraldi, G.; Rochira, V.; El Ghoch, M. Association Between Reduced Daily Protein Intake and Sarcopenic Obesity in Men Living with HIV: A New Screening Tool. Nutrients 2025, 17, 3042. https://doi.org/10.3390/nu17193042
Greco C, Itani L, Milic J, Belli M, Gabriele S, Conti M, Valoriani F, Guaraldi G, Rochira V, El Ghoch M. Association Between Reduced Daily Protein Intake and Sarcopenic Obesity in Men Living with HIV: A New Screening Tool. Nutrients. 2025; 17(19):3042. https://doi.org/10.3390/nu17193042
Chicago/Turabian StyleGreco, Carla, Leila Itani, Jovana Milic, Michela Belli, Silvia Gabriele, Mariagrazia Conti, Filippo Valoriani, Giovanni Guaraldi, Vincenzo Rochira, and Marwan El Ghoch. 2025. "Association Between Reduced Daily Protein Intake and Sarcopenic Obesity in Men Living with HIV: A New Screening Tool" Nutrients 17, no. 19: 3042. https://doi.org/10.3390/nu17193042
APA StyleGreco, C., Itani, L., Milic, J., Belli, M., Gabriele, S., Conti, M., Valoriani, F., Guaraldi, G., Rochira, V., & El Ghoch, M. (2025). Association Between Reduced Daily Protein Intake and Sarcopenic Obesity in Men Living with HIV: A New Screening Tool. Nutrients, 17(19), 3042. https://doi.org/10.3390/nu17193042