Education Level and Cardioprotective Dietary Patterns in Polish Post-MI Patients: A Cross-Sectional Study Using the KomPAN Tool
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Demografic Data
2.3. Research Tool and Research Procedures
2.4. Statistical Analysis and Data Handling
2.5. Visualization and Clustering
3. Results
3.1. Characteristics of the Study Grup
3.2. Dietary Behaviors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hayward, M.D.; Farina, M.P. Dynamic Changes in the Association Between Education and Health in the United States. Milbank Q. 2023, 101, 396–418. [Google Scholar] [CrossRef]
- Stringhini, S.; Carmeli, C.; Jokela, M.; Muennig, P.; Guida, F.; Ricceri, F.; D’ERrico, A.; Barros, H.; Bochud, M.; Chadeau-Hyam, M.; et al. Socioeconomic Status and the 25 × 25 Risk Factors as Determinants of Premature Mortality: A Multicohort Study and Meta-Analysis of 1.7 Million Men and Women. Lancet 2017, 389, 1229–1237. [Google Scholar] [CrossRef] [PubMed]
- Sandri, E.; Pardo, J.; Cantín Larumbe, E.; Cerdá Olmedo, G.; Falcó, A. Analysis of the Influence of Educational Level on the Nutritional Status and Lifestyle Habits of the Young Spanish Population. Front. Public Health 2024, 12, 1341420. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Bonekamp, N.E.; Cruijsen, E.; Geleijnse, J.M.; Winkels, R.M.; Visseren, F.L.J.; Morris, P.B.; Koopal, C. Diet in Secondary Prevention: The Effect of Dietary Patterns on Cardiovascular Risk Factors in Patients with Cardiovascular Disease: A Systematic Review and Network Meta-Analysis. Nutr. J. 2024, 23, 18. [Google Scholar] [CrossRef]
- Popiolek-Kalisz, J.; Mazur, M.; Perone, F. The Role of Dietary Education in Cardiac Rehabilitation. Nutrients 2025, 17, 1082. [Google Scholar] [CrossRef]
- Desbouys, L.; Méjean, C.; De Henauw, S.; Castetbon, K. Socio-Economic and Cultural Disparities in Diet Among Adolescents and Young Adults: A Systematic Review. Public Health Nutr. 2020, 23, 843–860. [Google Scholar] [CrossRef]
- Sinclair, J.; Dillon, S.; Lowe, N.M.; Melia, A. Effects of a Nutrition Education Programme in Stage IV Cardiac Rehabilitation Patients: A 3-Arm Randomised Controlled Trial. Life 2023, 14, 63. [Google Scholar] [CrossRef]
- Füller, D.; Andresen-Bundus, H.; Pagonas, N.; Jaehn, P.; Ukena, C.; Gödde, K.; Holmberg, C.; Ritter, O.; Sasko, B. Adverse Socioeconomic Factors Are Associated with a Widening Gap in One-Year Health-Related Quality of Life after Acute Myocardial Infarction. Sci. Rep. 2025, 15, 19791. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Sim, N. Education and Food Consumption Patterns: Quasi-Experimental Evidence from Indonesia. SSRN Electron. J. 2021, 1, 1–22. [Google Scholar] [CrossRef]
- Huo, X.; Khera, R.; Zhang, L.; Herrin, J.; Bai, X.; Wang, Q.; Lu, Y.; Nasir, K.; Hu, S.; Li, J.; et al. Education Level and Outcomes after Acute Myocardial Infarction in China. Heart 2019, 105, 946–952. [Google Scholar] [CrossRef]
- Kowalkowska, J.; Wadolowska, L.; Czarnocinska, J.; Czlapka-Matyasik, M.; Galinski, G.; Jezewska-Zychowicz, M.; Bronkowska, M.; Dlugosz, A.; Loboda, D.; Wyka, J. Reproducibility of a Questionnaire for Dietary Habits, Lifestyle and Nutrition Knowledge Assessment (KomPAN) in Polish Adolescents and Adults. Nutrients 2018, 10, 1845. [Google Scholar] [CrossRef]
- Jeruszka-Bielak, M.; Hamulka, J.; Czarniecka-Skubina, E.; Hoffmann, M.; Kostyra, E.; Stasiewicz, B.; Jeszka, J.; Wadolowska, L. Dietary-Physical Activity Patterns in the Health Context of Older Polish Adults: The ‘ABC of Healthy Eating’ Project. Nutrients 2022, 14, 3757. [Google Scholar] [CrossRef]
- Jeżewska-Zychowicz, M.; Gawecki, J.; Wadolowska, L.; Czarnocińska, J.; Galiński, G.; Kollajtis-Dolowy, A.; Roszkowski, W.; Wawrzyniak, A.; Przybyłowicz, K.; Stasiewicz, B.; et al. KomPAN® Dietary Habits and Nutrition Beliefs Questionnaire for Adolescents Aged 16–18 Years and Adults, Version 2.1—Interviewer-Administered Questionnaire. In KomPAN® Dietary Habits and Nutrition Beliefs Questionnaire and the Manual for Developing of Nutritional Data; Gawecki, J., Ed.; Committee of Human Nutrition, Polish Academy of Sciences: Olsztyn, Poland, 2024; Chapter 1; pp. 4–21. Available online: https://diettools4u.uwm.edu.pl/wp-content/uploads/2024/10/KomPAN_MANUAL_english_version_3.0-dn02-08-2024.pdf (accessed on 12 September 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: https://www.r-project.org/ (accessed on 25 May 2025).
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation. 2023. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 25 May 2025).
- Wickham, H.; Vaughan, D.; Girlich, M. tidyr: Tidy Messy Data. 2024. Available online: https://CRAN.R-project.org/package=tidyr (accessed on 25 May 2025).
- Wickham, H. stringr: Simple, Consistent Wrappers for Common String Operations. 2023. Available online: https://CRAN.R-project.org/package=stringr (accessed on 25 May 2025).
- Wickham, H.; Henry, L. purrr: Functional Programming Tools. 2025. Available online: https://CRAN.R-project.org/package=purrr (accessed on 25 May 2025).
- Nakazawa, M. fmsb: Functions for Medical Statistics Book with Some Demographic Data. 2024. Available online: https://CRAN.R-project.org/package=fmsb (accessed on 25 May 2025).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: https://ggplot2.tidyverse.org (accessed on 25 May 2025).
- van den Brand, T. ggh4x: Hacks for ‘ggplot2’. 2024. Available online: https://CRAN.R-project.org/package=ggh4x (accessed on 25 May 2025).
- de Vries, A.; Ripley, B.D. ggdendro: Create Dendrograms and Tree Diagrams Using ‘ggplot2’. 2024. Available online: https://CRAN.R-project.org/package=ggdendro (accessed on 25 May 2025).
- Pedersen, T. patchwork: The Composer of Plots. 2024. Available online: https://CRAN.R-project.org/package=patchwork (accessed on 25 May 2025).
- Yang, M.; Gao, X.; Xie, L.; Lin, Z.; Ye, X.; Ou, J.; Peng, J. Causal Associations between Dietary Habits and CVD: A Mendelian Randomisation Study. Br. J. Nutr. 2023, 130, 2104–2113. [Google Scholar] [CrossRef]
- Delgado-Lista, J.; Alcala-Diaz, J.F.; Torres-Peña, J.D.; Quintana-Navarro, G.M.; Fuentes, F.; Garcia-Rios, A.; Ortiz-Morales, A.M.; I Perez-Caballero, A.; Yubero-Serrano, E.M.; A Rangel-Zuñiga, O.; et al. Long-Term Secondary Prevention of Cardiovascular Disease with a Mediterranean Diet and a Low-Fat Diet (CORDIOPREV): A Randomised Controlled Trial. Lancet 2022, 399, 1876–1885. [Google Scholar] [CrossRef] [PubMed]
- Kiani, A.K.; Medori, M.C.; Bonetti, G.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Stuppia, L.; Connelly, S.T.; Herbst, K.L.; et al. Modern Vision of the Mediterranean Diet. J. Prev. Med. Hyg. 2022, 63 (Suppl. S3), E36–E43. [Google Scholar] [CrossRef] [PubMed]
- Angelico, F.; Baratta, F.; Coronati, M.; Ferro, D.; Del Ben, M. Diet and Metabolic Syndrome: A Narrative Review. Intern. Emerg. Med. 2023, 18, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- Szczepańska, E.; Białek-Dratwa, A.; Janota, B.; Kowalski, O. Dietary Therapy in Prevention of Cardiovascular Disease (CVD)—Tradition or Modernity? A Review of the Latest Approaches to Nutrition in CVD. Nutrients 2022, 14, 2649. [Google Scholar] [CrossRef] [PubMed]
- Migliaccio, S.; Brasacchio, C.; Pivari, F.; Salzano, C.; Barrea, L.; Muscogiuri, G.; Savastano, S.; Colao, A. What Is the Best Diet for Cardiovascular Wellness? A Comparison of Different Nutritional Models. Int. J. Obes. Suppl. 2020, 10, 50–61. [Google Scholar] [CrossRef]
- Juraschek, S.P.; Kovell, L.C.; Appel, L.J.; Miller, E.R.; Sacks, F.M.; Christenson, R.H.; Rebuck, H.; Chang, A.R.; Mukamal, K.J. Associations Between Dietary Patterns and Subclinical Cardiac Injury: An Observational Analysis from the DASH Trial. Ann. Intern. Med. 2020, 172, 786–794. [Google Scholar] [CrossRef]
- Lichtenstein, A.H.; Appel, L.J.; Vadiveloo, M.; Hu, F.B.; Kris-Etherton, P.M.; Rebholz, C.M.; Sacks, F.M.; Thorndike, A.N.; Van Horn, L.; Wylie-Rosett, J.; et al. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e472–e487. [Google Scholar] [CrossRef] [PubMed]
- Wolnicka, K.; Taraszewska, A.M. (Eds.) Dieta dla Zdrowia Serca i Układu Krążenia; Narodowy Instytut Zdrowia Publicznego PZH—Państwowy Instytut Badawczy: Warszawa, Poland, 2022; ISBN 978-83-65870-53-7.
- Roszkowska, S.; Kula, B.; Pawelec, N.; Święczkowski, M.; Tomaszuk-Kazberuk, A.; Bachórzewska-Gajewska, H.; Dobrzycki, S.; Kuźma, Ł. Environmental and Socioeconomic Determinants of Heart Failure. Kardiol. Pol. 2023, 81, 160–167. [Google Scholar] [CrossRef]
- Jamiołkowski, J.; Genowska, A.; Pająk, A. Is Area-Level Socioeconomic Deprivation Associated with Mortality Due to Circulatory System Diseases in Poland? BMC Public Health 2023, 23, 7. [Google Scholar] [CrossRef] [PubMed]
- OECD. Education Policy Outlook Country Profile. Available online: https://gpseducation.oecd.org/revieweducationpolicies/#!node=41761&filter=all (accessed on 1 July 2025).
- McCullough, M.L.; Chantaprasopsuk, S.; Islami, F.; Rees-Punia, E.; Um, C.Y.; Wang, Y.; Leach, C.R.; Sullivan, K.R.; Patel, A.V. Association of Socioeconomic and Geographic Factors with Diet Quality in US Adults. JAMA Netw. Open 2022, 5, e2216406. [Google Scholar] [CrossRef]
- Poklar Vatovec, T.; Jenko Pražnikar, Z.; Petelin, A. Adherence and Sociodemographic Determinants of Adherence to the Mediterranean Diet among Slovenian Adults and the Elderly. Nutrients 2023, 15, 3219. [Google Scholar] [CrossRef]
- Górska-Warsewicz, H.; Rejman, K.; Kaczorowska, J.; Laskowski, W. Vegetables, Potatoes and Their Products as Sources of Energy and Nutrients to the Average Diet in Poland. Int. J. Environ. Res. Public Health 2021, 18, 3217. [Google Scholar] [CrossRef] [PubMed]
- Stea, T.H.; Nordheim, O.; Bere, E.; Stornes, P.; Eikemo, T.A. Fruit and Vegetable Consumption in Europe According to Gender, Educational Attainment and Regional Affiliation—A Cross-Sectional Study in 21 European Countries. PLoS ONE 2020, 15, e0232521. [Google Scholar] [CrossRef]
- Gómez, G.; Kovalskys, I.; Leme, A.C.B.; Quesada, D.; Rigotti, A.; Sanabria, L.Y.C.; García, M.C.Y.; Liria-Domínguez, M.R.; Herrera-Cuenca, M.; Fisberg, R.M.; et al. Socioeconomic Status Impact on Diet Quality and Body Mass Index in Eight Latin American Countries: ELANS Study Results. Nutrients 2021, 13, 2404. [Google Scholar] [CrossRef]
- Ahmadi Tabatabai, S.V.; Esmailinejad, A.S.; Sadeghi, R.; Zeidabadi, B. Factors Influencing the Consumption of Fruits and Vegetables in Diabetic Patients Based on Pender’s Health Promotion Model. J. Educ. Health Promot. 2022, 11, 51. [Google Scholar] [CrossRef]
- Mrazova, J.; Kopcekowa, J. Evaluation of Cardiovascular Diseases Risk Factors in a Group of Men Hospitalized after Myocardial Infarction. Rocz. Panstw. Zakl. Hig. 2022, 73, 485–493. [Google Scholar] [CrossRef]
- Trautwein, E.A.; McKay, S. The Role of Specific Components of a Plant-Based Diet in Management of Dyslipidemia and the Impact on Cardiovascular Risk. Nutrients 2020, 12, 2671. [Google Scholar] [CrossRef] [PubMed]
- Tyrovola, D.; Soulaidopoulos, S.; Tsioufis, C.; Lazaros, G. The Role of Nutrition in Cardiovascular Disease: Current Concepts and Trends. Nutrients 2023, 15, 1064. [Google Scholar] [CrossRef] [PubMed]
- Devries, S.; Aggarwal, M.; Freeman, A.M.; Ostfeld, R.J.; Reddy, K.R.; Williams, K.; Aspry, K.E. Nutrition Education in Cardiology Training: Unmet Needs and Impactful Opportunities. Am. J. Med. 2025, 138, 428–431.e1. [Google Scholar] [CrossRef]
- de Mello, A.V.; Pereira, J.L.; Leme, A.C.B.; Goldbaum, M.; Cesar, C.L.G.; Fisberg, R.M. Social Determinants, Lifestyle and Diet Quality: A Population-Based Study from the 2015 Health Survey of São Paulo, Brazil. Public Health Nutr. 2020, 23, 1766–1777. [Google Scholar] [CrossRef] [PubMed]
- Rozporządzenie Ministra Edukacji z Dnia 6 Marca 2025 r. Dz.U. 2025 poz. 378. Warszawa, 26 Marca 2025. Available online: https://dziennikustaw.gov.pl/DU/2025/378 (accessed on 1 July 2025).
Total | Primary | Vocational | Secondary | Higher | |
---|---|---|---|---|---|
N (%) | N (%) | N (%) | N (%) | N (%) | |
Number of patients | 167 (100%) | 9 (5.4%) | 59 (35.9%) | 57 (35.3%) | 39 (23.4%) |
Men | 122 (74.4%) | 4 (44.4%) | 41 (69.5%) | 46 (80.7%) | 31 (79.5%) |
Women | 42 (25.6%) | 5 (55.6%) | 18 (30.5%) | 11 (19.3%) | 8 (20.5%) |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
Age | 59.8 ± 11.2 | 55.9 ± 11.4 | 58.9 ± 10 | 60.7 ± 11.8 | 60.8 ± 12 |
BMI | 28 ± 4.3 | 26.4 ± 3.1 | 28.2 ± 4.1 | 27.5 ± 4.3 | 28.6 ± 4.9 |
pHDI | 49.9 ± 12.4 | 46.9 ± 12.6 | 46.4 ± 13 | 50 ± 11.5 | 55.6 ± 10.9 |
Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | |
Urban area size | 4 (3–4) | 4 (3–4) | 3 (3–4) | 4 (3–4) | 4 (4–4) |
Family size | 2 (2–3) | 2 (1.5–4) | 2 (2–3) | 2 (2–3) | 2 (2–3) |
Financial situation | 2 (2–2) | 2 (2–2) | 2 (2–2) | 2 (2–2) | 2.5 (2–3) |
Household situation | 3 (3–4) | 3 (2.75–3) | 3 (3–3) | 3 (3–4) | 4 (3–4) |
Number of meals | 3 (3–4) | 3 (3–3.5) | 3 (3–4) | 3 (3–4) | 4 (3–4) |
Frequency of eating out | 2 (1–2) | 1 (1–2) | 1 (1–2) | 2 (1–2) | 2 (1.25–2.75) |
pHDI | 50 (42.1–59) | 46.67 (35.9–57.5) | 48.89 (36.5–57.3) | 50 (43–58) | 56 (48–65.6) |
Education Level | All | Primary | Vocational | Secondary | Higher | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | n | % | n | % | ||
Frequency of vegetable consumption | Never | 1 | 0.61 | 0 | 0.00 | 1 | 1.72 | 0 | 0.00 | 0 | 0.00 |
1–3 times a month | 10 | 6.13 | 0 | 0.00 | 6 | 10.34 | 4 | 7.02 | 0 | 0.00 | |
Once a week | 10 | 6.13 | 2 | 22.22 | 5 | 8.62 | 2 | 3.51 | 1 | 2.56 | |
Several times a week | 63 | 38.65 | 4 | 44.44 | 24 | 41.38 | 24 | 42.11 | 11 | 28.21 | |
Once a day | 44 | 26.99 | 0 | 0.00 | 13 | 22.41 | 18 | 31.58 | 13 | 33.33 | |
Several times a day | 35 | 21.47 | 3 | 33.33 | 9 | 15.52 | 9 | 15.79 | 14 | 35.90 | |
Frequency of fruit consumption | Never | 1 | 0.63 | 0 | 0.00 | 1 | 1.85 | 0 | 0.00 | 0 | 0.00 |
1–3 times a month | 9 | 5.70 | 0 | 0.00 | 6 | 11.11 | 3 | 5.26 | 0 | 0.00 | |
Once a week | 11 | 6.96 | 3 | 33.33 | 6 | 11.11 | 2 | 3.51 | 0 | 0.00 | |
Several times a week | 52 | 32.91 | 3 | 33.33 | 19 | 35.19 | 16 | 28.07 | 14 | 36.84 | |
Once a day | 57 | 36.08 | 0 | 0.00 | 15 | 27.78 | 27 | 47.37 | 15 | 39.47 | |
Several times a day | 28 | 17.72 | 3 | 33.33 | 7 | 12.96 | 9 | 15.79 | 9 | 23.68 | |
Frequency of legume consumption | Never | 18 | 11.18 | 1 | 11.11 | 10 | 17.54 | 6 | 10.53 | 1 | 2.63 |
1–3 times a month | 82 | 50.93 | 5 | 55.56 | 30 | 52.63 | 29 | 50.88 | 18 | 47.37 | |
Once a week | 46 | 28.57 | 3 | 33.33 | 15 | 26.32 | 15 | 26.32 | 13 | 34.21 | |
Several times a week | 13 | 8.07 | 0 | 0.00 | 1 | 1.75 | 6 | 10.53 | 6 | 15.79 | |
Once a day | 2 | 1.24 | 0 | 0.00 | 1 | 1.75 | 1 | 1.75 | 0 | 0.00 | |
Several times a day | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | |
Frequency of whole-wheat bread consumption | Never | 29 | 19.59 | 3 | 42.86 | 13 | 26.53 | 10 | 18.52 | 3 | 7.89 |
1–3 times a month | 17 | 11.49 | 1 | 14.29 | 5 | 10.20 | 10 | 18.52 | 1 | 2.63 | |
Once a week | 19 | 12.84 | 0 | 0.00 | 7 | 14.29 | 7 | 12.96 | 5 | 13.16 | |
Several times a week | 33 | 22.30 | 2 | 28.57 | 11 | 22.45 | 8 | 14.81 | 12 | 31.58 | |
Once a day | 24 | 16.22 | 0 | 0.00 | 7 | 14.29 | 7 | 12.96 | 10 | 26.32 | |
Several times a day | 26 | 17.57 | 1 | 14.29 | 6 | 12.24 | 12 | 22.22 | 7 | 18.42 | |
Frequency of whole grain groats and pasta consumption | Never | 20 | 12.82 | 0 | 0.00 | 10 | 18.52 | 6 | 10.91 | 4 | 10.53 |
1–3 times a month | 40 | 25.64 | 3 | 33.33 | 19 | 35.19 | 12 | 21.82 | 6 | 15.79 | |
Once a week | 43 | 27.56 | 6 | 66.67 | 13 | 24.07 | 13 | 23.64 | 11 | 28.95 | |
Several times a week | 42 | 26.92 | 0 | 0.00 | 11 | 20.37 | 18 | 32.73 | 13 | 34.21 | |
Once a day | 8 | 5.13 | 0 | 0.00 | 1 | 1.85 | 5 | 9.09 | 2 | 5.26 | |
Several times a day | 3 | 1.92 | 0 | 0.00 | 0 | 0.00 | 1 | 1.82 | 2 | 5.26 |
Education Level | All | Primary | Vocational | Secondary | Higher | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | n | % | n | % | ||
Frequency of fish consumption | Never | 5 | 3.14 | 0 | 0.00 | 2 | 3.57 | 2 | 3.57 | 1 | 2.56 |
1–3 times a month | 50 | 31.45 | 2 | 25.00 | 19 | 33.93 | 20 | 35.71 | 9 | 23.08 | |
Once a week | 77 | 48.43 | 5 | 62.50 | 25 | 44.64 | 28 | 50.00 | 19 | 48.72 | |
Several times a week | 23 | 14.47 | 1 | 12.50 | 9 | 16.07 | 4 | 7.14 | 9 | 23.08 | |
Once a day | 4 | 2.52 | 0 | 0.00 | 1 | 1.79 | 2 | 3.57 | 1 | 2.56 | |
Several times a day | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | |
Frequency of white meat consumption | Never | 1 | 0.61 | 0 | 0.00 | 1 | 1.69 | 0 | 0.00 | 0 | 0.00 |
1–3 times a month | 13 | 7.98 | 0 | 0.00 | 6 | 10.17 | 4 | 7.02 | 3 | 7.89 | |
Once a week | 45 | 27.61 | 3 | 33.33 | 18 | 30.51 | 17 | 29.82 | 7 | 18.42 | |
Several times a week | 95 | 58.28 | 6 | 66.67 | 31 | 52.54 | 34 | 59.65 | 24 | 63.16 | |
Once a day | 8 | 4.91 | 0 | 0.00 | 2 | 3.39 | 2 | 3.51 | 4 | 10.53 | |
Several times a day | 1 | 0.61 | 0 | 0.00 | 1 | 1.69 | 0 | 0.00 | 0 | 0.00 | |
Frequency of milk consumption | Never | 28 | 17.61 | 1 | 11.11 | 9 | 16.07 | 11 | 20.00 | 7 | 17.95 |
1–3 times a month | 21 | 13.21 | 3 | 33.33 | 6 | 10.71 | 7 | 12.73 | 5 | 12.82 | |
Once a week | 15 | 9.43 | 1 | 11.11 | 5 | 8.93 | 5 | 9.09 | 4 | 10.26 | |
Several times a week | 32 | 20.13 | 1 | 11.11 | 12 | 21.43 | 10 | 18.18 | 9 | 23.08 | |
Once a day | 39 | 24.53 | 1 | 11.11 | 15 | 26.79 | 12 | 21.82 | 11 | 28.21 | |
Several times a day | 24 | 15.09 | 2 | 22.22 | 9 | 16.07 | 10 | 18.18 | 3 | 7.69 | |
Frequency of cottage cheese consumption | Never | 9 | 5.52 | 0 | 0.00 | 4 | 6.90 | 3 | 5.26 | 2 | 5.13 |
1–3 times a month | 32 | 19.63 | 2 | 22.22 | 14 | 24.14 | 12 | 21.05 | 4 | 10.26 | |
Once a week | 40 | 24.54 | 4 | 44.44 | 16 | 27.59 | 10 | 17.54 | 10 | 25.64 | |
Several times a week | 63 | 38.65 | 2 | 22.22 | 16 | 27.59 | 27 | 47.37 | 18 | 46.15 | |
Once a day | 13 | 7.98 | 1 | 11.11 | 6 | 10.34 | 3 | 5.26 | 3 | 7.69 | |
Several times a day | 6 | 3.68 | 0 | 0.00 | 2 | 3.45 | 2 | 3.51 | 2 | 5.13 | |
Frequency of fermented milk beverages consumption | Never | 13 | 7.93 | 0 | 0.00 | 10 | 16.95 | 1 | 1.75 | 2 | 5.13 |
1–3 times a month | 25 | 15.24 | 0 | 0.00 | 8 | 13.56 | 13 | 22.81 | 4 | 10.26 | |
Once a week | 26 | 15.85 | 5 | 55.56 | 4 | 6.78 | 11 | 19.30 | 6 | 15.38 | |
Several times a week | 52 | 31.71 | 2 | 22.22 | 20 | 33.90 | 20 | 35.09 | 10 | 25.64 | |
Once a day | 44 | 26.83 | 2 | 22.22 | 16 | 27.12 | 11 | 19.30 | 15 | 38.46 | |
Several times a day | 4 | 2.44 | 0 | 0.00 | 1 | 1.69 | 1 | 1.75 | 2 | 5.13 |
n (%) | Mean ± SD | Low pHDI | Medium pHDI | High pHDI | |
---|---|---|---|---|---|
All | 164 (100%) | 49.87 ± 12.4 | 17 (10.37%) | 133 (81.1%) | 14 (8.54%) |
Primary | 9 (100%) | 46.87 ± 12.58 | 1 (11.11%) | 8 (88.89%) | 0 (0%) |
Vocational | 59 (100%) | 46.4 ± 13.03 | 14 (23.73%) | 43 (72.88%) | 2 (3.39%) |
Secondary | 57 (100%) | 50 ± 11.47 | 2 (3.51%) | 52 (91.23%) | 3 (5.26%) |
Higher | 39 (100%) | 55.61 ± 10.87 | 0 (0%) | 30 (76.92%) | 9 (23.08%) |
Variable | Model 1 (Full) | Model 2 (Best Fit) | Final Model (Parsimonious) |
---|---|---|---|
(Intercept) | 21.25 (.) | 16.23 (.) | 39.20 (*) |
Education | 3.79 (**) | 3.58 (**) | 3.85 (*) |
Age | 0.22 (*) | 0.24 (*) | - |
Frequency of eating out | 3.29 (*) | 3.47 (*) | - |
Family size | 1.82 (*) | 1.54 (.) | - |
Sex | 3.05 | 3.45 | - |
Household situation | −1.35 | −1.48 | - |
Number of meals | 1.18 | 1.29 | - |
Financial situation | −1.07 | - | - |
BMI | −0.14 | - | - |
Urban area size | 0.44 | - | - |
Model Fit Statistics | |||
R-squared | 0.179 | 0.169 | 0.074 |
Adjusted R-squared | 0.12 | 0.129 | 0.068 |
F-statistic | 3.018 | 4.213 | 12.98 |
p-value | 0.002 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczepańska, E.; Janota, B.; Janion, K.; Biernacki, K.; Kowalski, O. Education Level and Cardioprotective Dietary Patterns in Polish Post-MI Patients: A Cross-Sectional Study Using the KomPAN Tool. Nutrients 2025, 17, 3018. https://doi.org/10.3390/nu17183018
Szczepańska E, Janota B, Janion K, Biernacki K, Kowalski O. Education Level and Cardioprotective Dietary Patterns in Polish Post-MI Patients: A Cross-Sectional Study Using the KomPAN Tool. Nutrients. 2025; 17(18):3018. https://doi.org/10.3390/nu17183018
Chicago/Turabian StyleSzczepańska, Elżbieta, Barbara Janota, Karolina Janion, Krzysztof Biernacki, and Oskar Kowalski. 2025. "Education Level and Cardioprotective Dietary Patterns in Polish Post-MI Patients: A Cross-Sectional Study Using the KomPAN Tool" Nutrients 17, no. 18: 3018. https://doi.org/10.3390/nu17183018
APA StyleSzczepańska, E., Janota, B., Janion, K., Biernacki, K., & Kowalski, O. (2025). Education Level and Cardioprotective Dietary Patterns in Polish Post-MI Patients: A Cross-Sectional Study Using the KomPAN Tool. Nutrients, 17(18), 3018. https://doi.org/10.3390/nu17183018