Clinical Association of Haptoglobin with Oxidized LDL in Obese Patients with Type 2 Diabetes Mellitus
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Protocol
2.2. Measurement of Haptoglobins and Ox-LDL Levels in T2DM Patients
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Subjects with T2DM
3.2. Correlations Between Urinary and Plasma Haptoglobin with Ox-LDL Levels and Clinical Parameters in T2DM Patients
3.3. Univariate Regression Analysis for the Association of Urinary and Plasma Haptoglobin with Ox-LDL in T2DM Patients
3.4. Multivariate Regression Analysis for the Association Between Plasma Haptoglobin with Ox-LDL in T2DM Patients
3.5. Stepwise Regression Analysis for the Identification of the Best Predictors for the Association Between Plasma Haptoglobin and Ox-LDL in T2DM Patients
3.6. Multiple Regression Analysis for the Association Between Plasma Haptoglobin and Ox-LDL Across Categorized Subgroups in T2DM Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ALP | Alkaline phosphatase |
| ALT | Alanine aminotransferase |
| ApoB | Apolipoprotein B |
| AST | Aspartate aminotransferase |
| BMI | Body mass index |
| Cre | Creatinine |
| CVD | Cardiovascular disease |
| EGFR | Estimated glomerular filtration rate |
| Hb | Hemoglobin |
| HbA1c | Glycated Hemoglobin A1c |
| HDL | High-density lipoprotein |
| Hp | Haptoglobin |
| Hs-CRP | High-sensitivity C-reactive protein |
| IL-6 | Interleukin 6 |
| LDL | Low-density lipoprotein |
| Ox-LDL | Oxidized low-density lipoprotein |
| Pl-Hp | Plasma haptoglobin |
| S-ACR | Serum albumin-to-creatinine ratio |
| T2DM | Type 2 diabetes mellitus |
| U-ACR | Urinary albumin-to-creatinine ratio |
| U-Hp | Urinary haptoglobin |
References
- Abdul-Ghani, M.A.; Jayyousi, A.; DeFronzo, R.A.; Asaad, N.; Al-Suwaidi, J. Insulin Resistance the Link between T2DM and CVD: Basic Mechanisms and Clinical Implications. Curr. Vasc. Pharmacol. 2019, 17, 153–163. [Google Scholar] [CrossRef]
- Lalic, N.M.; Jotic, A.; Lukic, L.; Milicic, T.; Macesic, M.; Stanarcic Gajovic, J.; Stoiljkovic, M.; Milovancevic, M.; Rafailovic Cvetkovic, D.; Lalic, K. Glucose lowering drug or strategy dependent impact of weight reduction on the prevention of CVD outcomes in Type 2 diabetes: A systematic review of CVOTs. Diabetes Res. Clin. Pract. 2024, 216, 111816. [Google Scholar] [CrossRef]
- Steven, S.; Frenis, K.; Oelze, M.; Kalinovic, S.; Kuntic, M.; Bayo Jimenez, M.T.; Vujacic-Mirski, K.; Helmstadter, J.; Kroller-Schon, S.; Munzel, T.; et al. Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. Oxid. Med. Cell. Longev. 2019, 2019, 7092151. [Google Scholar] [CrossRef]
- Goldenstein, H.; Levy, N.S.; Levy, A.P. Haptoglobin genotype and its role in determining heme-iron mediated vascular disease. Pharmacol. Res. 2012, 66, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Levy, A.P.; Asleh, R.; Blum, S.; Levy, N.S.; Miller-Lotan, R.; Kalet-Litman, S.; Anbinder, Y.; Lache, O.; Nakhoul, F.M.; Asaf, R.; et al. Haptoglobin: Basic and clinical aspects. Antioxid. Redox. Signal. 2010, 12, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Miller, Y.I.; Felikman, Y.; Shaklai, N. Hemoglobin induced apolipoprotein B crosslinking in low-density lipoprotein peroxidation. Arch. Biochem. Biophys. 1996, 326, 252–260. [Google Scholar] [CrossRef]
- Schaer, C.A.; Deuel, J.W.; Bittermann, A.G.; Rubio, I.G.; Schoedon, G.; Spahn, D.R.; Wepf, R.A.; Vallelian, F.; Schaer, D.J. Mechanisms of haptoglobin protection against hemoglobin peroxidation triggered endothelial damage. Cell Death Differ. 2013, 20, 1569–1579. [Google Scholar] [CrossRef] [PubMed]
- Sajib, M.; Wu, H.; Fristedt, R.; Undeland, I. Hemoglobin-mediated lipid oxidation of herring filleting co-products during ensilaging and its inhibition by pre-incubation in antioxidant solutions. Sci. Rep. 2021, 11, 19492. [Google Scholar] [CrossRef]
- Naryzny, S.N.; Legina, O.K. Haptoglobin as a Biomarker. Biochem. Mosc. Suppl. B Biomed. Chem. 2021, 15, 184–198. [Google Scholar] [CrossRef]
- Bamm, V.V.; Tsemakhovich, V.A.; Shaklai, M.; Shaklai, N. Haptoglobin phenotypes differ in their ability to inhibit heme transfer from hemoglobin to LDL. Biochemistry 2004, 43, 3899–3906. [Google Scholar] [CrossRef]
- Langlois, M.R.; Delanghe, J.R. Biological and clinical significance of haptoglobin polymorphism in humans. Clin. Chem. 1996, 42, 1589–1600. [Google Scholar] [CrossRef] [PubMed]
- Delanghe, J.R.; Delrue, C.; Speeckaert, R.; Speeckaert, M.M. Unlocking the link between haptoglobin polymorphism and noninfectious human diseases: Insights and implications. Crit. Rev. Clin. Lab. Sci. 2024, 61, 275–297. [Google Scholar] [CrossRef] [PubMed]
- Kalet-Litman, S.; Moreno, P.R.; Levy, A.P. The haptoglobin 2-2 genotype is associated with increased redox active hemoglobin derived iron in the atherosclerotic plaque. Atherosclerosis 2010, 209, 28–31. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cahill, L.E.; Levy, A.P.; Chiuve, S.E.; Jensen, M.K.; Wang, H.; Shara, N.M.; Blum, S.; Howard, B.V.; Pai, J.K.; Mukamal, K.J.; et al. Haptoglobin genotype is a consistent marker of coronary heart disease risk among individuals with elevated glycosylated hemoglobin. J. Am. Coll. Cardiol. 2013, 61, 728–737. [Google Scholar] [CrossRef]
- Carew, A.S.; Levy, A.P.; Ginsberg, H.N.; Coca, S.; Lache, O.; Ransom, T.; Byington, R.; Rimm, E.B.; Sapp, J.; Gardner, M.; et al. Haptoglobin Phenotype Modifies the Influence of Intensive Glycemic Control on Cardiovascular Outcomes. J. Am. Coll. Cardiol. 2020, 75, 512–521. [Google Scholar] [CrossRef]
- Warren, R.A.; Carew, A.S.; Andreou, P.; Herman, C.; Levy, A.P.; Ginsberg, H.N.; Sapp, J.; Rimm, E.B.; Kirkland, S.; Cahill, L.E. Haptoglobin Phenotype Modifies the Effect of Fenofibrate on Risk of Coronary Event: ACCORD Lipid Trial. Diabetes Care 2022, 45, 241–250. [Google Scholar] [CrossRef]
- Cahill, L.E.; Warren, R.A.; Bahn, G.D.; Carew, A.S.; Levy, A.P.; Sapp, J.; Rimm, E.B.; Reaven, P. Haptoglobin phenotype and intensive glycemic control for coronary artery disease risk reduction in people with type two diabetes: The Veterans Affairs Diabetes Trial. Am. J. Prev. Cardiol. 2024, 18, 100681. [Google Scholar] [CrossRef]
- Delanghe, J.; Cambier, B.; Langlois, M.; De Buyzere, M.; Neels, H.; De Bacquer, D.; Van Cauwelaert, P. Haptoglobin polymorphism, a genetic risk factor in coronary artery bypass surgery. Atherosclerosis 1997, 132, 215–219. [Google Scholar] [CrossRef]
- Brouwers, A.; Langlois, M.; Delanghe, J.; Billiet, J.; De Buyzere, M.; Vercaemst, R.; Rietzschel, E.; Bernard, D.; Blaton, V. Oxidized low-density lipoprotein, iron stores, and haptoglobin polymorphism. Atherosclerosis 2004, 176, 189–195. [Google Scholar] [CrossRef]
- Shi, X.; Sun, L.; Wang, L.; Jin, F.; Sun, J.; Zhu, X.; Tang, L.; Qu, Y.; Yang, Z. Haptoglobin 2-2 genotype is associated with increased risk of type 2 diabetes mellitus in northern Chinese. Genet. Test. Mol. Biomarkers 2012, 16, 563–568. [Google Scholar] [CrossRef]
- Feng, C.; Naik, B.I.; Xin, W.; Ma, J.Z.; Scalzo, D.C.; Thammishetti, S.; Thiele, R.H.; Zuo, Z.; Raphael, J. Haptoglobin 2-2 Phenotype Is Associated with Increased Acute Kidney Injury After Elective Cardiac Surgery in Patients with Diabetes Mellitus. J. Am. Heart Assoc. 2017, 6, e006565. [Google Scholar] [CrossRef]
- Merkler, A.; Sertic, J.; Bazina Martinovic, A.; Kriz, T.; Milicic, I.; Simic, M.; Caban, D.; Ljubic, H.; Markeljevic, J.; Simicevic, L.; et al. Haptoglobin genotype 2-2 associated with atherosclerosis in patients with ischemic stroke. Gene 2020, 752, 144786. [Google Scholar] [CrossRef]
- Adams, J.N.; Cox, A.J.; Freedman, B.I.; Langefeld, C.D.; Carr, J.J.; Bowden, D.W. Genetic analysis of haptoglobin polymorphisms with cardiovascular disease and type 2 diabetes in the Diabetes Heart Study. Cardiovasc. Diabetol. 2013, 12, 31. [Google Scholar] [CrossRef]
- Liu, J.J.; Liu, S.; Saulnier, P.J.; Gand, E.; Choo, R.W.M.; Gurung, R.L.; Hadjadj, S.; Lim, S.C.; Singapore and SURDIAGENE Study Groups. Association of Urine Haptoglobin with Risk of All-Cause and Cause-Specific Mortality in Individuals with Type 2 Diabetes: A Transethnic Collaborative Work. Diabetes Care 2020, 43, 625–633. [Google Scholar] [CrossRef]
- Costacou, T.; Levy, A.P. Haptoglobin genotype and its role in diabetic cardiovascular disease. J. Cardiovasc. Transl. Res. 2012, 5, 423–435. [Google Scholar] [CrossRef]
- Somer, S.; Levy, A.P. The Role of Haptoglobin Polymorphism in Cardiovascular Disease in the Setting of Diabetes. Int. J. Mol. Sci. 2020, 22, 287. [Google Scholar] [CrossRef] [PubMed]
- Mewborn, E.K.; Tolley, E.A.; Wright, D.B.; Doneen, A.L.; Harvey, M.; Stanfill, A.G. Haptoglobin genotype is a risk factor for coronary artery disease in prediabetes: A case-control study. Am. J. Prev. Cardiol. 2024, 17, 100625. [Google Scholar] [CrossRef] [PubMed]
- MacKellar, M.; Vigerust, D.J. Role of Haptoglobin in Health and Disease: A Focus on Diabetes. Clin. Diabetes 2016, 34, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, K.F.; Pietrani, N.T.; Carvalho, L.M.L.; Bosco, A.A.; Sandrim, V.C.; Ferreira, C.N.; Gomes, K.B. Haptoglobin levels are influenced by Hp1-Hp2 polymorphism, obesity, inflammation, and hypertension in type 2 diabetes mellitus. Endocrinol. Diabetes Nutr. 2019, 66, 99–107. [Google Scholar] [CrossRef]
- Lee, C.W.; Cheng, T.M.; Lin, C.P.; Pan, J.P. Plasma haptoglobin concentrations are elevated in patients with coronary artery disease. PLoS ONE 2013, 8, e76817. [Google Scholar] [CrossRef]
- Jelena, A.; Mirjana, M.; Desanka, B.; Svetlana, I.M.; Aleksandra, U.; Goran, P.; Ilijana, G. Haptoglobin and the inflammatory and oxidative status in experimental diabetic rats: Antioxidant role of haptoglobin. J. Physiol. Biochem. 2013, 69, 45–58. [Google Scholar] [CrossRef]
- Bhensdadia, N.M.; Hunt, K.J.; Lopes-Virella, M.F.; Michael Tucker, J.; Mataria, M.R.; Alge, J.L.; Neely, B.A.; Janech, M.G.; Arthur, J.M.; Veterans Affairs Diabetes Trial study group. Urine haptoglobin levels predict early renal functional decline in patients with type 2 diabetes. Kidney Int. 2013, 83, 1136–1143. [Google Scholar] [CrossRef]
- Bezen, D.; Vurgun, E.; Dursun, H. Evaluation of urinary haptoglobin level as a biomarker of diabetic nephropathy in children with type 1 diabetes. Pediatr. Nephrol. 2023, 38, 3693–3698. [Google Scholar] [CrossRef]
- Liu, J.J.; Liu, S.; Wong, M.D.; Gurung, R.L.; Lim, S.C. Urinary Haptoglobin Predicts Rapid Renal Function Decline in Asians with Type 2 Diabetes and Early Kidney Disease. J. Clin. Endocrinol. Metab. 2016, 101, 3794–3802. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Zhang, R.; Zhao, A.; Zheng, X.; Yan, D.; Jiang, F.; Jia, W.; Hu, C.; Jia, W. Association between serum haptoglobin and carotid arterial functions: Usefulness of a targeted metabolomics approach. Cardiovasc. Diabetol. 2019, 18, 8. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Q.; Zhang, L.; Dai, Y.; Huang, Z.; Zhang, H.; Yi, B. Urine Haptoglobin/Creatinine Ratio Correlates with Tubular Injury Biomarkers and Severity of Albuminuria in Type 2 Diabetes Patients. Horm. Metab. Res. 2019, 51, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Warren, R.A.; Carew, A.S.; Andreou, P.; Levy, A.P.; Sapp, J.; Lache, O.; Ginsberg, H.N.; Rimm, E.B.; Herman, C.; Kirkland, S.; et al. Relationship Between Time-Varying Achieved High-Density Lipoprotein Cholesterol and Risk of Coronary Events Depends on Haptoglobin Phenotype Within the ACCORD Lipid Study. J. Am. Heart Assoc. 2023, 12, e030288. [Google Scholar] [CrossRef]
- Xu, C.; Khin, L.W.; Tam, H.Z.; Goh, L.L.; Koh, E.T.; Dalan, R.; Leong, K.P. Haptoglobin 2-2 genotype is associated with increased risk of cardiovascular disease in patients with rheumatoid arthritis: A matched case-control study. Front. Med. 2024, 11, 1442858. [Google Scholar] [CrossRef]
- Song, J.; Cao, C.; Wang, Z.; Li, H.; Yang, L.; Kang, J.; Meng, H.; Li, L.; Liu, J. Mechanistic insights into the regression of atherosclerotic plaques. Front. Physiol. 2024, 15, 1473709. [Google Scholar] [CrossRef] [PubMed]
- Cahill, L.E.; Jensen, M.K.; Chiuve, S.E.; Shalom, H.; Pai, J.K.; Flint, A.J.; Mukamal, K.J.; Rexrode, K.M.; Levy, A.P.; Rimm, E.B. The Risk of Coronary Heart Disease Associated with Glycosylated Hemoglobin of 6.5% or Greater Is Pronounced in the Haptoglobin 2-2 Genotype. J. Am. Coll. Cardiol. 2015, 66, 1791–1799. [Google Scholar] [CrossRef] [PubMed]
- Bakrim, N.M.; Omar, W.F.N.W.; Abdullah, A.; Hamidon, N.N.; Abdul Muid, S.; Badrulhisham, A. Plasma Haptoglobin as A Potential Biomarker for Coronary Artery Disease in Young Hypertensive Adults. IIUM Med. J. Malays. 2024, 23, 2371. [Google Scholar] [CrossRef]
- Mayo. Haptoglobin, Serum. Mayo Clinic Laboratories. Available online: https://www.mayocliniclabs.com/test-catalog/Overview/9168/ (accessed on 9 April 2025).
- UCSF. Haptoglobin Blood Test. UCSF Health. Available online: https://www.ucsfhealth.org/medical-tests/haptoglobin-blood-test (accessed on 9 April 2025).
- Evexia. Evexia Diagnostics. 2025. Available online: https://www.evexiadiagnostics.com/test-menu/oxidized-low-density-lipoprotein-oxldl/ (accessed on 9 April 2025).
- Carr, A. Cardiovascular Biomarkers: Oxidized LDL. OptimalDx (Clinical Context). 2023. Available online: https://www.optimaldx.com/research-blog/cardiovascular-biomarkers-oxidized-ldl (accessed on 9 April 2025).
- Weinberg Sibony, R.; Segev, O.; Dor, S.; Raz, I. Overview of oxidative stress and inflammation in diabetes. J. Diabetes 2024, 16, e70014. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhou, Y.; Nabavi, S.M.; Sahebkar, A.; Little, P.J.; Xu, S.; Weng, J.; Ge, J. Mechanisms of Oxidized LDL-Mediated Endothelial Dysfunction and Its Consequences for the Development of Atherosclerosis. Front. Cardiovasc. Med. 2022, 9, 925923. [Google Scholar] [CrossRef]
- Miller, Y.I.; Altamentova, S.M.; Shaklai, N. Oxidation of low-density lipoprotein by hemoglobin stems from a heme-initiated globin radical: Antioxidant role of haptoglobin. Biochemistry 1997, 36, 12189–12198. [Google Scholar] [CrossRef]
- Asleh, R.; Miller-Lotan, R.; Aviram, M.; Hayek, T.; Yulish, M.; Levy, J.E.; Miller, B.; Blum, S.; Milman, U.; Shapira, C.; et al. Haptoglobin genotype is a regulator of reverse cholesterol transport in diabetes in vitro and in vivo. Circ. Res. 2006, 99, 1419–1425. [Google Scholar] [CrossRef] [PubMed]
- Blum, S.; Asaf, R.; Guetta, J.; Miller-Lotan, R.; Asleh, R.; Kremer, R.; Levy, N.S.; Berger, F.G.; Aronson, D.; Fu, X.; et al. Haptoglobin genotype determines myocardial infarct size in diabetic mice. J. Am. Coll. Cardiol. 2007, 49, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Wan, B.N.; Zhou, S.G.; Wang, M.; Zhang, X.; Ji, G. Progress on haptoglobin and metabolic diseases. World J. Diabetes 2021, 12, 206–214. [Google Scholar] [CrossRef]
- Kelly, C.B.; Yu, J.Y.; Jenkins, A.J.; Nankervis, A.J.; Hanssen, K.F.; Garg, S.K.; Scardo, J.A.; Basu, A.; Hammad, S.M.; Aston, C.E.; et al. Haptoglobin Phenotype Modulates Lipoprotein-Associated Risk for Preeclampsia in Women with Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2019, 104, 4743–4755. [Google Scholar] [CrossRef]
- Thangasparan, S.; Kamisah, Y.; Ugusman, A.; Mohamad Anuar, N.N.; Ibrahim, N. Unravelling the Mechanisms of Oxidised Low-Density Lipoprotein in Cardiovascular Health: Current Evidence from In Vitro and In Vivo Studies. Int. J. Mol. Sci. 2024, 25, 13292. [Google Scholar] [CrossRef]
- Le, T.N.; Bright, R.; Truong, V.K.; Li, J.; Juneja, R.; Vasilev, K. Key biomarkers in type 2 diabetes patients: A systematic review. Diabetes Obes. Metab. 2025, 27, 7–22. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, Y.; Zhang, R.; Jin, L.; Zhang, H.; Hu, C. Serum haptoglobin levels are associated with renal function decline in type 2 diabetes mellitus patients in a Chinese Han population. Diabetes Res. Clin. Pract. 2019, 156, 107865. [Google Scholar] [CrossRef] [PubMed]
- Hurt, N.; Smith, T.; Tanner, M.; Mwankusye, S.; Bordmann, G.; Weiss, N.A.; Teuscher, T. Evaluation of C-reactive protein and haptoglobin as malaria episode markers in an area of high transmission in Africa. Trans. R. Soc. Trop. Med. Hyg. 1994, 88, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Zabrecky, K.A.; Slovis, N.M.; Constable, P.D.; Taylor, S.D. Plasma C-reactive protein and haptoglobin concentrations in critically ill neonatal foals. J. Vet. Intern. Med. 2015, 29, 673–677. [Google Scholar] [CrossRef]
- Ngwa, D.N.; Pathak, A.; Agrawal, A. IL-6 regulates induction of C-reactive protein gene expression by activating STAT3 isoforms. Mol. Immunol. 2022, 146, 50–56. [Google Scholar] [CrossRef]
- Schaer, D.J.; Vinchi, F.; Ingoglia, G.; Tolosano, E.; Buehler, P.W. Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development. Front. Physiol. 2014, 5, 415. [Google Scholar] [CrossRef]
- de Paula Silva, L.; de Moraes Rego, F.G.; Picheth, G.; Muller-Santos, M.; Alberton, D. Prospection of plasma proteins as biomarkers for diabetes mellitus monitoring. J. Diabetes Metab. Disord. 2021, 20, 611–620. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Vaziri, N.D. Oxidative stress in uremia: Nature, mechanisms, and potential consequences. Semin. Nephrol. 2004, 24, 469–473. [Google Scholar] [CrossRef]
- Lin, X.; Song, W.; Zhou, Y.; Gao, Y.; Wang, Y.; Wang, Y.; Liu, Y.; Deng, L.; Liao, Y.; Wu, B.; et al. Elevated urine albumin creatinine ratio increases cardiovascular mortality in coronary artery disease patients with or without type 2 diabetes mellitus: A multicenter retrospective study. Cardiovasc. Diabetol. 2023, 22, 203. [Google Scholar] [CrossRef]
- Tao, J.; Sang, D.; Zhen, L.; Zhang, X.; Li, Y.; Wang, G.; Chen, S.; Wu, S.; Zhang, W. Elevated urine albumin-to-creatinine ratio increases the risk of new-onset heart failure in patients with type 2 diabetes. Cardiovasc. Diabetol. 2023, 22, 70. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xie, X.; Zeng, X.; Wang, S.; Lan, J. Association between serum albumin to serum creatinine ratio and mortality risk in patients with heart failure. Clin. Transl. Sci. 2023, 16, 2345–2355. [Google Scholar] [CrossRef] [PubMed]
- Tervaert, T.W.; Mooyaart, A.L.; Amann, K.; Cohen, A.H.; Cook, H.T.; Drachenberg, C.B.; Ferrario, F.; Fogo, A.B.; Haas, M.; de Heer, E.; et al. Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol. 2010, 21, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, P.C.; Castell, J.V.; Andus, T. Interleukin-6 and the acute phase response. Biochem. J. 1990, 265, 621–636. [Google Scholar] [CrossRef]
- Victor, V.M.; Rocha, M.; Sola, E.; Banuls, C.; Garcia-Malpartida, K.; Hernandez-Mijares, A. Oxidative stress, endothelial dysfunction and atherosclerosis. Curr. Pharm. Des. 2009, 15, 2988–3002. [Google Scholar] [CrossRef]
| Category | Variable | T2DM Cohort |
|---|---|---|
| Demographics | Age (years) * | 60.96 ± 9.99 |
| BMI (kg/m2) * | 35.15 ± 6.65 | |
| Clinical Parameters | Systolic BP (mmHg) | 145.00 (123.50–153.50) |
| Diastolic BP (mmHg) | 71.00 (61.50–81.00) | |
| HbA1c (%) * | 8.66 ± 1.60 | |
| Fasting Glucose (mmol/L) | 8.00 (6.67–14.27) | |
| Renal Function & Protein Status | Creatinine (µmol/L) | 111.50 (81.00–142.25) |
| eGFR (mL/min/1.73 m2) * | 58.04 ± 26.50 | |
| Serum Albumin (g/L) | 41.00 (38.00–43.00) | |
| Total Protein (g/L) | 70.00 (67.50–73.50) | |
| Hemoglobin (g/L) | 120.00 (108.00–130.00) | |
| Lipid Profile | Total Cholesterol (mg/dL) | 154.68 (116.01–193.35) |
| LDL-c (mg/dL) | 77.34 (77.34–116.01) | |
| HDL-c (mg/dL) | 38.67 (38.67–38.67) | |
| Triglycerides (mg/dL) | 177.14 (88.57–177.14) | |
| ApoB (mg/mL) | 86.00 (78.00–103.50) | |
| Ox-LDL (ng/mL) * | 247.97 ± 67.50 | |
| Liver Enzymes | AST (U/L) | 19.00 (13.00–26.00) |
| ALT (U/L) | 2.00 (1.00–4.00) | |
| ALP (U/L) | 85.00 (61.00–105.00) | |
| Inflammatory & Adipokine Markers | Hs-CRP (mg/L) | 7.60 (3.40–25.97) |
| IL-6 (pg/mL) | 24.72 (16.25–32.93) | |
| TNFα (pg/mL) | 38.80 (32.01–52.55) | |
| Adiponectin (ng/mL) * | 3735.74 ± 966.21 | |
| Resistin (pg/mL) | 46,889.39 (33,574.75–66,234.11) | |
| Adipsin (pg/mL) | 583,813.15 (225,134.29–1,204,432.24) | |
| Urinary Markers | Urine Albumin (mg/L) | 16.11 (1.80–85.96) |
| Urine Haptoglobin (ng/mL) | 10.50 (3.58–73.13) | |
| Plasma Haptoglobin (ng/mL) | 4,105,900 (2,456,100–5,906,600) | |
| Urine Albumin-to-Creatinine Ratio (u-ACR, mg/mmol) | 190.00 (19.95–796.00) | |
| Serum Albumin-to-Creatinine Ratio (s-ACR, mg/mmol) | 0.365 (0.271–0.471) | |
| Family Disease History | Diabetes (%) | 81.80 |
| Hypertension (%) | 25.50 | |
| CAD (%) | 38.20 | |
| Hypercholesterolemia (%) | 57.70 | |
| Stroke (%) | 14.30 | |
| Medication | Antidiabetic Drugs (%) | |
| Insulin | 47.37 | |
| Metformin | 14.03 | |
| DPP4 inhibitors | 14.03 | |
| Sulfonylurea | 10.53 | |
| Cardiovascular/Antihypertensive Drugs (%) HMG-CoA Reductase Inhibitors (Statins) | 19.30 | |
| Calcium Channel Blockers | 8.77 | |
| ACE Inhibitors | 7.02 | |
| Diuretics | 3.51 | |
| Other Medications (%) NSAID | 7.02 | |
| Proton Pump Inhibitors (PPI) | 3.51 |
| U-Hp | Pl-Hp | Age | Gender | SBP | DBP | A1C | CRE | ALB | AST | ALT | CHOL | LDL | HDL | TAG | CRP | BMI | ApoB | Ox-LDL | e-GFR | IL-6 | ||
| U-Hp | R | 1 | −0.145 | 0.237 | 0.093 | −0.081 | −0.091 | 0.298 * | 0.012 | −0.315 * | −0.002 | −0.068 | 0.245 | 0.254 | −0.032 | 0.265 | 0.233 | −0.043 | 0.310 * | −0.142 | −0.073 | 0.197 |
| P | . | 0.290 | 0.082 | 0.499 | 0.559 | 0.508 | 0.030 | 0.931 | 0.023 | 0.989 | 0.655 | 0.109 | 0.096 | 0.836 | 0.086 | 0.123 | 0.757 | 0.021 | 0.299 | 0.599 | 0.150 | |
| Pl-Hp | R | −0.145 | 1 | 0.182 | −0.047 | 0.176 | 0.006 | −0.223 | −0.004 | 0.042 | 0.004 | −0.100 | −0.261 | −0.246 | 0.093 | −0.041 | −0.364 * | −0.242 | −0.063 | 0.358 ** | −0.085 | 0.025 |
| P | 0.290 | . | 0.174 | 0.728 | 0.190 | 0.966 | 0.101 | 0.976 | 0.761 | 0.977 | 0.504 | 0.080 | 0.099 | 0.541 | 0.787 | 0.013 | 0.070 | 0.642 | 0.006 | 0.535 | 0.851 | |
| Age | R | 0.237 | 0.182 | 1 | −0.076 | −0.103 | −0.335 * | 0.044 | 0.186 | 0.027 | −0.064 | −0.103 | −0.191 | −0.241 | 0.042 | −0.047 | 0.013 | −0.063 | −0.052 | 0.082 | −0.384 ** | 0.187 |
| P | 0.082 | 0.174 | . | 0.574 | 0.446 | 0.011 | 0.751 | 0.170 | 0.848 | 0.668 | 0.490 | 0.204 | 0.107 | 0.783 | 0.759 | 0.933 | 0.642 | 0.703 | 0.543 | 0.003 | 0.164 | |
| Gender | R | 0.093 | −0.047 | −0.076 | 1 | 0.042 | −0.198 | −0.023 | −0.429 *** | −0.022 | −0.114 | 0.012 | 0.116 | 0.360 * | −0.060 | −0.292 | 0.053 | 0.167 | −0.002 | 0.064 | 0.228 | 0.116 |
| P | 0.499 | 0.728 | 0.574 | . | 0.758 | 0.139 | 0.865 | 0.0001 | 0.877 | 0.444 | 0.938 | 0.443 | 0.014 | 0.697 | 0.051 | 0.727 | 0.214 | 0.987 | 0.635 | 0.091 | 0.392 | |
| SBP | R | −0.081 | 0.176 | −0.103 | 0.042 | 1 | 0.549 *** | −0.055 | 0.106 | −0.079 | 0.004 | 0.194 | 0.216 | 0.333 * | −0.155 | 0.225 | 0.072 | 0.070 | −0.024 | 0.077 | −0.067 | 0.089 |
| P | 0.559 | 0.190 | 0.446 | 0.758 | . | 0.0001 | 0.692 | 0.436 | 0.570 | 0.979 | 0.190 | 0.150 | 0.024 | 0.310 | 0.138 | 0.634 | 0.607 | 0.860 | 0.571 | 0.622 | 0.510 | |
| DBP | R | −0.091 | 0.006 | −0.335 * | −0.198 | 0.549 *** | 1 | −0.087 | −0.004 | 0.062 | 0.083 | 0.085 | 0.317 * | 0.251 | −0.262 | 0.048 | −0.011 | −0.098 | 0.040 | 0.094 | 0.183 | −0.023 |
| P | 0.508 | 0.966 | 0.011 | 0.139 | 0.0001 | . | 0.527 | 0.974 | 0.655 | 0.578 | 0.570 | 0.032 | 0.093 | 0.082 | 0.755 | 0.943 | 0.470 | 0.767 | 0.489 | 0.176 | 0.864 | |
| A1C | R | 0.298 | −0.223 | 0.044 | −0.023 | −0.055 | −0.087 | 1 | −0.003 | −0.176 | 0.176 | −0.195 | 0.062 | 0.100 | 0.178 | 0.063 | 0.147 | 0.204 | 0.350 ** | −0.098 | 0.028 | 0.057 |
| P | 0.030 | 0.101 | 0.751 | 0.865 | 0.692 | 0.527 | . | 0.981 | 0.211 | 0.242 | 0.195 | 0.683 | 0.510 | 0.242 | 0.681 | 0.340 | 0.135 | 0.009 | 0.478 | 0.843 | 0.680 | |
| CRE | R | 0.012 | −0.004 | 0.186 | −0.429 *** | 0.106 | −0.004 | −0.003 | 1 | −0.322 * | 0.029 | 0.033 | −0.089 | −0.113 | −0.134 | 0.091 | 0.083 | −0.166 | −0.126 | 0.099 | −0.864 *** | 0.009 |
| P | 0.931 | 0.976 | 0.170 | 0.0001 | 0.436 | 0.974 | 0.981 | . | 0.018 | 0.846 | 0.830 | 0.555 | 0.456 | 0.382 | 0.551 | 0.583 | 0.221 | 0.355 | 0.466 | 0.0001 | 0.946 | |
| ALB | R | −0.315 * | 0.042 | 0.027 | −0.022 | −0.079 | 0.062 | −0.176 | −0.322 * | 1 | 0.083 | 0.098 | −0.165 | −0.369 * | −0.088 | −0.028 | −0.263 | −0.038 | −0.161 | −0.118 | 0.429 ** | −0.089 |
| P | 0.023 | 0.761 | 0.848 | 0.877 | 0.570 | 0.655 | 0.211 | 0.018 | . | 0.581 | 0.515 | 0.278 | 0.013 | 0.572 | 0.859 | 0.084 | 0.785 | 0.246 | 0.395 | 0.001 | 0.523 | |
| AST | R | −0.002 | 0.004 | −0.064 | −0.114 | 0.004 | 0.083 | 0.176 | 0.029 | 0.083 | 1 | 0.193 | 0.072 | −0.155 | −0.303 | 0.082 | −0.142 | 0.053 | 0.101 | 0.180 | −0.076 | 0.232 |
| P | 0.989 | 0.977 | 0.668 | 0.444 | 0.979 | 0.578 | 0.242 | 0.846 | 0.581 | . | 0.194 | 0.656 | 0.334 | 0.057 | 0.615 | 0.387 | 0.722 | 0.500 | 0.227 | 0.616 | 0.117 | |
| ALT | R | −0.068 | −0.100 | −0.103 | 0.012 | 0.194 | 0.085 | −0.195 | 0.033 | 0.098 | 0.193 | 1 | 0.161 | 0.087 | −0.232 | 0.012 | −0.146 | −0.015 | −0.154 | −0.125 | −0.016 | 0.021 |
| P | 0.655 | 0.504 | 0.49 | 0.938 | 0.190 | 0.570 | 0.195 | 0.830 | 0.515 | 0.194 | . | 0.315 | 0.587 | 0.150 | 0.941 | 0.374 | 0.921 | 0.302 | 0.401 | 0.916 | 0.888 | |
| CHOL | R | 0.245 | −0.261 | −0.191 | 0.116 | 0.216 | 0.317 * | 0.062 | −0.089 | −0.165 | 0.072 | 0.161 | 1 | 0.661 *** | −0.253 | 0.297 * | 0.056 | 0.091 | 0.446 ** | −0.048 | 0.165 | 0.086 |
| P | 0.109 | 0.08 | 0.204 | 0.443 | 0.150 | 0.032 | 0.683 | 0.555 | 0.278 | 0.656 | 0.315 | . | 0.0001 | 0.094 | 0.047 | 0.739 | 0.546 | 0.002 | 0.752 | 0.274 | 0.569 | |
| LDL | R | 0.254 | −0.246 | −0.241 | 0.360 * | 0.333 * | 0.251 | 0.100 | −0.113 | −0.369 * | −0.155 | 0.087 | 0.661 *** | 1 | −0.107 | 0.083 | 0.081 | 0.061 | 0.553 *** | −0.032 | 0.173 | −0.059 |
| P | 0.096 | 0.099 | 0.107 | 0.014 | 0.024 | 0.093 | 0.510 | 0.456 | 0.013 | 0.334 | 0.587 | 0.0001 | . | 0.484 | 0.588 | 0.629 | 0.685 | 0.0001 | 0.833 | 0.251 | 0.699 | |
| HDL | R | −0.032 | 0.093 | 0.042 | −0.060 | −0.155 | −0.262 | 0.178 | −0.134 | −0.088 | −0.303 | −0.232 | −0.253 | −0.107 | 1 | 0.064 | 0.219 | −0.236 | 0.218 | −0.079 | 0.165 | 0.038 |
| P | 0.836 | 0.541 | 0.783 | 0.697 | 0.310 | 0.082 | 0.242 | 0.382 | 0.572 | 0.057 | 0.150 | 0.094 | 0.484 | . | 0.682 | 0.194 | 0.119 | 0.151 | 0.607 | 0.280 | 0.803 | |
| TAG | R | 0.265 | −0.041 | −0.047 | −0.292 | 0.225 | 0.048 | 0.063 | 0.091 | −0.028 | 0.082 | 0.012 | 0.297 * | 0.083 | 0.064 | 1 | 0.165 | 0.109 | 0.233 | −0.206 | 0.011 | 0.157 |
| P | 0.086 | 0.787 | 0.759 | 0.051 | 0.138 | 0.755 | 0.681 | 0.551 | 0.859 | 0.615 | 0.941 | 0.047 | 0.588 | 0.682 | . | 0.328 | 0.477 | 0.123 | 0.176 | 0.942 | 0.303 | |
| CRP | R | 0.233 | −0.364 * | 0.013 | 0.053 | 0.072 | −0.011 | 0.147 | 0.083 | −0.263 | −0.142 | −0.146 | 0.056 | 0.081 | 0.219 | 0.165 | 1 | 0.260 | 0.042 | −0.149 | −0.141 | 0.181 |
| P | 0.123 | 0.013 | 0.933 | 0.727 | 0.634 | 0.943 | 0.340 | 0.583 | 0.084 | 0.387 | 0.374 | 0.739 | 0.629 | 0.194 | 0.328 | . | 0.081 | 0.781 | 0.324 | 0.350 | 0.230 | |
| BMI | R | −0.043 | −0.242 | −0.063 | 0.167 | 0.07 | −0.098 | 0.204 | −0.166 | −0.038 | 0.053 | −0.015 | 0.091 | 0.061 | −0.236 | 0.109 | 0.260 | 1 | −0.141 | −0.119 | 0.107 | 0.053 |
| P | 0.757 | 0.070 | 0.642 | 0.214 | 0.607 | 0.470 | 0.135 | 0.221 | 0.785 | 0.722 | 0.921 | 0.546 | 0.685 | 0.119 | 0.477 | 0.081 | . | 0.297 | 0.376 | 0.434 | 0.695 | |
| ApoB | R | 0.310 * | −0.063 | −0.052 | −0.002 | −0.024 | 0.040 | 0.350 ** | −0.126 | −0.161 | 0.101 | −0.154 | 0.446 ** | 0.553 *** | 0.218 | 0.233 | 0.042 | −0.141 | 1 | −0.130 | 0.180 | 0.043 |
| P | 0.021 | 0.642 | 0.703 | 0.987 | 0.860 | 0.767 | 0.009 | 0.355 | 0.246 | 0.500 | 0.302 | 0.002 | 0.0001 | 0.151 | 0.123 | 0.781 | 0.297 | . | 0.336 | 0.185 | 0.749 | |
| Ox-LDL | R | −0.142 | 0.358 ** | 0.082 | 0.064 | 0.077 | 0.094 | −0.098 | 0.099 | −0.118 | 0.180 | −0.125 | −0.048 | −0.032 | −0.079 | −0.206 | −0.149 | −0.119 | −0.130 | 1 | −0.241 | 0.340 * |
| P | 0.299 | 0.006 | 0.543 | 0.635 | 0.571 | 0.489 | 0.478 | 0.466 | 0.395 | 0.227 | 0.401 | 0.752 | 0.833 | 0.607 | 0.176 | 0.324 | 0.376 | 0.336 | . | 0.074 | 0.010 | |
| e-GFR | R | −0.073 | −0.085 | −0.384 ** | 0.228 | −0.067 | 0.183 | 0.028 | −0.864 *** | 0.429 ** | −0.076 | −0.016 | 0.165 | 0.173 | 0.165 | 0.011 | −0.141 | 0.107 | 0.180 | −0.241 | 1 | −0.147 |
| P | 0.599 | 0.535 | 0.003 | 0.091 | 0.622 | 0.176 | 0.843 | 0.0001 | 0.001 | 0.616 | 0.916 | 0.274 | 0.251 | 0.280 | 0.942 | 0.350 | 0.434 | 0.185 | 0.074 | . | 0.279 | |
| IL−6 | R | 0.197 | 0.025 | 0.187 | 0.116 | 0.089 | −0.023 | 0.057 | 0.009 | −0.089 | 0.232 | 0.021 | 0.086 | −0.059 | 0.038 | 0.157 | 0.181 | 0.053 | 0.043 | 0.340 * | −0.147 | 1 |
| P | 0.150 | 0.851 | 0.164 | 0.392 | 0.510 | 0.864 | 0.680 | 0.946 | 0.523 | 0.117 | 0.888 | 0.569 | 0.699 | 0.803 | 0.303 | 0.230 | 0.695 | 0.749 | 0.010 | 0.279 | . | |
| Heatmap scale: | −1 | −0.75 | −0.50 | −0.25 | 0 | 0.25 | 0.50 | 0.75 | 1 | |||||||||||||
| Dependent Variable: Ox-LDL | Unstandardized Coefficients | Standardized Coefficients | t | p | 95% CI for B | ||||
| B | SE | B | Lower Bound | Upper Bound | |||||
| (Constant) | 244.222 | 10.690 | 22.846 | 0.0001 | 222.781 | 265.663 | |||
| U-Hp | 0.038 | 0.069 | 0.075 | 0.549 | 0.585 | −0.101 | 0.177 | ||
| Unstandardized Coefficients | Standardized Coefficients | t | p | 95% CI for B | |||||
| B | SE | B | Lower Bound | Upper Bound | |||||
| (Constant) | 211.000 | 14.093 | 14.974 | 0.0001 | 182.787 | 239.272 | |||
| Pl-Hp | 0.741 | 0.229 | 0.400 | 3.237 | 0.002 | 0.282 | 1.000 | ||
| Model 1 (R2 = 0.158) DV: Ox-LDL | Unstandardized Coefficients | p | 95% CI for B | |||
| B | SE | Lower Bound | Upper Bound | |||
| (Constant) | 205.949 | 18.343 | 0.0001 | 168.487 | 243.411 | |
| Pl-Hp | 0.632 | 0.267 | 0.024 | 0.087 | 1.177 | |
| Model 2 (R2 = 0.481) DV: Ox-LDL | Unstandardized Coefficients | p | 95% CI for B | |||
| B | SE | Lower Bound | Lower Bound | |||
| (Constant) | 48.575 | 111.405 | 0.666 | −180.009 | 277.160 | |
| Pl-Hp | 0.614 | 0.281 | 0.038 | 0.037 | 1.191 | |
| Age | 1.988 | 1.287 | 0.134 | −0.653 | 4.629 | |
| Gender | 10.968 | 23.666 | 0.647 | −37.590 | 59.527 | |
| HbA1c | 2.099 | 6.768 | 0.759 | −11.787 | 15.986 | |
| Model 3 (R2 = 0.722) DV: Ox-LDL | Unstandardized Coefficients | p | 95% CI for B | |||
| (Constant) | B | SE | Lower Bound | Upper Bound | ||
| −330.775 | 217.205 | 0.149 | −793.736 | 132.186 | ||
| Pl-Hp | 0.678 | 0.267 | 0.023 | 0.108 | 1.248 | |
| Age | 1.702 | 1.207 | 0.179 | −0.872 | 4.275 | |
| Gender | 47.144 | 25.183 | 0.081 | −6.532 | 100.821 | |
| A1c | 4.438 | 8.425 | 0.606 | −13.519 | 22.395 | |
| Alb | 3.427 | 2.492 | 0.189 | −1.885 | 8.738 | |
| AST | 0.536 | 0.898 | 0.560 | −1.377 | 2.449 | |
| ALT | −4.091 | 2.598 | 0.136 | −9.629 | 1.446 | |
| Chol-t | 68.862 | 25.024 | 0.015 | 15.526 | 122.199 | |
| LDL-c | −43.162 | 27.887 | 0.143 | −102.601 | 16.278 | |
| HDL-c | 44.797 | 33.949 | 0.207 | −27.563 | 117.158 | |
| TAG | −46.197 | 15.593 | 0.010 | −79.432 | −12.962 | |
| SBP | −0.375 | 0.709 | 0.605 | −1.885 | 1.136 | |
| DBP | 1.189 | 1.512 | 0.444 | −2.034 | 4.411 | |
| BMI | −0.247 | 2.502 | 0.923 | −5.580 | 5.087 | |
| CRE | 0.293 | 0.138 | 0.052 | −0.002 | 0.588 | |
| Hs-CRP | −0.568 | 0.354 | 0.130 | −1.323 | 0.187 | |
| Model 4 (R2 = 0.636) DV: Ox-LDL (Constant) | Unstandardized Coefficients | p | 95% CI for B | |||
| B | SE | Lower Bound | Upper Bound | |||
| 275.371 | 67.129 | 0.000 | 138.796 | 411.945 | ||
| Pl-Hp | 0.028 | 0.020 | 0.177 | −0.013 | 0.069 | |
| Age | 0.702 | 0.729 | 0.343 | −0.782 | 2.186 | |
| Gender | −7.756 | 15.163 | 0.612 | −38.606 | 23.095 | |
| A1c | −3.986 | 4.380 | 0.369 | −12.897 | 4.925 | |
| Hs-CRP | −0.542 | 0.217 | 0.018 | −0.984 | −0.101 | |
| IL-6 | −0.034 | 0.751 | 0.964 | −1.562 | 1.493 | |
| TNFα | 0.554 | 0.628 | 0.384 | −0.723 | 1.830 | |
| Adiponectin | −0.556 | 0.127 | 0.000 | −0.814 | −0.298 | |
| Resistin | 0.000 | 0.000 | 0.047 | 0.000 | 0.001 | |
| Adipsin | 0.000 | 0.000 | 0.466 | 0.000 | 0.000 | |
| Model 1 (R2 = 0.174) DV: Ox-LDL | Unstandardized Coefficients | p | 95% CI for B | |||
| M1 | (Constant) | B | SE | Lower Bound | Upper Bound | |
| 212.899 | 15.957 | 0.0001 | 180.698 | 245.101 | ||
| Pl-Hp | 0.736 | 0.248 | 0.005 | 0.237 | 1.236 | |
| Model 2 (R2 = 0.269) DV: Ox-LDL | Unstandardized Coefficients | p | 95% CI for B | |||
| M2 | (Constant) | B | SE | Lower Bound | Upper Bound | |
| 172.918 | 23.074 | 0.0001 | 126.320 | 219.516 | ||
| Pl-Hp | 0.680 | 0.237 | 0.006 | 0.202 | 1.159 | |
| IL-6 | 1.593 | 0.692 | 0.026 | 0.196 | 2.990 | |
| Independent Variable | Unstandardized Coefficients | p | 95% CI for B | |||
| e-GFR * mL/min/1.73 m2 | Categories | B | SE | Lower Bound | Upper Bound | |
| e-GFR ≥ 60 (N = 23 ), R2 = 0.094 | 0.413 | 0.279 | 0.154 | −0.168 | 0.994 | |
| e-GFR = 30–59 (N = 25), R2 = 0.310 | 1.318 | 0.384 | 0.002 | 0.523 | 2.112 | |
| e-GFR < 30 (N = 8), R2 = 0.437 | 2.173 | 0.810 | 0.031 | 0.259 | 4.087 | |
| u-ACR mg/mmoL | u-ACR ≤ 19.95 (N = 13), R2 = 0.000 | −0.028 | 3.061 | 0.993 | −6.698 | 6.642 |
| 19.95 < u-ACR < 190.00 (N = 14), R2 = 0.003 | 0.050 | 0.235 | 0.836 | −0.457 | 0.557 | |
| u-ACR ≥ 190 (N = 28), R2 = 0.039 | −0.011 | 0.011 | 0.306 | −0.033 | 0.011 | |
| s-ACR mg/mmoL | s-ACR < 0.2714 (N = 14), R2 = 0.490 | 2.304 | 0.678 | 0.005 | 0.826 | 3.781 |
| 0.2714 < s-ACR < 0.3649 (N = 15), R2 = 0.285 | 1.000 | 0.447 | 0.041 | 0.051 | 1.000 | |
| 0.3649 < s-ACR < 0.4707 (N = 15), R2 = 0.067 | 0.506 | 0.526 | 0.353 | −0.630 | 1.001 | |
| s-ACR ≥ 0.4707 (N = 13), R2 = 0.178 | 0.505 | 0.327 | 0.151 | −0.215 | 1.000 | |
| IL-6 pg/mL | IL-6 < 16.2481 (N = 14), R2 = 0.490 | 0.209 | 0.737 | 0.781 | −1.395 | 1.814 |
| 16.2481 < IL-6 < 24.7162 (N = 14), R2 = 0.285 | 0.813 | 0.501 | 0.131 | −0.280 | 1.905 | |
| 24.7162 < IL-6 < 32.9315 (N = 15), R2 = 0.067 | 0.481 | 0.421 | 0.274 | −0.428 | 1.391 | |
| IL-6 ≥ 32.9315 (N = 14), R2 = 0.178 | 1.037 | 0.302 | 0.005 | 0.378 | 1.695 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakillah, A.; Al Subaiee, M.; Obeid, K.K.; Soliman, A.F.; Al Otaibi, A.; Mubarak, S.A.S.; Al Mihmadi, Y.A.; Bashir, S.F.; Al Arab, M.; Al Hussaini, A.; et al. Clinical Association of Haptoglobin with Oxidized LDL in Obese Patients with Type 2 Diabetes Mellitus. Nutrients 2025, 17, 2883. https://doi.org/10.3390/nu17172883
Bakillah A, Al Subaiee M, Obeid KK, Soliman AF, Al Otaibi A, Mubarak SAS, Al Mihmadi YA, Bashir SF, Al Arab M, Al Hussaini A, et al. Clinical Association of Haptoglobin with Oxidized LDL in Obese Patients with Type 2 Diabetes Mellitus. Nutrients. 2025; 17(17):2883. https://doi.org/10.3390/nu17172883
Chicago/Turabian StyleBakillah, Ahmed, Maram Al Subaiee, Khamis Khamees Obeid, Ayman Farouk Soliman, Abeer Al Otaibi, Sindiyan Al Shaikh Mubarak, Yara Abdullah Al Mihmadi, Shahinaz Faisal Bashir, Mohammad Al Arab, Arwa Al Hussaini, and et al. 2025. "Clinical Association of Haptoglobin with Oxidized LDL in Obese Patients with Type 2 Diabetes Mellitus" Nutrients 17, no. 17: 2883. https://doi.org/10.3390/nu17172883
APA StyleBakillah, A., Al Subaiee, M., Obeid, K. K., Soliman, A. F., Al Otaibi, A., Mubarak, S. A. S., Al Mihmadi, Y. A., Bashir, S. F., Al Arab, M., Al Hussaini, A., & Al Qarni, A. A. (2025). Clinical Association of Haptoglobin with Oxidized LDL in Obese Patients with Type 2 Diabetes Mellitus. Nutrients, 17(17), 2883. https://doi.org/10.3390/nu17172883

