Hepatic Copper Accumulation Predicts Fibrosis Progression and Mortality in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Liver Biopsy and Histological Assessment
2.3. Hepatic Copper Measurement
2.4. Clinical and Laboratory Data Collection
2.5. Outcome Definitions
- Fibrosis progression: Primary outcome assessed by change in non-invasive FIB-4 score between baseline and end of follow-up (EoFU); deterioration defined as EoFU FIB-4 > baseline FIB-4.
- Clinical events: Secondary outcomes included time to all-cause mortality, liver transplantation, new cirrhosis, and cardiovascular events. Patients were censored at last clinic visit if no event occurred.
2.6. Statistical Analysis
- Linear regression: Multivariate linear regression analyses were conducted to identify independent predictors of fibrosis progression, adjusting for potential confounders. EoFU FIB-4 was modeled as a function of HCL category (high vs. normal), and adjusting sequentially for baseline FIB-4, age, sex, ethnicity, smoking status, BMI, hypertension, diabetes/impaired fasting glucose, dyslipidemia, and follow-up duration.
- Logistic regression: Estimated odds ratios (OR) for FIB-4 deterioration with the same covariate adjustment.
- Survival analysis: Kaplan–Meier curves and log-rank tests compared event-free survival by HCL group. Cox proportional hazards models estimated hazard ratios (HR) for time-to-event outcomes and mortality, adjusting for potential confounders. Proportionality assumptions were checked using Schoenfeld residuals.
2.7. Ethical Approval
3. Results
3.1. Participant Baseline Characteristics
3.2. Hepatic Copper and Fibrosis Progression
3.3. Clinical Events and Survival Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Targher, G.; Byrne, C.D.; Cao, Y.Y.; Zheng, M.H. Current status and future trends of the global burden of MASLD. Trends Endocrinol. Metab. 2024, 35, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Ekstedt, M.; Hagström, H.; Nasr, P.; Fredrikson, M.; Stål, P.; Kechagias, S.; Hultcrantz, R. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 2015, 61, 1547–1554. [Google Scholar] [CrossRef] [PubMed]
- Tinkov, A.A.; Korobeinikova, T.V.; Morozova, G.D.; Aschner, M.; Mak, D.V.; Santamaria, A.; Rocha, J.B.T.; Sotnikova, T.I.; Tazina, S.I.; Skalny, A.V. Association between serum trace element, mineral, and amino acid levels with non-alcoholic fatty liver disease (NAFLD) in adult women. J. Trace Elem. Med. Biol. 2024, 83, 127397. [Google Scholar] [CrossRef] [PubMed]
- Linder, M.C.; Hazegh-Azam, M. Copper biochemistry and molecular biology. Am. J. Clin. Nutr. 1996, 63, 797S–811S. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Han, L.; Zhu, Z.; Heng Pang, C.; Pan, G. Mineral metabolism and ferroptosis in non-alcoholic fatty liver diseases. Biochem. Pharmacol. 2022, 205, 115242. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Hu, R.; Huang, Y.; Xu, Y.; Zheng, Z.; Shi, Y.; Miao, J.; Liu, Y. Fructose aggravates copper-deficiency-induced non-alcoholic fatty liver disease. J. Nutr. Biochem. 2023, 119, 109402. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Y.; Wu, C.; Li, G.; Wang, W.; Tang, S. Comparison of copper concentration between non-alcoholic fatty liver disease patients and normal individuals: A meta-analysis. Front. Public Health 2023, 11, 1095916. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mao, Y.; Chen, H.; Zhu, W.; Ni, S.; Luo, S.; Tang, S.; Chen, Z.; Wang, Q.; Xu, J.; Tu, Q.; et al. Cuproptosis Cell Death Molecular Events and Pathways to Liver Disease. J. Inflamm. Res. 2025, 18, 883–894. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, S.; Niu, Y.; Zhou, W.; Liu, Y.; Liu, J.; Liu, X.; Lu, L.; Yu, C. Mitochondrial copper overload promotes renal fibrosis via inhibiting pyruvate dehydrogenase activity. Cell Mol. Life Sci. 2024, 81, 340. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, C.; Zhou, Q.; Yang, R.; Wu, Z.; Yuan, H.; Zhang, N.; Zhi, M.; Zhang, Y.; Ni, X.; Wang, Z.; et al. Copper exposure association with prevalence of non-alcoholic fatty liver disease and insulin resistance among US adults (NHANES 2011-2014). Ecotoxicol. Environ. Saf. 2021, 218, 112295. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Wu, S.; Wang, Y.; Chen, S.; Liao, W.; Zhang, X.; Pan, L.; Jiang, X.; Zhang, Y.; Wang, L. Association between blood copper and nonalcoholic fatty liver disease according to sex. Clin. Nutr. 2021, 40, 2045–2052. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Min, J.; Wang, F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct. Target. Ther. 2022, 7, 378. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morrell, A.; Tallino, S.; Yu, L.; Burkhead, J.L. The role of insufficient copper in lipid synthesis and fatty-liver disease. IUBMB Life 2017, 69, 263–270. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- European Association for the Study of the Liver. EASL-ERN Clinical Practice Guidelines on Wilson’s disease. J. Hepatol. 2025, 82, 690–728. [Google Scholar] [CrossRef] [PubMed]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.C.; Torbenson, M.S.; Unalp-Arida, A.; et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- European Association for Study of Liver. EASL Clinical Practice Guidelines: Wilson’s disease. J. Hepatol. 2012, 56, 671–685. [Google Scholar] [CrossRef] [PubMed]
- Antonucci, L.; Porcu, C.; Iannucci, G.; Balsano, C.; Barbaro, B. Non-Alcoholic Fatty Liver Disease and Nutritional Implications: Special Focus on Copper. Nutrients 2017, 9, 1137. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, M.; Tang, S.; Velkov, T.; Shen, J.; Dai, C. Copper exposure induces mitochondrial dysfunction and hepatotoxicity via the induction of oxidative stress and PERK/ATF4 -mediated endoplasmic reticulum stress. Environ. Pollut. 2024, 352, 124145. [Google Scholar] [CrossRef] [PubMed]
- Vaz, K.; Kemp, W.; Majeed, A.; Lubel, J.; Magliano, D.J.; Glenister, K.M.; Bourke, L.; Simmons, D.; Roberts, S.K. Validation of serum non-invasive tests of liver fibrosis as prognostic markers of clinical outcomes in people with fatty liver disease in Australia. J. Gastroenterol. Hepatol. 2025, 40, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Aigner, E.; Strasser, M.; Haufe, H.; Sonnweber, T.; Hohla, F.; Stadlmayr, A.; Solioz, M.; Tilg, H.; Patsch, W.; Weiss, G.; et al. A role for low hepatic copper concentrations in nonalcoholic fatty liver disease. Am. J. Gastroenterol. 2010, 105, 1978–1985. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Wang, K.; Zhao, X.; Song, B.; Yao, T.; Liu, T.; Gao, G.; Lu, W.; Liu, C. Emerging insights into cuproptosis and copper metabolism: Implications for age-related diseases and potential therapeutic strategies. Front. Aging Neurosci. 2024, 16, 1335122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
HCLs <50 µg/g N = 165 | HCLs ≥50 µg/g N = 50 | Total N = 215 | p Value | |
---|---|---|---|---|
Age, years (mean ± SD) | 40.6 ± 14.4 | 38.01 ± 13.72 | 40.02 ± 14.30 | 0.258 |
Male sex, n (%) | 95 (57.6%) | 34 (68%) | 129 (60%) | 0.241 |
Ethnicity: Jewish, n (%) | 111 (67.3%) | 31 (62%) | 142 (66%) | 0.5 |
Ethnicity: Arab, n (%) | 54 (32.7%) | 19 (38%) | 73 (34%) | |
Smoking, n (%) | 25 (23.4%) N = 107 | 6 (19.4%) N = 31 | 31 (22.5%) N = 138 | 0.808 |
BMI, kg/m2 (mean ± SD) | 29.1 ± 4.85 N = 77 | 31.04 ± 3.7 N = 16 | 29.6 ± 4.7 N = 93 | 0.141 |
FIB-4 (Mean ± SD) | 1.90 ± 0.189 N = 132 | 1.93 ± 0.22 N = 36 | 1.92 ± 0.22 N = 168 | 0.286 |
Hypertension, n (%) | 35 (27.3%) N = 128 | 7 (22.6%) N = 31 | 42 (26.4%) N = 159 | 0.657 |
Diabetes/IFG, n (%) | 53 (34.9%) N = 152 | 11 (24.4%) N = 45 | 64 (32.5%) N = 197 | 0.210 |
Dyslipidemia, n (%) | 72 (63.2%) N = 114 | 14 (50%) N = 28 | 86 (60.6%) N = 142 | 0.282 |
Follow-up time (mean ± SD), years | 5.06 ± 4.3 N = 114 | 4.26 ± 3.49 N = 32 | 4.88 ± 4.15 N = 146 | 0.286 |
(a) | ||||||||
Beta | 95% CI 1 | p Value | ||||||
HCLs > vs. <50 mcg/g | 0.75 | 0.34, 1.16 | <0.001 | |||||
Baseline FIB-4 | 0.85 | 0.74, 0.97 | <0.001 | |||||
Age | 0.03 | 0.02, 0.05 | <0.001 | |||||
Gender | 0.01 | −0.34, 0.36 | 0.959 | |||||
Ethnicity (Arab vs. Jew) | 0.36 | 0.01, 0.71 | 0.044 | |||||
Smoking status | 0.42 | −0.13, 0.96 | 0.141 | |||||
Diabetes/Impaired Fasting Glucose | 0.36 | −0.01, 0.73 | 0.056 | |||||
Dyslipidemia | 0.40 | −0.06, 0.87 | 0.093 | |||||
Hypertension | 0.74 | 0.33, 1.14 | 0.001 | |||||
Body Mass Index | −0.02 | −0.07, 0.02 | 0.357 | |||||
1 CI = Confidence Interval The Outcome variable: natural logarithm of FIB-4 at EoFU. | ||||||||
(b) | ||||||||
Model 1 | Model 2 | |||||||
Predictors | Estimates | CI | p | Estimates | CI | p | ||
(Intercept) | 1.10 | −0.09–0.29 | 0.316 | 0.08 | −0.04–0.19 | 0.207 | ||
Copper Category ≥ 50 vs. <50 mcg\g | 0.75 | 0.34–1.16 | <0.001 | 0.37 | 0.11–0.63 | 0.006 | ||
BaselineFib4FU | 0.82 | 0.71–0.93 | <0.001 | |||||
Age | ||||||||
Gender (ref = female) | ||||||||
Ethnicity (ref = Jews) | ||||||||
Smoking | ||||||||
DM/IFG = 1 | ||||||||
Dyslipidemia | ||||||||
HTN | ||||||||
Follow up time, years | ||||||||
BMI | ||||||||
Observations | 127 | 124 | ||||||
R2/R2 adjust | 0.094/0.087 | 0.661/0.655 | ||||||
Model 3 | Model 4 | |||||||
Predictors | Estimates | CI | p | Estimates | CI | p | ||
(Intercept) | −0.03 | −0.82–0.77 | 0.949 | 0.21 | −1.30–1.73 | 0.779 | ||
Copper Category ≥ 50 vs. <50 mcg\g | 0.49 | 0.16–0.82 | 0.004 | 0.41 | 0.05–0.76 | 0.026 | ||
BaselineFib4FU | 0.98 | 0.80–1.16 | <0.001 | 1.03 | 0.84–1.22 | <0.001 | ||
Age | −0.01 | −0.02–0.01 | 0.372 | −0.01 | −0.02–0.01 | 0.490 | ||
Gender (ref = female) | 0.01 | −0.28–0.29 | 0.962 | 0.07 | −0.24–0.38 | 0.670 | ||
Ethnicity (ref = Jews) | 0.25 | −0.03–0.53 | 0.084 | 0.15 | −0.15–0.44 | 0.316 | ||
Smoking | 0.30 | −0.04–0.64 | 0.082 | 0.35 | −0.00–0.71 | 0.052 | ||
DM/IFG = 1 | −0.35 | −0.669–−0.01 | 0.043 | −0.19 | −0.57–0.19 | 0.325 | ||
Dyslipidemia | 0.23 | −0.10–0.56 | 0.162 | 0.23 | −0.18–0.64 | 0.263 | ||
HTN | 0.31 | 0.03–0.66 | 0.072 | 0.12 | −0.26–0.51 | 0.517 | ||
Follow up time, years | 0.02 | −0.02–0.06 | 0.327 | 0.01 | −0.04–0.05 | 0.687 | ||
Observations | 81 | 59 | ||||||
R2/R2 adjust | 0.760/0.725 | 0.804/0.763 | ||||||
(c) | ||||||||
Fib-4 BL/FU > 1 IS 1 | Fib-4 BL/FU > 1 IS 1 | Fib-4 BL/FU > 1 IS 1 | Fib-4 BL/FU > 1 IS 1 | |||||
Predictors | OR | p | OR | p | OR | p | OR | p |
(Intercept) | 1.11 | 0.612 | 1.12 | 0.591 | 0.15 | 0.252 | 4.22 | 0.684 |
Copper Category ≥ 50 vs. <50 mcg\g | 13.09 | 0.017 | 15.16 | 0.013 | 33.37 | 0.013 | 41.3 | 0.008 |
BaselineFib4FU | 0.45 | 0.001 | 0.60 | 0.185 | 0.63 | 0.353 | ||
Age | 1.00 | 0.970 | 0.99 | 0.76 | ||||
Gender (ref = female) | 2.36 | 0.212 | 1.81 | 0.423 | ||||
Ethnicity (ref = Jews) | 2.07 | 0.235 | 1.86 | 0.40 | ||||
Smoking | 3.19 | 0.163 | 3.13 | 0.182 | ||||
DM/IFG = 1 | 0.20 | 0.066 | 0.17 | 0.061 | ||||
Dyslipidemia | 3.81 | 0.248 | 4.42 | 0.22 | ||||
HTN | 3.36 | 0.22 | 4.64 | 0.122 | ||||
Follow up time, years | 1.13 | 0.273 | 1.11 | 0.362 | ||||
BMI | 0.89 | 0.15 | ||||||
Observations | 124 | 124 | 81 | 59 | ||||
R2 | 0.203 | 0.242 | 0.442 | 0.476 |
Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|
Predictors | HR | p | HR | p | HR | p |
HCLs ≥ vs. < than 50 µg/g | 3.78 | 0.048 | 10.09 | 0.029 | 18.51 | 0.032 |
Gender (ref = female) | 0.98 | 0.988 | 2.21 | 0.625 | ||
Ethnicity (ref = Jew) | 7.91 | 0.072 | 9.99 | 0.144 | ||
Smoking Status | 22.59 | 0.011 | 16.61 | 0.048 | ||
Age at Biopsy | 1.16 | 0.005 | 1.12 | 0.099 | ||
Diabetes Mellitus or Impaired Fasting Glucose | 0.31 | 0.328 | ||||
Dyslipidemia | 10.19 | 0.135 | ||||
Hypertension | 4.14 | 0.230 | ||||
Fibrosis stage 3 or 4 by Biopsy | 0.625 | |||||
Observations | 212 | 136 | 117 | |||
R2 Nagelkerke | 0.057 | 0.524 | 0.593 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shabaneh, S.; Berry, E.M.; Imam, A.; Suki, M.; Salhab, A.; Khalaileh, A.; Safadi, R. Hepatic Copper Accumulation Predicts Fibrosis Progression and Mortality in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Nutrients 2025, 17, 2923. https://doi.org/10.3390/nu17182923
Shabaneh S, Berry EM, Imam A, Suki M, Salhab A, Khalaileh A, Safadi R. Hepatic Copper Accumulation Predicts Fibrosis Progression and Mortality in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Nutrients. 2025; 17(18):2923. https://doi.org/10.3390/nu17182923
Chicago/Turabian StyleShabaneh, Suha, Elliot M. Berry, Ashraf Imam, Mohamad Suki, Ahmad Salhab, Abed Khalaileh, and Rifaat Safadi. 2025. "Hepatic Copper Accumulation Predicts Fibrosis Progression and Mortality in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)" Nutrients 17, no. 18: 2923. https://doi.org/10.3390/nu17182923
APA StyleShabaneh, S., Berry, E. M., Imam, A., Suki, M., Salhab, A., Khalaileh, A., & Safadi, R. (2025). Hepatic Copper Accumulation Predicts Fibrosis Progression and Mortality in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Nutrients, 17(18), 2923. https://doi.org/10.3390/nu17182923