The Effect of Dioscoreae Rhizoma on Gastrointestinal Function: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.3. Data Extraction
2.4. Quality Control
3. Results
3.1. Search Process for Included Studies
3.2. Characteristics of the Included Studies
3.2.1. Description of the Human Studies
3.2.2. Description of the In Vivo Studies
3.3. Risk of Bias Assessment for Included Human Studies
3.3.1. Bias Arising from the Randomization Process
3.3.2. Bias Due to Deviations from Intended Interventions
3.3.3. Bias Due to Missing Outcome Data
3.3.4. Bias in Measurement of the Outcome
3.3.5. Bias in Selection of the Reported Result
3.3.6. Bias Due to Confounding
3.3.7. Bias Due to Selection of Participants
3.3.8. Bias in Classification of Interventions
3.3.9. Overall Risk of Bias Assessment
3.4. Risk of Bias Assessment for Included Animal Studies
3.4.1. Sequence Generation
3.4.2. Baseline Characteristics
3.4.3. Allocation Concealment
3.4.4. Random Housing
3.4.5. Blinding of Caregivers and Investigators
3.4.6. Random Outcome Assessment
3.4.7. Blinding of Outcome Assessment
3.4.8. Incomplete Outcome Data
3.4.9. Selective Outcome Reporting
3.4.10. Other Sources of Bias
4. Discussion
4.1. Summary of Key Findings
4.2. Predominant Mechanisms of Action
4.2.1. Mechanisms of Gastroprotection and Mucosal Barrier Enhancement
4.2.2. Effects on Gut Microbiota and Colonic Environment
4.2.3. Comprehensive Categorization by Experimental Models
4.3. Comparison with Existing Systematic Reviews
4.4. Pharmacokinetic Considerations
4.5. Part-Specific Mechanisms of Dioscorea-Derived Interventions: Microbiota Modulation and Cytoprotective Pathways
4.6. Strengths, Limitations, and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Yao, Y.; Habib, M.; Bajwa, H.F.; Qureshi, A.; Fareed, R.; Altaf, R.; Ilyas, U.; Duan, Y.; Abbas, M. Herbal therapies in gastrointestinal and hepatic disorders: An evidence-based clinical review. Front. Pharmacol. 2022, 13, 962095. [Google Scholar] [CrossRef]
- Khol, M.; Ma, F.; Lei, L.; Liu, W.; Liu, X. A Frontier Review of Nutraceutical Chinese Yam. Foods 2024, 13, 1426. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Truong, V.L.; Jeon, S.G.; Choe, S.Y.; Rarison, R.H.G.; Yoon, B.H.; Park, J.W.; Jeong, H.J.; Jeong, W.S. Anti-Inflammatory and Prebiotic Potential of Ethanol Extracts and Mucilage Polysaccharides from Korean Yams (Dioscorea polystachya and Dioscorea bulbifera). Foods 2025, 14, 173. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. Introduction and Methodology: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47, s1–s4. [Google Scholar] [CrossRef]
- Taylor, J.S.; Fellman, B.; Cain, K.E.; Iniesta, M.D.; Earles, T.; Harris, M.; James, D.; Siebel, C.; Lasala, J.; Mena, G.; et al. Glycemic control to improve post-operative outcomes in patients with type 2 diabetes mellitus: Results of the SUGAR (Surgical Universal euGlycemic Attainment during Recovery) initiative. Int. J. Gynecol. Cancer 2025, 35, 100003. [Google Scholar] [CrossRef]
- Frykberg, R.G.; Banks, J. Challenges in the Treatment of Chronic Wounds. Adv. Wound Care 2015, 4, 560–582. [Google Scholar] [CrossRef]
- Frisch, A.; Chandra, P.; Smiley, D.; Peng, L.; Rizzo, M.; Gatcliffe, C.; Hudson, M.; Mendoza, J.; Johnson, R.; Lin, E.; et al. Prevalence and clinical outcome of hyperglycemia in the perioperative period in noncardiac surgery. Diabetes Care 2010, 33, 1783–1788. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- The Risk of Bias in Non-Randomized Studies—Of Interventions Version 2 (ROBINS-I V2); Risk of Bias Collaboration: Bristol, UK, 2024; Available online: https://www.riskofbias.info/welcome/robins-i-v2 (accessed on 9 July 2025).
- Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef]
- Liang, X.; Pang, S.; Wang, L. Effect of Yam gruel on postoperative healing in patients with Type Ⅱ diabetes complicated with colorectal cancer. Mod. Clin. Nurs. 2024, 23, 21–27. [Google Scholar]
- Pramana, A.A.C.; Rubi, D.S.; Sunarti, S. Supplementing obese subjects with a high fiber and antioxidant-rich snack from local indonesian yam leads to increased Bifidobacterium spp. and clostridium coccoides/eubacterium rectale groups. Rom. J. Diabetes Nutr. Metab. Dis. 2020, 27, 104–111. [Google Scholar]
- Jeong, Y.; Lee, Y. Protective Effect of Rhizoma Dioscoreae on the Gastric Mucosal Lesions Induced by Alcohol in Rats. J. Physiol. Pathol. Korean Med. 2009, 23, 639–644. [Google Scholar]
- Park, J.M.; Kim, Y.J.; Kim, J.S.; Han, Y.M.; Kangwan, N.; Hahm, K.B.; Kim, T.S.; Kwon, O.; Kim, E.H. Anti-inflammatory and carbonic anhydrase restoring actions of yam powder (Dioscorea spp.) contribute to the prevention of cysteamine-induced duodenal ulcer in a rat model. Nutr. Res. 2013, 33, 677–685. [Google Scholar] [CrossRef]
- Byeon, S.; Oh, J.; Lim, J.S.; Lee, J.S.; Kim, J.S. Protective effects of Dioscorea batatas flesh and peel extracts against ethanol-induced gastric ulcer in mice. Nutrients 2018, 10, 1680. [Google Scholar] [CrossRef]
- Mao, X.H.; Lu, J.; Huang, H.H.; Gao, X.X.; Zheng, H.; Chen, Y.L.; Li, X.; Gao, W.Y. Four types of winged yam (Dioscorea alata L.) resistant starches and their effects on ethanol-induced gastric injury in vivo. Food Hydrocoll. 2018, 85, 21–29. [Google Scholar] [CrossRef]
- Xie, Y.J.; An, L.Y.; Wang, X.Y.; Ma, Y.J.; Bayoude, A.; Fan, X.X.; Yu, B.Y.; Li, R.S. Protection effect of Dioscoreae Rhizoma against ethanol-induced gastric injury in vitro and in vivo: A phytochemical and pharmacological study. J. Ethnopharmacol. 2024, 333, 118427. [Google Scholar] [CrossRef]
- Jeon, J.R.; Lee, J.S.; Lee, C.H.; Kim, J.Y.; Kim, S.D.; Nam, D.H. Effect of ethanol extract of dried Chinese yam (Dioscorea batatas) flour containing dioscin on gastrointestinal function in rat model. Arch. Pharm. Res. 2006, 29, 348–353. [Google Scholar] [CrossRef]
- Jeon, J.R.; Kim, J.Y.; Choi, J.H. Effect of yam yogurt on colon mucosal tissue of rats with loperamide-induced constipation. Food Sci. Biotechnol. 2007, 16, 605–609. [Google Scholar]
- Nishimura, N.; Tanabe, H.; Yamamoto, T.; Fukushima, M. Raw Chinese Yam (Dioscorea opposita) Promotes Cecal Fermentation and Reduces Plasma Non-HDL Cholesterol Concentration in Rats. J. Nutr. Sci. Vitaminol. 2011, 57, 340–347. [Google Scholar] [CrossRef]
- Wang, C.H.; Tsai, C.H.; Lin, H.J.; Wang, T.C.; Chen, H.L. Uncooked Taiwanese yam (Dioscorea alata L. cv. Tainung No. 2) beneficially modulated the large bowel function and faecal microflora in BALB/c mice. J. Sci. Food Agric. 2007, 87, 1374–1380. [Google Scholar] [CrossRef]
- Hsu, C.C.; Huang, Y.C.; Yin, M.C.; Lin, S.J. Effect of yam (Dioscorea alata compared to Dioscorea japonica) on gastrointestinal function and antioxidant activity in mice. J. Food Sci. 2006, 71, S513–S516. [Google Scholar] [CrossRef]
- Chen, X.; Wu, S.H.; Zeng, X.B.; Jiang, X.W.; Chen, X.P.; Yuan, J.; Lu, B.H.; Li, J. Antioxidant and SGC-7901 cell inhibition activities of Rhizoma Dioscoreae bulbiferae. ethanol extracts. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 261–266. [Google Scholar] [CrossRef][Green Version]
- Chen, T.; Hu, S.; Zhang, H.; Guan, Q.; Yang, Y.; Wang, X. Anti-inflammatory effects of Dioscorea alata L. anthocyanins in a TNBS-induced colitis model. Food Funct. 2017, 8, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Liu, W.; Lin, Y.; Zhang, S.; Zou, B.; Xiao, D.; Lin, L.; Zhong, Y.; Zheng, H.; Liao, Q.; et al. Compound polysaccharides ameliorate experimental colitis by modulating gut microbiota composition and function. J. Gastroenterol. Hepatol. 2019, 34, 1554–1562. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.H.; Wang, C.C.; Lin, Y.C.; Hori, M.; Jan, T.R. Oral administration with diosgenin enhances the induction of intestinal T helper 1-like regulatory T cells in a murine model of food allergy. Int. Immunopharmacol. 2017, 42, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Liang, T.; Jin, Q.; Shen, C.; Zhang, Y.; Jing, P. Chinese yam (Dioscorea opposita Thunb.) alleviates antibiotic-associated diarrhea, modifies intestinal microbiota, and increases the level of short-chain fatty acids in mice. Food Res. Int. 2019, 122, 191–198. [Google Scholar] [CrossRef]
- Meng, X.; Hu, W.; Wu, S.; Zhu, Z.; Lu, R.; Yang, G.; Qin, C.; Yang, L.; Nie, G. Chinese yam peel enhances the immunity of the common carp (Cyprinus carpio L.) by improving the gut defence barrier and modulating the intestinal microflora. Fish Shellfish Immunol. 2019, 95, 528–537. [Google Scholar] [CrossRef]
- Wang, F.; Liu, H.F.; Liu, F.; Chen, W.G. Effects of Chinese yam (Dioscorea oppositifolia L.) dietary supplementation on intestinal microflora, digestive enzyme activity and immunity in rainbow trout (Oncorhynchus mykiss). Aquac. Res. 2020, 51, 4698–4712. [Google Scholar] [CrossRef]
- Kinoshita, M.; Yunoki, K.; Tokuji, Y.; Ohba, K.; Hironaka, K.; Ohnishi, M.; Kawahara, M. Effect of Dietary Chinese Yam (D. opposita Thunb.) and Leaf Juice (Aojiru) on Aberrant Crypt Foci Formation in 1,2-Dimethylhydrazine-treated Mice. Nippon Shokuhin Kagaku Kogaku Kaishi 2009, 56, 53–55. [Google Scholar] [CrossRef][Green Version]
- Kweon, B.; Bae, G. Protective effects of Dioscorea batas Decaisne water extract on acute pancreatitis. Korea J. Herbol. 2022, 37, 1–8. [Google Scholar] [CrossRef]
- Lu, J.; Qin, H.; Liang, L.; Fang, J.; Hao, K.; Song, Y.; Sun, T.; Hui, G.; Xie, Y.; Zhao, Y. Yam protein ameliorates cyclophosphamide-induced intestinal immunosuppression by regulating gut microbiota and its metabolites. Int. J. Biol. Macromol. 2024, 279, 135415. [Google Scholar] [CrossRef]
- Kinoshita, M.; Yunoki, K.; Tokuji, Y.; Kawahara, M.; Ohba, K.; Hironaka, K.; Ohnishi, M. Prevention of aberrant crypt foci formation by dietary Chinese yam (D. opposita THUNB.) in 1,2-dimethylhydrazine-treated mice. Nippon Shokuhin Kagaku Kogaku Kaishi 2008, 55, 270–275. [Google Scholar] [CrossRef][Green Version]
- Son, I.S.; Lee, J.S.; Lee, J.Y.; Kwon, C.S. Antioxidant and Anti-inflammatory Effects of Yam (Dioscorea batatas Decne.) on Azoxymethane-induced Colonic Aberrant Crypt Foci in F344 Rats. Prev. Nutr. Food Sci. 2014, 19, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Guo, Y.; Zhang, S.; Hao, Q.; Duan, C.; Wang, Y.; Ji, S.; Yan, H.; Zhang, Y.; Liu, Y. Effect of Dioscorea Opposite Waste Supplementation on Antioxidant Capacity, Immune Response and Rumen Microbiome in Weaned Lambs. Fermentation 2023, 9, 256. [Google Scholar] [CrossRef]
- Guo, M.; Yu, H.; Meng, M.; Wang, C. Research on the structural characteristics of a novel Chinese Iron Yam polysaccharide and its gastroprotection mechanism against ethanol-induced gastric mucosal lesion in a BALB/c mouse model. Food Funct. 2020, 11, 6054–6065. [Google Scholar] [CrossRef]
- Huang, R.; Xie, J.; Liu, X.; Shen, M. Sulfated modification enhances the modulatory effect of yam polysaccharide on gut microbiota in cyclophosphamide-treated mice. Food Res. Int. 2021, 145, 110393. [Google Scholar] [CrossRef]
- Sun, L.; Di, Y.M.; Lu, C.; Guo, X.; Tang, X.; Zhang, A.L.; Xue, C.C.; Fan, G. Additional Benefit of Chinese Medicine Formulae Including Dioscoreae Rhizome (Shanyao) for Diabetes Mellitus: Current State of Evidence. Front. Endocrinol. 2020, 11, 553288. [Google Scholar] [CrossRef]
- Alharazi, W.Z.; McGowen, A.; Rose, P.; Jethwa, P.H. Could Consumption of Yam (Dioscorea) or Its Extract Be Beneficial in Controlling Glycaemia: A Systematic Review. Br. J. Nutr. 2022, 128, 613–624. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Noshita, T.; Kidachi, Y.; Umetsu, H.; Hayashi, M.; Komiyama, K.; Ryoyama, K. Characterization of In Vitro ADME Properties of Diosgenin and Dioscin from Dioscorea villosa. Xenobiotica 2013, 43, 498–507. [Google Scholar]
- Tian, X.; Tang, H.; Lin, H.; Cheng, W.; Wang, Y.; Ma, Y.; Zhang, R. Characterization of the Pharmacokinetics of Dioscin in Rat. Steroids 2005, 70, 584–590. [Google Scholar] [CrossRef]
- Dong, J.; Lei, C.; Lu, D.; Tang, C.; Huang, L.; He, X. Direct Biotransformation of Dioscin into Diosgenin in Rhizome of Dioscorea zingiberensis by Penicillium dioscin. Indian J. Microbiol. 2015, 55, 200–206. [Google Scholar] [CrossRef]
- Okawara, M.; Arii, H.; Matsumoto, K.; Fujita, T.; Nitta, Y.; Shibata, N.; Takada, K. Effect of β-Cyclodextrin Derivatives on the Diosgenin Absorption In Vitro and In Vivo. Biol. Pharm. Bull. 2014, 37, 339–347. [Google Scholar] [CrossRef]
- Li, P.; Xiao, N.; Zeng, L.; Zhang, H.; Chen, J.; Zhang, D.; Wang, Y. Structural Characteristics of a Mannoglucan Isolated from Chinese Yam and Its Treatment Effects Against Gut Microbiota Dysbiosis and DSS-Induced Colitis in Mice. Carbohydr. Polym. 2020, 250, 116958. [Google Scholar] [CrossRef]
- Horiuchi, S.; Kondo, Y.; Yoshimura, M.; Oka, T.; Tsuboi, M.; Oda, T. Renal Excretion of Allantoin in Rats: Micropuncture and Clearance Studies. Am. J. Physiol. 1976, 230, 345–352. [Google Scholar]
- Hou, W.C.; Lee, M.H.; Chen, H.J.; Liang, W.L.; Han, C.H.; Liu, Y.W.; Lin, Y.H. Antioxidant activities of dioscorin, the storage protein of yam (Dioscorea batatas Decne) tuber. J. Agric. Food Chem. 2001, 49, 4956–4960. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.Y.; Kim, S.M. Antioxidant activities of ethanol extracts from Dioscorea opposita Thunb. Food Sci. Biotechnol. 2016, 25, 203–209. [Google Scholar]
- Chen, H.; Lin, Y.; Hsieh, C.; Hou, W. Antioxidant and anti-inflammatory activities of polyphenols from purple yam (Dioscorea alata L.) and their possible relevance to colitis models. Food Chem. 2003, 83, 377–381. [Google Scholar]
- Yang, C.; Lin, C.; Hsieh, M.; Chao, H.; Chang, C.; Chen, Y.; Wu, Y. Pharmacokinetic Profile and Oral Bioavailability of Diosgenin, Charantin, and Hydroxychalcone and the Acute and Sub-acute Toxicity Studies of a Polyherbal Formulation in Sprague-Dawley Rats. Front. Nutr. 2021, 8, 722901. [Google Scholar]
Search Number | Search Items |
---|---|
#1 | “dyspepsia” OR “indigestion” OR “digestion” OR “gastro” OR “epigastric” OR “stomach” OR “gastrointestinal” OR “gastr” OR “intestin” OR “colon” OR “bowel” OR “colitis” OR “Crohn” |
#2 | “yam” OR “dioscorea” |
#3 | #1 and #2 |
Items | Inclusion | Exclusion |
---|---|---|
Criteria for herbal medicines | Dioscoreae Rhizoma (yam) | Single-compound extracts; multi-herbal prescriptions; herbal interventions using Dioscorea species other than Dioscoreae Rhizoma |
Criteria for studies | Randomized controlled trials and in vivo studies related to gastrointestinal function (e.g., gastrointestinal motility, inflammation, mucosal protection, or microbiota modulation) | Case reports; case series; in vitro studies; reviews; studies not assessing GI-related outcomes |
Species | Plant Part Used | Herbal Intervention | Patient Inclusion Criteria | Total (n) (Treatment/ Control) | Control Intervention | Treatment Period | Primary Outcome | Mechanisms | Efficacy | Adverse Events (n) (Treatment/Control) | Reference Number |
---|---|---|---|---|---|---|---|---|---|---|---|
Dioscorea opposita Thunb. (Chinese yam) | Rhizome (yam porridge) | Yam gruel | T2DM patients post colorectal-cancer surgery | 92 (46/46) | Standard care | 3 weeks | ↓ Wound healing time, ↓ Infection rate, ↓ Glucose (FBS, 2 h) | Glycemic regulation, enhanced recovery | Improved healing and glycemic control | Not reported | [12] |
Dioscorea alata (Indonesian yam) | Rhizome powder (functional snack) | Yam-based high-fiber snack | Obese individuals | 10 (10/0) | None | Not specified | ↑ Bifidobacterium, ↑ C. coccoides–E. rectale | Prebiotic modulation of gut flora | Positive modulation of gut microbiota | Not reported | [13] |
Species | Plant Part Used | Animal | Treatment | Disease Model | Positive Control | Admini-stration Method | Dosage | Treatment Duration | Mechanisms | Main Outcome | Efficacy | Reference Number |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dioscorea opposita (Chinese yam) | Rhizome extract | SD rats | Rhizoma Dioscoreae extract | Ethanol-induced gastric lesion | None | Oral | 200 mg/kg BW/day | 14 days | ↑ SOD, ↑ GPx, ↑ Antioxidant [Sample: Gastric tissue homogenates (SOD, GPx)] | ↓ Lesions, ↑ Stomach weight | Gastric protection | [14] |
Dioscorea opposita | Rhizome (powder) | SD rats | Yam powder | Cysteamine-induced ulcer | Cysteamine-HCl | Oral | 200 mg/kg BW/day | Single dose | ↓ Ulcer, ↓ COX-2, iNOS, cytokines, ↑ CA IX/XIV [Sample: Gastric tissue (COX-2, iNOS, CA-IX/XIV)] | ↓ Ulcer index | Gastric protection | [15] |
Dioscorea batatas | Flesh and peel (EtOH extract) | SD rats | DBD Flesh and Peel (Water or Ethanol) | Ethanol-induced acute gastric ulcer | None | Oral | 100, 200 mg/kg BW | Single dose | ↑ SOD, ↑ PGE2, ↑ COX-2, ↓ Oxidative stress [Sample: Gastric tissue + Serum (MDA, SOD, PGE2, COX-2)] | ↓ Gastric lesions | Gastric protection | [16] |
D. alata (winged yam) | Resistant starch type 2 | Kunming mice | RS2 | Ethanol-induced gastric ulcer | Ethanol | Oral | 0.64, 3.2, 6.4 g/kg BW/day | 7 days | ↓ ULI, ↓ MDA, ↑ SOD [Sample: Gastric tissue + Serum (MDA, SOD, histology)] | ↓ Gastric damage | Gastric protection | [17] |
D. opposita | Polysaccharide (CIYP) | BALB/c mice | CIYP | Ethanol-induced GML | None | Oral | 200, 400 mg/kg BW/day | 15 days | ↑ MAPK signaling, ↓ Inflammation [Sample: Gastric mucosa (lesion index, NO, PGE2, EGF, SOD, MDA)] | ↓ Gastric damage | Gastric protection | [37] |
D. opposita | Water extract (CYW) | ICR mice | CYW | Ethanol-induced gastric injury | 10 mL/kg ethanol | Oral | 0.31, 0.63, 3.14 g/kg BW/day | 14 days | ↓ TNF-α, IL-6, IL-1β; ↑ SOD, CAT, GPx, Bcl-2/Bax, VEGF, TGF-β1 [Sample: Serum + Gastric tissue (cytokines, SOD, CAT, GPx; Bcl-2/Bax, VEGF, TGF-β1)] | ↓ Ulcer index, ↓ Inflammation, ↑ Histology, ↑ Growth factors | Gastric protection | [18] |
Chinese yam (NR exact species) | Ethanol extract | SD rats | Chinese yam ethanol extract | Normal (GI motility test) | None | Oral | 100, 200 mg/kg BW/day | 6 weeks | ↓ Gastric acid, ↑ Motility, ↑ Lactose-fermenters, ↓ Glucose/lipids [Sample: Serum, feces, gastric/colonic tissue (GI transit, microflora, glucose/lipids)] | ↑ Motility, ↑ Feces, ↓ Glucose | GI improvement | [19] |
NR | Yam yogurt (functional food) | SD rats | Yam yogurt | Loperamide-induced constipation | Loperamide | Oral | 5 g/kg BW/day | 5 days | ↑ Goblet cell, ↑ Mucin, ↑ Ki-67 [Sample: Feces + Colonic tissue (fecal moisture, goblet cells, Ki-67, mucin)] | ↑ Fecal moisture, ↑ Evacuation | Laxative effect | [20] |
D. alata (red/black yam) | Whole rhizome (diet) | SD rats | RY/BY | Normal physiology | None | Diet | 5% w/w | 3 weeks | ↑ SCFAs, ↓ non-HDL cholesterol, ↓ hepatic MTP mRNA [Sample: Serum + Cecal contents + Feces (lipids, SCFAs, bile acids, hepatic mRNA)] | ↓ Cholesterol, ↑ SCFA | Lipid-lowering | [21] |
Raw yam (diet) | BALB/c mice | Raw yam | Bowel modulation | None | Diet | 10% w/w | 21 days | ↑ Fecal moisture, ↓ pH, ↑ SCFAs, ↑ crypt depth, ↑ bifidobacteria [Sample: Feces + Cecal contents + Colonic tissue (SCFAs, microbiota, crypt depth, TJs)] | ↑ Microbiota, ↑ Barrier | Prebiotic effect | [22] | |
Chinese/Japanese yam (D. opposita/D. japonica) | Dietary rhizome | BALB/c mice | Chinese/Japanese yam | LPS-induced damage | None | Diet-fed | 5% w/w | 4–8 weeks | ↑ SOD, ↓ MDA, ↑ Sucrase, ↓ C. perfringens [Sample: Cecal contents + Intestinal tissue (SOD, sucrase, MDA, microbiota, histology)] | ↑ Gut enzymes, ↑ Microbiota | Antioxidant, microbiota modulation | [23] |
Dioscorea bulbifera | Ethanol extract | C57BL/6 mice | DB ethanol extract | TNBS-induced colitis | 5-ASA | Intra-rectal | 50–100 mg/kg BW | Not specified | ↑ Antioxidants, ↓ Cancer cell proliferation [Sample: Colonic tissue (MDA, SOD, histology, cancer markers)] | ↓ Oxidative stress, ↓ SGC-7901 | Antioxidant, anticancer | [24] |
D. alata L. | Anthocyanins | C57BL/6 mice | DACNs | TNBS-induced colitis | 5-ASA | Intra-rectal | 100 mg/kg BW | 7 days | ↓ TNF-α, IFN-γ, iNOS, ↑ Tight junctions [Sample: Colonic tissue (cytokines, iNOS; ZO-1/occludin; histology)] | ↓ Inflammation, ↑ Histology | Anti-colitic effect | [25] |
Chinese yam (NR exact species) | Polysaccharide + inulin (CP) | SD rats | CP (CYP + inulin) | TNBS-induced colitis | None | Oral | 200 mg/kg BW/day | 16 days | ↑ SCFA, ↓ MPO, ↑ Lactic bacteria [Sample: Feces + Colonic tissue (DAI, MPO, SCFAs, histology)] | ↓ DAI, ↑ Colon morphology | Colitis improvement | [26] |
N/A (bioactive component) | Diosgenin | BALB/c mice | Diosgenin | OVA-induced food allergy | None | Oral | 50, 100 mg/kg BW/day | 13 days | ↑ Foxp3, IFN-γ, IL-10, Th1 chemokines [Sample: Spleen + Serum + Splenocytes (cytokines, Treg markers, NK)] | ↑ Treg, ↓ Allergic inflammation | Immunomodulation | [27] |
Dioscorea opposita | Rhizome suspension | BALB/c mice | Yam suspension | AAD | Ampicillin | Oral | 4.28, 8.56, 25.68 g/kg BW/day | 10 days | ↑ SCFAs, ↑ gut microbiota diversity [Sample: Feces (SCFAs; 16S microbiota)] | ↓ Diarrhea | Gut recovery | [28] |
Dioscorea opposita | Peel extract | Common carp | Yam peel | Healthy feeding trial | None | Feed | 5% w/w | 8 weeks | ↑ SOD, CAT, LZM, ↑ ZO-1, ↑ Occludin, ↑ SCFAs, ↑ Lactobacillus, ↓ Enterobacteriaceae, ↑ IL-1β, TGF-β, NF-κB [Sample: Intestinal tissue + Feces (TJ proteins, SOD, CAT, lysozyme; SCFAs; microbiota)] | ↑ Tight junction, ↑ Immunity | Intestinal barrier protection | [29] |
Yam extract (species NR) | Rhizome extract | Rainbow trout | Yam extract | Healthy model | None | Feed | 0.1%, 0.2%, 0.4% w/w | 56 days | ↑ Enzymes, ↑ IL-2, IL-6, TNF-α, C4, ↑ HSPs, ↑ GPx1, ↑ Bifidobacterium, ↑ Lactobacillus [Sample: Serum + Intestinal microbiota (cytokines, antioxidative enzymes, HSPs)] | ↑ Gut immunity, ↑ Microbiota | Immunostimulatory effect | [30] |
NR | Dioscorea-based preparation (SCYP) | BALB/c mice | SCYP | Cy-induced immunosuppression | None | Oral | 50, 100, 200 mg/kg BW/day | 7 days | ↑ SCFAs, ↑ Lactobacillus, ↑ Akkermansia, ↓ Proteobacteria [Sample: Feces + Serum + Intestine (16S microbiota; digestive enzymes; immune indices)] | ↑ Gut diversity, ↑ Digestive enzymes | Gut balance restoration | [38] |
Dioscorea bulbifera | DB extract | C57BL/6 mice | DB extract | Caerulein-induced pancreatitis | None | Oral | 250 mg/kg BW | 6 h | ↓ Lipase, ↓ IL-6, ↓ TNF-α, No change in IL-1β [Sample: Serum + Pancreatic tissue (lipase, amylase; cytokines; histology)] | ↓ Pancreas index, ↓ Damage | Anti-inflammatory | [32] |
NR | Polysaccharide | ICR mice | YP | CTX-induced immunosuppression | CTX | Oral | 400 mg/kg BW/day | 28 days | ↑ Thymus index, ↑ CD4+/CD8+, ↑ IgA/IgG/IgM, ↑ ZO-1, ↑ Occludin, ↑ SCFAs, ↑ tryptophan [Sample: Serum + Colonic tissue (IgA/IgG/IgM; ZO-1/occludin; SCFAs; metabolites)] | Immune recovery, ↑ Microbiota diversity | Immunomodulation | [33] |
NR | Powder (dietary) | BALB/c mice | yam powder | DMH-induced ACF | None | Diet | 5% w/w | 8 weeks | ↑ Apoptosis-related genes [Sample: Colonic tissue (ACF count; apoptosis-related genes)] | ↓ ACF | Anti- tumorigenic | [34] |
Chinese yam (NR exact species) | Rhizome + leaf juice (Aojiru) | BALB/c mice | Nagaimo/Aojiru | DMH-induced ACF | None | Diet | 10% w/w | 4 weeks | ↑ Apoptosis [Sample: Colonic tissue (ACF; apoptosis markers)] | ↓ ACF | Colon protection | [31] |
NR | Dioscorea-based diet | F344 rats | Yam diet | AOM-induced colon cancer | AOM | Oral | 10% w/w | 10 weeks | ↓ ACF, ↑ GSH, GPx, CAT, Cu/Zn-SOD, ↓ NF-κB, COX-2, TNF-α, IL-1β [Sample: Colonic tissue (ACF; antioxidant enzymes; inflammatory mediators)] | ↓ Colon tumor markers | Anti-carcinogenic | [35] |
Dioscorea opposite waste (DOW) | Diet adding DOW | weaned lambs | Diet adding DOW | Healthy model | Diet without DOW | Diet | 10, 15, 20% DOW | 62 days | ↑ AST, ↑ ALP, ↑ IgA, ↑ IgM, ↑ IgG, ↑ GPx, ↑ SOD, ↓ IL-1β, ↓ IL-6, ↓ TNF-α, ↓ MDA, ↑ Ruminococcaceae_bacterium, ↑ Clostridiales_bacterium [Sample: blood plsama, rumen fluid] | ↑ IgA, ↑ IgM, ↑ IgG, ↑ GPx | Antioxidant, Immunomodulation, gut micorbiota modulation | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Park, S.-Y.; Jo, M.-S.; Park, J.-W.; Kim, J.; Ko, S.-J. The Effect of Dioscoreae Rhizoma on Gastrointestinal Function: A Systematic Review. Nutrients 2025, 17, 2943. https://doi.org/10.3390/nu17182943
Lee J-H, Park S-Y, Jo M-S, Park J-W, Kim J, Ko S-J. The Effect of Dioscoreae Rhizoma on Gastrointestinal Function: A Systematic Review. Nutrients. 2025; 17(18):2943. https://doi.org/10.3390/nu17182943
Chicago/Turabian StyleLee, Ji-Hye, So-Young Park, Min-Seok Jo, Jae-Woo Park, Jinsung Kim, and Seok-Jae Ko. 2025. "The Effect of Dioscoreae Rhizoma on Gastrointestinal Function: A Systematic Review" Nutrients 17, no. 18: 2943. https://doi.org/10.3390/nu17182943
APA StyleLee, J.-H., Park, S.-Y., Jo, M.-S., Park, J.-W., Kim, J., & Ko, S.-J. (2025). The Effect of Dioscoreae Rhizoma on Gastrointestinal Function: A Systematic Review. Nutrients, 17(18), 2943. https://doi.org/10.3390/nu17182943