Ultra-Processed Food Consumption and Systemic Inflammatory Biomarkers: A Scoping Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria and Study Selection
- Population: we included studies involving humans of any age. Results were considered separately for adults and for children/adolescents.
- Concept: eligible studies were those that directly evaluated the association between UPF consumption and systemic inflammatory markers. We included observational or epidemiological studies (e.g., cross-sectional, case–control, cohort) as well as mechanistic human studies (e.g., short-term dietary interventions) only if they reported results on inflammatory markers across different levels of UPF intake (e.g., categories or quantiles of UPF consumption, or continuous associations). To be eligible, studies had to provide a quantitative measure of the relationship (e.g., p-value, β coefficient, odds ratio, or mean differences) for at least one systemic inflammatory marker.
- Context: studies were eligible regardless of setting, geographical region, or healthcare system. Both general population samples and patient cohorts were included.
2.2. Search Strategy
2.3. Study Selection and Data Charting
2.4. Synthesis of Results
- UPF consumption and systemic inflammatory biomarkers in children and adolescents
- This section summarizes studies assessing the association between UPF consumption and systemic inflammatory biomarkers in pediatric and adolescent populations, presented per biomarker.
- UPF consumption and systemic inflammatory biomarkers in adults
- This section collects evidence from research assessing the influence of UPF consumption on systemic inflammatory markers in adult populations, with results presented per biomarker.
- Summary tables
- Descriptive tables report study characteristics (author, year, country, design, population, sample size), UPF exposure assessment, biomarkers assessed, and key findings to support the narrative synthesis, and summary tables visually highlight the presence of association between UPF intake and each inflammatory biomarker in the included studies.
3. Results
3.1. UPF Consumption and Systemic Inflammatory Biomarkers in Children and Adolescents
3.1.1. UPF and CRP/hs-CRP
3.1.2. UPF and IL-6
3.1.3. UPF and TNF-α
3.1.4. UPF and IL-1β
3.1.5. UPF and IL-8
3.1.6. UPF and MCP-1
3.1.7. UPF and Leptin
3.2. UPF Consumption and Systemic Inflammatory Biomarkers in Adults
3.2.1. UPF and CRP/hs-CRP
3.2.2. UPF and IL-6
3.2.3. UPF and TNF-α
3.2.4. UPF and IL-1β
3.2.5. UPF and MCP-1
3.2.6. UPF and PAI-1
3.2.7. UPF and Leptin
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-Processed Foods: What They Are and How to Identify Them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Mertens, E.; Colizzi, C.; Peñalvo, J.L. Ultra-Processed Food Consumption in Adults across Europe. Eur. J. Nutr. 2022, 61, 1521–1539. [Google Scholar] [CrossRef]
- Mambrini, S.P.; Menichetti, F.; Ravella, S.; Pellizzari, M.; De Amicis, R.; Foppiani, A.; Battezzati, A.; Bertoli, S.; Leone, A. Ultra-Processed Food Consumption and Incidence of Obesity and Cardiometabolic Risk Factors in Adults: A Systematic Review of Prospective Studies. Nutrients 2023, 15, 2583. [Google Scholar] [CrossRef]
- Zhang, Y.; Giovannucci, E.L. Ultra-Processed Foods and Health: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 10836–10848. [Google Scholar] [CrossRef]
- Baker, P.; Machado, P.; Santos, T.; Sievert, K.; Backholer, K.; Hadjikakou, M.; Russell, C.; Huse, O.; Bell, C.; Scrinis, G.; et al. Ultra-Processed Foods and the Nutrition Transition: Global, Regional and National Trends, Food Systems Transformations and Political Economy Drivers. Obes. Rev. 2020, 21, e13126. [Google Scholar] [CrossRef]
- Tristan Asensi, M.; Napoletano, A.; Sofi, F.; Dinu, M. Low-Grade Inflammation and Ultra-Processed Foods Consumption: A Review. Nutrients 2023, 15, 1546. [Google Scholar] [CrossRef]
- Ciaffi, J.; Mancarella, L.; Ripamonti, C.; D’Amuri, A.; Brusi, V.; Pignatti, F.; Lisi, L.; Ursini, F. Ultra-Processed Food and Its Impact on Bone Health and Joint Diseases: A Scoping Review. Nutrients 2025, 17, 1188. [Google Scholar] [CrossRef] [PubMed]
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health Effects of Dietary Risks in 195 Countries, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S. Inflammation, Metaflammation and Immunometabolic Disorders. Nature 2017, 542, 177–185. [Google Scholar] [CrossRef]
- Juul, F.; Vaidean, G.; Parekh, N. Ultra-Processed Foods and Cardiovascular Diseases: Potential Mechanisms of Action. Adv. Nutr. 2021, 12, 1673–1680. [Google Scholar] [CrossRef]
- Narula, N.; Chang, N.H.; Mohammad, D.; Wong, E.C.L.; Ananthakrishnan, A.N.; Chan, S.S.M.; Carbonnel, F.; Meyer, A. Food Processing and Risk of Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2023, 21, 2483–2495.e1. [Google Scholar] [CrossRef]
- Mannino, A.; Daly, A.; Dunlop, E.; Probst, Y.; Ponsonby, A.-L.; van der Mei, I.A.F.; Ausimmune Investigator Group; Black, L.J. Higher Consumption of Ultra-Processed Foods and Increased Likelihood of Central Nervous System Demyelination in a Case-Control Study of Australian Adults. Eur. J. Clin. Nutr. 2023, 77, 611–614. [Google Scholar] [CrossRef]
- Delpino, F.M.; Figueiredo, L.M.; Bielemann, R.M.; da Silva, B.G.C.; Dos Santos, F.S.; Mintem, G.C.; Flores, T.R.; Arcêncio, R.A.; Nunes, B.P. Ultra-Processed Food and Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis of Longitudinal Studies. Int. J. Epidemiol. 2022, 51, 1120–1141. [Google Scholar] [CrossRef]
- Qu, Y.; Hu, W.; Huang, J.; Tan, B.; Ma, F.; Xing, C.; Yuan, L. Ultra-Processed Food Consumption and Risk of Cardiovascular Events: A Systematic Review and Dose-Response Meta-Analysis. eClinicalMedicine 2024, 69, 102484. [Google Scholar] [CrossRef]
- Pagliai, G.; Dinu, M.; Madarena, M.P.; Bonaccio, M.; Iacoviello, L.; Sofi, F. Consumption of Ultra-Processed Foods and Health Status: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2021, 125, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Dicken, S.J.; Dahm, C.C.; Ibsen, D.B.; Olsen, A.; Tjønneland, A.; Louati-Hajji, M.; Cadeau, C.; Marques, C.; Schulze, M.B.; Jannasch, F.; et al. Food Consumption by Degree of Food Processing and Risk of Type 2 Diabetes Mellitus: A Prospective Cohort Analysis of the European Prospective Investigation into Cancer and Nutrition (EPIC). Lancet Reg. Health Eur. 2024, 46, 101043. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Kim, H.; Rebholz, C.M. Higher Ultra-Processed Food Consumption Is Associated with Increased Risk of Incident Coronary Artery Disease in the Atherosclerosis Risk in Communities Study. J. Nutr. 2021, 151, 3746–3754. [Google Scholar] [CrossRef]
- Bhave, V.M.; Oladele, C.R.; Ament, Z.; Kijpaisalratana, N.; Jones, A.C.; Couch, C.A.; Patki, A.; Garcia Guarniz, A.-L.; Bennett, A.; Crowe, M.; et al. Associations Between Ultra-Processed Food Consumption and Adverse Brain Health Outcomes. Neurology 2024, 102, e209432. [Google Scholar] [CrossRef]
- Dai, S.; Wellens, J.; Yang, N.; Li, D.; Wang, J.; Wang, L.; Yuan, S.; He, Y.; Song, P.; Munger, R.; et al. Ultra-Processed Foods and Human Health: An Umbrella Review and Updated Meta-Analyses of Observational Evidence. Clin. Nutr. 2024, 43, 1386–1394. [Google Scholar] [CrossRef]
- Isaksen, I.M.; Dankel, S.N. Ultra-Processed Food Consumption and Cancer Risk: A Systematic Review and Meta-Analysis. Clin. Nutr. 2023, 42, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Ejtahed, H.-S.; Mardi, P.; Hejrani, B.; Mahdavi, F.S.; Ghoreshi, B.; Gohari, K.; Heidari-Beni, M.; Qorbani, M. Association between Junk Food Consumption and Mental Health Problems in Adults: A Systematic Review and Meta-Analysis. BMC Psychiatry 2024, 24, 438. [Google Scholar] [CrossRef]
- Maki, K.A.; Sack, M.N.; Hall, K.D. Ultra-Processed Foods: Increasing the Risk of Inflammation and Immune Dysregulation? Nat. Rev. Immunol. 2024, 24, 453–454. [Google Scholar] [CrossRef]
- Rondinella, D.; Raoul, P.C.; Valeriani, E.; Venturini, I.; Cintoni, M.; Severino, A.; Galli, F.S.; Mora, V.; Mele, M.C.; Cammarota, G.; et al. The Detrimental Impact of Ultra-Processed Foods on the Human Gut Microbiome and Gut Barrier. Nutrients 2025, 17, 859. [Google Scholar] [CrossRef]
- Whelan, K.; Bancil, A.S.; Lindsay, J.O.; Chassaing, B. Ultra-Processed Foods and Food Additives in Gut Health and Disease. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 406–427. [Google Scholar] [CrossRef]
- Song, Z.; Song, R.; Liu, Y.; Wu, Z.; Zhang, X. Effects of Ultra-Processed Foods on the Microbiota-Gut-Brain Axis: The Bread-and-Butter Issue. Food Res. Int. 2023, 167, 112730. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Speranza, B.; Racioppo, A.; Santillo, A.; Albenzio, M.; Derossi, A.; Caporizzi, R.; Francavilla, M.; Racca, D.; Flagella, Z.; et al. Ultra-Processed Food and Gut Microbiota: Do Additives Affect Eubiosis? A Narrative Review. Nutrients 2024, 17, 2. [Google Scholar] [CrossRef]
- Charles-Messance, H.; Mitchelson, K.A.J.; De Marco Castro, E.; Sheedy, F.J.; Roche, H.M. Regulating Metabolic Inflammation by Nutritional Modulation. J. Allergy Clin. Immunol. 2020, 146, 706–720. [Google Scholar] [CrossRef]
- Geladari, E.V.; Kounatidis, D.; Christodoulatos, G.S.; Psallida, S.; Pavlou, A.; Geladari, C.V.; Sevastianos, V.; Dalamaga, M.; Vallianou, N.G. Ultra-Processed Foods and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): What Is the Evidence So Far? Nutrients 2025, 17, 2098. [Google Scholar] [CrossRef] [PubMed]
- Spiller, A.L.; Costa, B.G.D.; Yoshihara, R.N.Y.; Nogueira, E.J.Z.; Castelhano, N.S.; Santos, A.; Brusco De Freitas, M.; Magro, D.O.; Yukie Sassaki, L. Ultra-Processed Foods, Gut Microbiota, and Inflammatory Bowel Disease: A Critical Review of Emerging Evidence. Nutrients 2025, 17, 2677. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.D.J.; Marnie, C.; Tricco, A.C.; Pollock, D.; Munn, Z.; Alexander, L.; McInerney, P.; Godfrey, C.M.; Khalil, H. Updated Methodological Guidance for the Conduct of Scoping Reviews. JBI Evid. Implement. 2021, 19, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Bahrampour, N.; Shiraseb, F.; Noori, S.; Clark, C.C.T.; Mirzaei, K. Is There Any Putative Mediatory Role of Inflammatory Markers on the Association between Ultra-Processed Foods and Resting Metabolic Rate? Front. Nutr. 2022, 9, 932225. [Google Scholar] [CrossRef]
- Baric, A.; Malik, V.S.; Christoforou, A. Ultra-Processed Food Consumption and Cardiometabolic Risk in Canada: A Cross-Sectional Analysis of the Canadian Health Measures Survey. Nutr. Metab. 2025, 22, 37. [Google Scholar] [CrossRef]
- Bérard, S.; Morel, S.; Teasdale, E.; Shivappa, N.; Hebert, J.R.; Laverdière, C.; Sinnett, D.; Levy, E.; Marcil, V. Diet Quality Is Associated with Cardiometabolic Outcomes in Survivors of Childhood Leukemia. Nutrients 2020, 12, 2137. [Google Scholar] [CrossRef]
- Contreras-Rodriguez, O.; Reales-Moreno, M.; Fernández-Barrès, S.; Cimpean, A.; Arnoriaga-Rodríguez, M.; Puig, J.; Biarnés, C.; Motger-Albertí, A.; Cano, M.; Fernández-Real, J.M. Consumption of Ultra-Processed Foods Is Associated with Depression, Mesocorticolimbic Volume, and Inflammation. J. Affect. Disord. 2023, 335, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.R.; Lipsky, L.M.; Schwedhelm, C.; Liu, A.; Nansel, T.R. Associations of Ultra-Processed Food Intake with Maternal Weight Change and Cardiometabolic Health and Infant Growth. Int. J. Behav. Nutr. Phys. Act. 2022, 19, 61. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, G.R.; Rosa, P.B.Z.; Martins, N.N.F.; Mendes, L.L.; Do Carmo, A.S.; Schaan, B.D.; Cureau, F.V. Association between Consumption of Ultra-Processed Foods and C-Reactive Protein: Findings from Study of Cardiovascular Risks in Adolescents (ERICA). Br. J. Nutr. 2025, 133, 1395–1403. [Google Scholar] [CrossRef]
- Hajmir, M.M.; Shiraseb, F.; Hosseininasab, D.; Aali, Y.; Hosseini, S.; Mirzaei, K. The Mediatory Role of Inflammatory Markers on the Relationship between the NOVA Classification System and Obesity Phenotypes among Obese and Overweight Adult Women: A Cross-Sectional Study. Front. Nutr. 2023, 10, 1226162. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 67–77.e3. [Google Scholar] [CrossRef]
- Hosseininasab, D.; Shiraseb, F.; Noori, S.; Jamili, S.; Mazaheri-Eftekhar, F.; Dehghan, M.; Da Silva, A.; Bressan, J.; Mirzaei, K. The Relationship between Ultra-Processed Food Intake and Cardiometabolic Risk Factors in Overweight and Obese Women: A Cross-Sectional Study. Front. Nutr. 2022, 9, 945591. [Google Scholar] [CrossRef] [PubMed]
- Kelsey, P.T.; Papadopoulou, E.; Borge, T.C.; Dahl, C.; Brantsæter, A.L.; Erlund, I.; Meltzer, H.M.; Haug, L.S.; Caspersen, I.H. Ultra-Processed Food Consumption and Associations with Biomarkers of Nutrition and Inflammation in Pregnancy: The Norwegian Environmental Biobank. Front. Nutr. 2022, 9, 1052001. [Google Scholar] [CrossRef]
- Kityo, A.; Choi, B.; Lee, J.-E.; Kim, C.; Lee, S.-A. Association of Ultra-Processed Food-Related Metabolites with Selected Biochemical Markers in the UK Biobank. Nutr. J. 2025, 24, 21. [Google Scholar] [CrossRef]
- Lane, M.M.; Lotfaliany, M.; Forbes, M.; Loughman, A.; Rocks, T.; O’Neil, A.; Machado, P.; Jacka, F.N.; Hodge, A.; Marx, W. Higher Ultra-Processed Food Consumption Is Associated with Greater High-Sensitivity C-Reactive Protein Concentration in Adults: Cross-Sectional Results from the Melbourne Collaborative Cohort Study. Nutrients 2022, 14, 3309. [Google Scholar] [CrossRef]
- Lopes, A.E.D.S.C.; Araújo, L.F.; Levy, R.B.; Barreto, S.M.; Giatti, L. Association between Consumption of Ultra-Processed Foods and Serum C-Reactive Protein Levels: Cross-Sectional Results from the ELSA-Brasil Study. Sao Paulo Med. J. 2019, 137, 169–176. [Google Scholar] [CrossRef]
- Martins, G.M.D.S.; França, A.K.T.D.C.; Viola, P.C.D.A.F.; Carvalho, C.A.D.; Marques, K.D.S.; Santos, A.M.D.; Batalha, M.A.; Alves, J.D.D.A.; Ribeiro, C.C.C. Intake of Ultra-Processed Foods Is Associated with Inflammatory Markers in Brazilian Adolescents. Public Health Nutr. 2022, 25, 591–599. [Google Scholar] [CrossRef]
- Millar, S.R.; Harrington, J.M.; Perry, I.J.; Phillips, C.M. Associations between Ultra-Processed Food and Drink Consumption and Biomarkers of Chronic Low-Grade Inflammation: Exploring the Mediating Role of Adiposity. Eur. J. Nutr. 2025, 64, 150. [Google Scholar] [CrossRef]
- Nestares, T.; Martín-Masot, R.; Flor-Alemany, M.; Bonavita, A.; Maldonado, J.; Aparicio, V.A. Influence of Ultra-Processed Foods Consumption on Redox Status and Inflammatory Signaling in Young Celiac Patients. Nutrients 2021, 13, 156. [Google Scholar] [CrossRef]
- Quetglas-Llabrés, M.M.; Monserrat-Mesquida, M.; Bouzas, C.; Mateos, D.; Ugarriza, L.; Gómez, C.; Tur, J.A.; Sureda, A. Oxidative Stress and Inflammatory Biomarkers Are Related to High Intake of Ultra-Processed Food in Old Adults with Metabolic Syndrome. Antioxidants 2023, 12, 1532. [Google Scholar] [CrossRef] [PubMed]
- Silva Dos Santos, F.; Costa Mintem, G.; Oliveira De Oliveira, I.; Lessa Horta, B.; Ramos, E.; Lopes, C.; Petrucci Gigante, D. Consumption of Ultra-Processed Foods and IL-6 in Two Cohorts from High- and Middle-Income Countries. Br. J. Nutr. 2023, 129, 1552–1562. [Google Scholar] [CrossRef] [PubMed]
- Silva-Luis, C.C.; Lopes, M.S.; Gomes, S.M.; Cantalice Matias, P.K.; Brandini, F.P.; Costa, P.C.T.; De Moraes, R.C.S.; Baccin Martins, V.J.; De Brito Alves, J.L. Ultra-Processed Food Consumption and Cardiometabolic Risk Factors in Children Living in Northeastern Brazil. Nutrients 2024, 16, 3944. [Google Scholar] [CrossRef]
- Vivi, A.C.P.; Azevedo-Silva, T.R.; Neri, D.; Strufaldi, M.W.L.; Lebrão, C.W.; Fonseca, F.L.A.; Sarni, R.O.S.; Suano-Souza, F.I. Association between Ultraprocessed Food Intake and C-Reactive Protein Levels in Preterm and Term Infants. Nutrition 2022, 99–100, 111649. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.L.C.H.; Girerd, N.; Lamiral, Z.; Duarte, K.; Merckle, L.; Leroy, C.; Nazare, J.-A.; Van Den Berghe, L.; Seconda, L.; Hoge, A.; et al. Association between Ultra-Processed Food Consumption and Inflammation: Insights from the STANISLAS Cohort. Eur. J. Nutr. 2025, 64, 94. [Google Scholar] [CrossRef]
- Zatsepina, A.; Sayeed, S.; Mohsin, F.; Al Shihabi, A.; Roland, B.; Salem, A.E. The Impact of Dietary Patterns on Inflammation and Colon Cancer Risk: A Retrospective Study of 796 Patients. J. Clin. Oncol. 2025, 43, 3618. [Google Scholar] [CrossRef]
- Zhao, L.; Clay-Gilmour, A.; Zhang, J.; Zhang, X.; Steck, S.E. Higher Ultra-Processed Food Intake Is Associated with Adverse Liver Outcomes: A Prospective Cohort Study of UK Biobank Participants. Am. J. Clin. Nutr. 2024, 119, 49–57. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, X.; Martinez Steele, E.; Lo, C.-H.; Zhang, F.F.; Zhang, X. Higher Ultra-Processed Food Intake Was Positively Associated with Odds of NAFLD in Both US Adolescents and Adults: A National Survey. Hepatol. Commun. 2023, 7, e0240. [Google Scholar] [CrossRef]
- Bujtor, M.; Turner, A.; Torres, S.; Esteban-Gonzalo, L.; Pariante, C.; Borsini, A. Associations of Dietary Intake on Biological Markers of Inflammation in Children and Adolescents: A Systematic Review. Nutrients 2021, 13, 356. [Google Scholar] [CrossRef]
- Martínez Steele, E.; Baraldi, L.G.; Louzada, M.L.D.C.; Moubarac, J.-C.; Mozaffarian, D.; Monteiro, C.A. Ultra-Processed Foods and Added Sugars in the US Diet: Evidence from a Nationally Representative Cross-Sectional Study. BMJ Open 2016, 6, e009892. [Google Scholar] [CrossRef]
- Teeman, C.S.; Kurti, S.P.; Cull, B.J.; Emerson, S.R.; Haub, M.D.; Rosenkranz, S.K. Postprandial Lipemic and Inflammatory Responses to High-Fat Meals: A Review of the Roles of Acute and Chronic Exercise. Nutr. Metab. 2016, 13, 80. [Google Scholar] [CrossRef]
- Santos, S.; Oliveira, A.; Lopes, C. Systematic Review of Saturated Fatty Acids on Inflammation and Circulating Levels of Adipokines. Nutr. Res. 2013, 33, 687–695. [Google Scholar] [CrossRef]
- Ko, B.-J.; Park, K.H.; Shin, S.; Zaichenko, L.; Davis, C.R.; Crowell, J.A.; Joung, H.; Mantzoros, C.S. Diet Quality and Diet Patterns in Relation to Circulating Cardiometabolic Biomarkers. Clin. Nutr. 2016, 35, 484–490. [Google Scholar] [CrossRef]
- Esmaillzadeh, A.; Kimiagar, M.; Mehrabi, Y.; Azadbakht, L.; Hu, F.B.; Willett, W.C. Dietary Patterns and Markers of Systemic Inflammation among Iranian Women. J. Nutr. 2007, 137, 992–998. [Google Scholar] [CrossRef]
- Brooks, G.C.; Blaha, M.J.; Blumenthal, R.S. Relation of C-Reactive Protein to Abdominal Adiposity. Am. J. Cardiol. 2010, 106, 56–61. [Google Scholar] [CrossRef]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and Obesity: Role and Clinical Implication. Front. Endocrinol. 2021, 12, 585887. [Google Scholar] [CrossRef]
- Yu, J.-Y.; Choi, W.-J.; Lee, H.-S.; Lee, J.-W. Relationship between Inflammatory Markers and Visceral Obesity in Obese and Overweight Korean Adults: An Observational Study. Medicine 2019, 98, e14740. [Google Scholar] [CrossRef]
- Khanna, D.; Khanna, S.; Khanna, P.; Kahar, P.; Patel, B.M. Obesity: A Chronic Low-Grade Inflammation and Its Markers. Cureus 2022, 14, e22711. [Google Scholar] [CrossRef]
- Mignogna, C.; Costanzo, S.; Di Castelnuovo, A.; Ruggiero, E.; Shivappa, N.; Hebert, J.R.; Esposito, S.; De Curtis, A.; Persichillo, M.; Cerletti, C.; et al. The Inflammatory Potential of the Diet as a Link between Food Processing and Low-Grade Inflammation: An Analysis on 21,315 Participants to the Moli-Sani Study. Clin. Nutr. 2022, 41, 2226–2234. [Google Scholar] [CrossRef]
- Mariath, A.B.; Machado, A.D.; Ferreira, L.D.N.M.; Ribeiro, S.M.L. The Possible Role of Increased Consumption of Ultra-Processed Food Products in the Development of Frailty: A Threat for Healthy Ageing? Br. J. Nutr. 2022, 128, 461–466. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Sonestedt, E.; Borné, Y. Associations of Ultra-Processed Food Consumption, Circulating Protein Biomarkers, and Risk of Cardiovascular Disease. BMC Med. 2023, 21, 415. [Google Scholar] [CrossRef]
- Li, Y.; Lai, Y.; Geng, T.; Xia, P.; Chen, J.; Tu, Z.; Yang, K.; Liao, Y.; Liu, G.; Pan, A. Association of Ultraprocessed Food Consumption with Risk of Cardiovascular Disease Among Individuals with Type 2 Diabetes: Findings from the UK Biobank. Mol. Nutr. Food Res. 2024, 68, 2300314. [Google Scholar] [CrossRef]
- Li, Y.; Lai, Y.; Geng, T.; Zhang, Y.-B.; Xia, P.-F.; Chen, J.-X.; Yang, K.; Zhou, X.-T.; Liao, Y.-F.; Franco, O.H.; et al. Association of Ultraprocessed Food Consumption with Risk of Microvascular Complications among Individuals with Type 2 Diabetes in the UK Biobank: A Prospective Cohort Study. Am. J. Clin. Nutr. 2024, 120, 674–684. [Google Scholar] [CrossRef]
- Zhao, H.; Bai, Y.; Liu, Y.; Xing, Y.; Yan, Y.; Chen, G.; Chen, J.; Wang, X.; Chen, C.; Zhang, Z. Association of Ultraprocessed Food Consumption with Risk of Rheumatoid Arthritis: A Retrospective Cohort Study in the UK Biobank. Am. J. Clin. Nutr. 2024, 120, 927–935. [Google Scholar] [CrossRef]
- Price, E.J.; Du, M.; McKeown, N.M.; Batterham, M.J.; Beck, E.J. Excluding Whole Grain-Containing Foods from the Nova Ultraprocessed Food Category: A Cross-Sectional Analysis of the Impact on Associations with Cardiometabolic Risk Measures. Am. J. Clin. Nutr. 2024, 119, 1133–1142. [Google Scholar] [CrossRef]
- Mitra, A.; Thames, K.; Brown, A.; Shuster, I.; Rosenfield, M.; Baumler, M.D. Consumption of a Variety of Plant Foods, Ultra-Processed Foods, and Risk for Chronic Disease: A Dietary Intervention. Hum. Nutr. Metab. 2024, 36, 200258. [Google Scholar] [CrossRef]
- Ciaffi, J.; Lisi, L.; Mari, A.; Mancarella, L.; Brusi, V.; Pignatti, F.; Ricci, S.; Vitali, G.; Stefanelli, N.; Assirelli, E.; et al. Efficacy, Safety and Tolerability of Very Low-Calorie Ketogenic Diet in Obese Women with Fibromyalgia: A Pilot Interventional Study. Front. Nutr. 2023, 10, 1219321. [Google Scholar] [CrossRef]
- Ciaffi, J.; Mancarella, L.; Pederzani, G.; Lisi, L.; Brusi, V.; Pignatti, F.; Ricci, S.; Vitali, G.; Faldini, C.; Ursini, F. Efficacy, Safety, and Tolerability of a Very Low-Calorie Ketogenic Diet in Women with Obesity and Symptomatic Knee Osteoarthritis: A Pilot Interventional Study. Nutrients 2024, 16, 3236. [Google Scholar] [CrossRef]
- Ciaffi, J.; Mitselman, D.; Mancarella, L.; Brusi, V.; Lisi, L.; Ruscitti, P.; Cipriani, P.; Meliconi, R.; Giacomelli, R.; Borghi, C.; et al. The Effect of Ketogenic Diet on Inflammatory Arthritis and Cardiovascular Health in Rheumatic Conditions: A Mini Review. Front. Med. 2021, 8, 792846. [Google Scholar] [CrossRef]
- Mendoza, K.; Smith-Warner, S.A.; Rossato, S.L.; Khandpur, N.; Manson, J.E.; Qi, L.; Rimm, E.B.; Mukamal, K.J.; Willett, W.C.; Wang, M.; et al. Ultra-Processed Foods and Cardiovascular Disease: Analysis of Three Large US Prospective Cohorts and a Systematic Review and Meta-Analysis of Prospective Cohort Studies. Lancet Reg. Health Am. 2024, 37, 100859. [Google Scholar] [CrossRef]
First Author | Year of Publication | Country of Affiliation of First Author | Publication Type | Study Design | Sample Size | Study Population | Exposure Assessment | Inflammatory Markers Assessed | Key Findings |
---|---|---|---|---|---|---|---|---|---|
Bahrampour N. [33] | 2022 | Iran | Full-text article | Cross-sectional | 285 | Overweight and obese adult women | UPF % of total dietary intake | hs-CRP, IL-1β, MCP-1, PAI-1 | Higher UPF consumption was associated with increased hs-CRP levels, while no significant associations were observed for MCP-1, PAI-1, or IL-1β. |
Baric L. [34] | 2025 | Canada | Full-text article | Cross-sectional | 6517 | Adults from the Canadian Health Measures Survey | UPF % of total dietary intake | CRP | Higher UPF consumption was associated with increased CRP levels. |
Bérard A. [35] | 2020 | Canada | Full-text article | Cross-sectional | 241 (156 adults; 85 <18 years) | Long-term survivors of childhood acute lymphoblastic leukemia | UPF % of total dietary intake | CRP, IL-6, TNF-α, leptin | Higher UPF consumption was associated with increased IL-6 levels in both obese and non-obese participants. A non-significant trend was observed for higher TNF-α. No associations were found for CRP or leptin. |
Contreras-Rodriguez O. [36] | 2023 | Spain | Full-text article | Cross-sectional | 152 | Adults consulting for weight loss | UPF % of total dietary intake | hs-CRP | UPF consumption was not associated with hs-CRP. |
Cummings J. [37] | 2022 | U.S. | Full-text article | Prospective cohort | 458 enrolled; biomarker subsample n = 350 | Pregnant women from a metropolitan area in North Carolina | UPF % of total energy intake | CRP, IL-6, TNF-α | Higher UPF consumption during pregnancy was associated with increased CRP, while associations with IL-6 and TNF-α were not significant. |
Dos Santos G.R. [38] | 2025 | Brazil | Full-text article | Cross-sectional | 6316 | Adolescents | UPF % of total energy intake | CRP | Higher total UPF consumption was modestly associated with a higher prevalence of elevated CRP. |
Hajmir M. [39] | 2023 | Iran | Full-text article | Cross-sectional | 221 | Overweight and obese adult women | UPF intake categorized by quartiles | hs-CRP, IL-1β, MCP-1, PAI-1 | UPF quartiles were significantly associated with PAI-1, marginally associated with MCP-1, and not associated with hs-CRP or IL-1β after adjustment. |
Hall K.D. [40] | 2019 | U.S. | Full-text article | Randomized controlled trial | 20 | Adults hospitalized in metabolic ward, undergoing two 2-week periods: UPF diet vs. unprocessed diet, ad libitum intake. | UPF-based diet vs. unprocessed diet, in crossover design | hs-CRP, PAI-1, leptin | No statistically significant differences were observed between the ultra-processed and unprocessed diets in hs-CRP, leptin or PAI-1 levels, although hs-CRP tended to be lower after the unprocessed diet compared with baseline. |
Hosseininasab D. [41] | 2022 | Iran | Full-text article | Cross-sectional | 391 | Overweight and obese adult women | UPF intake categorized by quartiles | hs-CRP, IL-1β, MCP-1, PAI-1 | Higher UPF consumption was associated with increased hs-CRP levels in tertile-based analyses, but no association was observed for IL-1β, MCP-1 and PAI-1. |
Kelsey P.T. [42] | 2022 | Norway | Full-text article | Cross-sectional | 2984 | Nationally recruited pregnant women | UPF % of total energy intake | CRP | Higher UPF intake was weakly associated with higher CRP. |
Kityo A. [43] | 2025 | Republic of Korea | Full-text article | Cross-sectional | 72,817 | U.K. Biobank adults | UPF % of total dietary intake | CRP | Higher UPF intake was associated with higher CRP after multivariable adjustment. |
Lane M. [44] | 2022 | Australia | Full-text article | Cross-sectional | 2018 | Adults from the Melbourne Collaborative Cohort Study | Self-reported UPF intake | hs-CRP | Higher UPF intake was associated with higher hs-CRP. |
Lopes A.E.S.C. [45] | 2019 | Brazil | Full-text article | Cross-sectional | 8468 | Civil servants from public universities/research institutions | UPF % of total energy intake | hs-CRP | Among women, the highest vs. lowest UPF tertile was associated with 14% higher mean CRP after adjustment for sociodemographics, smoking, and physical activity; among men, no association remained after sociodemographic adjustment. |
Martins G.M.S. [46] | 2022 | Brazil | Full-text article | Cross-sectional | 391 | Adolescents | UPF % of total energy intake | hs-CRP, IL-6, TNF-α, IL-8, leptin | Higher UPF consumption was associated with increased hs-CRP, leptin, and IL-8 levels, while no significant associations were found for TNF-α or IL-6. |
Millar S.R. [47] | 2025 | Ireland | Full-text article | Cross-sectional | 1986 | Primary-care adult patients | UPF % of total dietary intake | CRP, IL-6, TNF-α, PAI-1, leptin | Higher UPF intake was associated with higher CRP, IL-6, TNF-α and leptin, while PAI-1 was not significant. |
Nestares T. [48] | 2021 | Spain | Full-text article | Cross-sectional | 85 children (53 with celiac disease, 32 healthy controls) | Children with celiac disease on a gluten-free diet and healthy controls | UPF % of total dietary intake | IL-6, IL-1β, TNF-α, IL-8, MCP-1 | No significant differences were found in TNF-α, IL-1β, IL-6, IL-8 or MCP-1 between celiac disease children consuming >50% of energy from UPF compared to those consuming <50% and to healthy controls. |
Quetglas-Llabrés M.M. [49] | 2023 | Spain | Full-text article | Cross-sectional | 92 | Older adults with metabolic syndrome | UPF % of total dietary intake | IL-6, IL-1β, TNF-α, MCP-1, leptin | Higher UPF intake was associated with higher IL-6, TNF-α and leptin, while IL-1β and MCP-1 did not differ between UPF groups. |
Silva Dos Santos F. [50] | 2023 | Brazil | Full-text article | Prospective cohort | 524 (EPITeen, Portugal) + 2888 (Pelotas, Brazil) | Young adults from Porto (Portugal) and from Pelotas (Brazil) | UPF % of total energy intake | IL-6 | Higher UPF consumption was associated with increased IL-6 concentrations among females in the EPITeen cohort and males in the Pelotas cohort. |
Silva-Luis C.C. [51] | 2024 | Brazil | Full-text article | Cross-sectional | 151 | Children enrolled in public schools | UPF % of total energy intake | hs-CRP, IL-6, TNF-α | UPF consumption was not associated with hs-CRP, IL-6, or TNF-α levels among children. |
Vivi A.C.P. [52] | 2022 | Brazil | Full-text article | Cross-sectional | 90 | Preterm infants from a hospital follow-up clinic and healthy term infants from primary care | UPF % of total energy intake (all types of milk excluded from the energy calculation) | CRP | Higher UPF consumption was associated with higher CRP, with a stronger association in preterm infants. |
Xia L. [53] | 2025 | France | Full-text article | Cross-sectional | 1594 | Community adults | Self-reported UPF consumption | CRP | Total UPF consumption was not associated with CRP in fully adjusted models. |
Zatsepina A. [54] | 2025 | U.S. | Conference proceeding | Retrospective cohort | 796 | Adults with histologically confirmed colon cancer | Self-reported dietary pattern | CRP, IL-6, TNF-α | Patients consuming high-UPF diets had elevated CRP, IL-6, and TNF-α compared to those on anti-inflammatory diets. |
Zhao L. [55] | 2024 | U.S. | Full-text article | Prospective cohort | 173,889 | U.K. Biobank adults | UPF % of total dietary intake | CRP | Higher UPF intake was associated with increased odds of elevated CRP. |
Zhao L. [56] | 2023 | U.S. | Full-text article | Cross-sectional | 806 adolescents and 2734 adults | Community-dwelling participants from NHANES cohort | Self-reported UPF consumption | hs-CRP | In adults, higher UPF intake was associated with higher hs-CRP, whereas no association with hs-CRP was observed in adolescents. |
First Author, Year | CRP | hs-CRP | IL-6 | IL-1β | TNF-α | IL-8 | MCP-1 | PAI-1 | Leptin |
---|---|---|---|---|---|---|---|---|---|
Bérard A., 2020 [35] | X | ✓ | X | X | |||||
Dos Santos G.R., 2025 [38] | ✓ | ||||||||
Martins G.M.S., 2022 [46] | ✓ | X | X | ✓ | ✓ | ||||
Nestares T., 2021 [48] | X | X | X | X | X | ||||
Silva-Luis C.C., 2024 [51] | X | X | X | ||||||
Vivi A.C.P., 2022 [52] | ✓ | ||||||||
Zhao L., 2023 [56] | X |
First Author, Year | CRP | hs-CRP | IL-6 | IL-1β | TNF-α | IL-8 | MCP-1 | PAI-1 | Leptin |
---|---|---|---|---|---|---|---|---|---|
Bahrampour N., 2022 [33] | ✓ | X | X | X | |||||
Baric L., 2025 [34] | ✓ | ||||||||
Bérard A., 2020 [35] | X | ✓ | X | X | |||||
Contreras-Rodriguez O., 2023 [36] | X | ||||||||
Cummings J., 2022 [37] | ✓ | X | X | ||||||
Hajmir M., 2023 [39] | X | X | ✓ | ✓ | |||||
Hall K.D., 2019 [40] | X | X | X | ||||||
Hosseininasab D., 2022 [41] | ✓ | X | X | X | |||||
Kelsey P.T., 2022 [42] | ✓ | ||||||||
Kityo A., 2025 [43] | ✓ | ||||||||
Lane M., 2022 [44] | ✓ | ||||||||
Lopes A., 2019 [45] | X ✓ * | ||||||||
Millar S.R., 2025 [47] | ✓ | ✓ | ✓ | X | ✓ | ||||
Quetglas-Llabrés M.M., 2023 [49] | ✓ | X | ✓ | X | ✓ | ||||
Silva dos Santos F., 2023 [50] | ✓ | ||||||||
Xia L., 2025 [53] | X | ||||||||
Zatsepina A., 2025 [54] | ✓ | ✓ | ✓ | ||||||
Zhao L., 2024 [55] | ✓ | ||||||||
Zhao L., 2023 [56] | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciaffi, J.; Mancarella, L.; Ripamonti, C.; Brusi, V.; Pignatti, F.; Lisi, L.; Ursini, F. Ultra-Processed Food Consumption and Systemic Inflammatory Biomarkers: A Scoping Review. Nutrients 2025, 17, 3012. https://doi.org/10.3390/nu17183012
Ciaffi J, Mancarella L, Ripamonti C, Brusi V, Pignatti F, Lisi L, Ursini F. Ultra-Processed Food Consumption and Systemic Inflammatory Biomarkers: A Scoping Review. Nutrients. 2025; 17(18):3012. https://doi.org/10.3390/nu17183012
Chicago/Turabian StyleCiaffi, Jacopo, Luana Mancarella, Claudio Ripamonti, Veronica Brusi, Federica Pignatti, Lucia Lisi, and Francesco Ursini. 2025. "Ultra-Processed Food Consumption and Systemic Inflammatory Biomarkers: A Scoping Review" Nutrients 17, no. 18: 3012. https://doi.org/10.3390/nu17183012
APA StyleCiaffi, J., Mancarella, L., Ripamonti, C., Brusi, V., Pignatti, F., Lisi, L., & Ursini, F. (2025). Ultra-Processed Food Consumption and Systemic Inflammatory Biomarkers: A Scoping Review. Nutrients, 17(18), 3012. https://doi.org/10.3390/nu17183012