Comparison of Accuracy in the Evaluation of Nutritional Labels on Commercial Ready-to-Eat Meal Boxes Between Professional Nutritionists and Chatbots
Abstract
1. Introduction
2. Materials and Methods
2.1. Meal Sample Selection
2.2. AI Chatbot Nutritional Facts Assessment
2.3. Professional Dietitian Assessment
2.4. Data Organization
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoang, Y.N.; Chen, Y.L.; Ho, D.K.N.; Chiu, W.C.; Cheah, K.J.; Mayasari, N.R.; Chang, J.S. Consistency and Accuracy of Artificial Intelligence for Providing Nutritional Information. JAMA Netw. Open 2023, 6, e2350367. [Google Scholar] [CrossRef]
- Haman, M.; Skolnik, M.; Lostak, M. AI dietician: Unveiling the accuracy of ChatGPT's nutritional estimations. Nutrition 2024, 119, 112325. [Google Scholar] [CrossRef]
- Ponzo, V.; Rosato, R.; Scigliano, M.C.; Onida, M.; Cossai, S.; De Vecchi, M.; Devecchi, A.; Goitre, I.; Favaro, E.; Merlo, F.D.; et al. Comparison of the Accuracy, Completeness, Reproducibility, and Consistency of Different AI Chatbots in Providing Nutritional Advice: An Exploratory Study. J. Clin. Med. 2024, 13, 7810. [Google Scholar] [CrossRef] [PubMed]
- De Boer, E.J.; Slimani, N.; van ’t Veer, P.; Boeing, H.; Feinberg, M.; Leclercq, C.; Trolle, E.; Amiano, P.; Andersen, L.F.; Freisling, H.; et al. The European Food Consumption Validation Project: Conclusions and recommendations. Eur. J. Clin. Nutr. 2011, 65 (Suppl. S1), S102–S107. [Google Scholar] [CrossRef] [PubMed]
- Razaz, J.M.; Rahmani, J.; Varkaneh, H.K.; Thompson, J.; Clark, C.; Abdulazeem, H.M. The health effects of medical nutrition therapy by dietitians in patients with diabetes: A systematic review and meta-analysis: Nutrition therapy and diabetes. Prim. Care Diabetes 2019, 13, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhang, K.; Lan, W.; Gu, Q.; Jiang, G.; Yang, X.; Qin, W.; Han, D. An AI Dietitian for Type 2 Diabetes Mellitus Management Based on Large Language and Image Recognition Models: Preclinical Concept Validation Study. J. Med. Internet Res. 2023, 25, e51300. [Google Scholar] [CrossRef]
- Cantu-Jungles, T.M.; McCormack, L.A.; Slaven, J.E.; Slebodnik, M.; Eicher-Miller, H.A. A Meta-Analysis to Determine the Impact of Restaurant Menu Labeling on Calories and Nutrients (Ordered or Consumed) in U.S. Adults. Nutrients 2017, 9, 1088. [Google Scholar] [CrossRef]
- Urban, L.E.; McCrory, M.A.; Dallal, G.E.; Das, S.K.; Saltzman, E.; Weber, J.L.; Roberts, S.B. Accuracy of stated energy contents of restaurant foods. JAMA 2011, 306, 287–293. [Google Scholar] [CrossRef]
- Restaurant and Packaged Foods Can Have More Calories Than Nutrition Labeling Indicates. 2010. Available online: https://www.sciencedaily.com/releases/2010/01/100105100021.htm#:~:text=The%20authors%20also%20note%20that,exceed%20the%20stated%20energy%20content (accessed on 30 June 2025).
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public. Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef] [PubMed]
- National Health Administration, Ministry of Health and Welfare. Food Substitution Table 2019; National Health Administration, Ministry of Health and Welfare: Taipei, Taiwan, 2019.
- Braakhuis, A.J.; Meredith, K.; Cox, G.R.; Hopkins, W.G.; Burke, L.M. Variability in estimation of self-reported dietary intake data from elite athletes resulting from coding by different sports dietitians. Int. J. Sport. Nutr. Exerc. Metab. 2003, 13, 152–165. [Google Scholar] [CrossRef]
- Shonkoff, E.; Cara, K.C.; Pei, X.A.; Chung, M.; Kamath, S.; Panetta, K.; Hennessy, E. AI-based digital image dietary assessment methods compared to humans and ground truth: A systematic review. Ann. Med. 2023, 55, 2273497. [Google Scholar] [CrossRef]
- Kaya Kacar, H.; Kacar, O.F.; Avery, A. Diet Quality and Caloric Accuracy in AI-Generated Diet Plans: A Comparative Study Across Chatbots. Nutrients 2025, 17, 206. [Google Scholar] [CrossRef] [PubMed]
- Cofre, S.; Sanchez, C.; Quezada-Figueroa, G.; Lopez-Cortes, X.A. Validity and accuracy of artificial intelligence-based dietary intake assessment methods: A systematic review. Br. J. Nutr. 2025, 133, 1241–1253. [Google Scholar] [CrossRef]
- Chotwanvirat, P.; Prachansuwan, A.; Sridonpai, P.; Kriengsinyos, W. Advancements in Using AI for Dietary Assessment Based on Food Images: Scoping Review. J. Med. Internet Res. 2024, 26, e51432. [Google Scholar] [CrossRef]
- Tsirimiagkou, C.; Karatzi, K.; Basdeki, E.D.; Argyris, A.A.; Papaioannou, T.G.; Yannakoulia, M.; Protogerou, A.D. Dietary sodium estimation methods: Accuracy and limitations of old and new methods in individuals at high cardiovascular risk. Public Health Nutr. 2022, 25, 866–878. [Google Scholar] [CrossRef] [PubMed]
- Baker, P.; Machado, P.; Santos, T.; Sievert, K.; Backholer, K.; Hadjikakou, M.; Russell, C.; Huse, O.; Bell, C.; Scrinis, G.; et al. Ultra-processed foods and the nutrition transition: Global, regional and national trends, food systems transformations and political economy drivers. Obes. Rev. 2020, 21, e13126. [Google Scholar] [CrossRef] [PubMed]
- Connolly, D.; Minj, J.; Murphy, K.M.; Solverson, P.M.; Rust, B.M.; Carbonero, F. Impact of quinoa and food processing on gastrointestinal health: A narrative review. Crit. Rev. Food Sci. Nutr. 2024, 1–4. [Google Scholar] [CrossRef]
- Liu, C.H.; Wong, T.C.; Chung, M.; Bai, C.H.; Chen, Y.C. Sugar labeling information and online marketing strategies for hand-shaken tea drinks in northern Taiwan. Front. Nutr. 2023, 10, 1273713. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.; Chen, B.; Li, J.; Yuan, X.; Li, J.; Wang, W.; Dai, T.; Chen, H.; Wang, Y.; et al. Dietary sugar consumption and health: Umbrella review. BMJ 2023, 381, e071609. [Google Scholar] [CrossRef]
- Stanhope, K.L. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit. Rev. Clin. Lab. Sci. 2016, 53, 52–67. [Google Scholar] [CrossRef]
- Pham, T. Ethical and legal considerations in healthcare AI: Innovation and policy for safe and fair use. R. Soc. Open Sci. 2025, 12, 241873. [Google Scholar] [CrossRef] [PubMed]
- Kassem, H.; Beevi, A.A.; Basheer, S.; Lutfi, G.; Cheikh Ismail, L.; Papandreou, D. Investigation and Assessment of AI's Role in Nutrition-An Updated Narrative Review of the Evidence. Nutrients 2025, 17, 190. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Markus, A.F.; Kors, J.A.; Rijnbeek, P.R. The role of explainability in creating trustworthy artificial intelligence for health care: A comprehensive survey of the terminology, design choices, and evaluation strategies. J. Biomed. Inf. 2021, 113, 103655. [Google Scholar] [CrossRef]
Dietitian | Calory | Protein | Fat | Sat. Fat | Carbohydrates | Sodium |
---|---|---|---|---|---|---|
Dietitian 1 | 18.6 ± 11.2% | 13.7 ± 11.7% | 28.1 ± 18.0% | 27.4 ± 17.7% | 21.1 ± 10.8% | 85.6 ± 53.0% |
Dietitian 2 | 7.0 ± 4.5% | 13.1 ± 9.0% | 12.5 ± 9.1% | 16.0 ± 11.7% | 14.4 ± 7.5% | 34.0 ± 36.0% |
Dietitian 3 | 13.4 ± 6.2% | 14.5 ± 7.3% | 33.9 ± 26.6% | 41.7 ± 25.9% | 26.6 ± 6.7% | 39.3 ± 32.2% |
Dietitian 4 | 11.6 ± 7.1% | 27.1 ± 17.1% | 98.0 ± 165.4% | 37.6 ± 25.2% | 16.7 ± 6.7% | 48.0 ± 32.2% |
Mean | 5.6 ± 3.4% | 14.3 ± 6.0% | 33.3 ± 37.6% | 24.5 ± 11.7% | 11.0 ± 6.8% | 40.2 ± 30.3% |
AI Model | Calories | Protein | Fat | Sat. Fat | Carbohydrates | Sodium |
---|---|---|---|---|---|---|
ChatGPT | 8.8 ± 4.2% | 11.8 ± 4.2% | 14.0 ± 4.8% | 14.7 ± 6.6% | 9.5 ± 3.6% | 34.6 ± 10.8% |
Claude | 5.5 ± 2.9% | 9.0 ± 6.5% | 20.4 ± 32.2% | 18.2 ± 21.9% | 20.4 ± 25.2% | 21.7 ± 9.5% |
Grok | 16.7 ± 8.8% | 13.6 ± 6.5% | 31.1 ± 22.3% | 28.3 ± 24.2% | 22.8 ± 14.9% | 33.1 ± 8.6% |
Gemini | 16.7 ± 3.1% | 12.8 ± 6.9% | 20.1 ± 9.5% | 21.3 ± 10.6% | 24.9 ± 8.2% | 69.2 ± 10.9% |
Copilot | 10.9 ± 7.7% | 10.2 ± 3.8% | 16.8 ± 9.8% | 27.7 ± 19.4% | 22.0 ± 9.6% | 28.3 ± 19.3% |
AI Model | Calories | Protein | Fat | Sat. Fat | Carbohydrates | Sodium |
---|---|---|---|---|---|---|
ChatGPT | 8.8 ± 4.2% | 11.8 ± 4.1% | 14.0 ± 4.8% | 14.7 ± 6.6% | 9.5 ± 3.6% | 34.6 ± 10.8% |
Claude | 5.5 ± 2.9% | 9.0 ± 6.5% | 20.4 ± 32.2% | 18.2 ± 21.9% | 20.4 ± 25.2% | 21.7 ± 9.5% |
Grok | 13.6 ± 7.2% | 11.1 ± 5.3% | 25.4 ± 18.2% | 23.1 ± 19.7% | 18.6 ± 12.2% | 27.0 ± 7.0% |
Gemini | 13.6 ± 2.5% | 10.5 ± 5.6% | 16.4 ± 7.8% | 17.4 ± 8.7% | 20.3 ± 6.7% | 56.5 ± 8.9% |
Copilot | 8.5 ± 6.3% | 7.6 ± 3.7% | 12.6 ± 7.9% | 20.8 ± 17.0% | 18.2 ± 7.7% | 22.8 16.1% |
Caloric | Protein | Fat | Sat. Fat | Carbohydrates | Sodium | |
---|---|---|---|---|---|---|
Dietitian | 99.5% | 88.6% | 88.3% | 87.4% | 114.3% | 91.8% |
ChatGPT | 71.4% | 98.4% | 122.6% | 103.7% | 136.3% | 87.4% |
Claude | 117.0% | 97.0% | 191.4% | 71.7% | 69.7% | 104.6% |
Grok | 126.8% | 95.7% | 145.2% | 86.2% | 104.3% | 88.6% |
Gemini | 124.2% | 109.5% | 200.6% | 105.1% | 85.8% | 100.1% |
Copilot | 88.5% | 64.8% | 127.5% | 35.1% | 39.3% | 83.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsuan, C.-F.; Lee, Y.-J.; Hsu, H.-C.; Ouyang, C.-M.; Yeh, W.-C.; Tang, W.-H. Comparison of Accuracy in the Evaluation of Nutritional Labels on Commercial Ready-to-Eat Meal Boxes Between Professional Nutritionists and Chatbots. Nutrients 2025, 17, 3044. https://doi.org/10.3390/nu17193044
Hsuan C-F, Lee Y-J, Hsu H-C, Ouyang C-M, Yeh W-C, Tang W-H. Comparison of Accuracy in the Evaluation of Nutritional Labels on Commercial Ready-to-Eat Meal Boxes Between Professional Nutritionists and Chatbots. Nutrients. 2025; 17(19):3044. https://doi.org/10.3390/nu17193044
Chicago/Turabian StyleHsuan, Chin-Feng, Yau-Jiunn Lee, Hui-Chun Hsu, Chung-Mei Ouyang, Wen-Chin Yeh, and Wei-Hua Tang. 2025. "Comparison of Accuracy in the Evaluation of Nutritional Labels on Commercial Ready-to-Eat Meal Boxes Between Professional Nutritionists and Chatbots" Nutrients 17, no. 19: 3044. https://doi.org/10.3390/nu17193044
APA StyleHsuan, C.-F., Lee, Y.-J., Hsu, H.-C., Ouyang, C.-M., Yeh, W.-C., & Tang, W.-H. (2025). Comparison of Accuracy in the Evaluation of Nutritional Labels on Commercial Ready-to-Eat Meal Boxes Between Professional Nutritionists and Chatbots. Nutrients, 17(19), 3044. https://doi.org/10.3390/nu17193044