Vitamin D Supplementation Enhances Cognitive Outcomes in Physically Active Vitamin D-Deficient University Students in the United Arab Emirates: A 10-Week Intervention Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participant Selection
2.2. Research Protocol
2.3. CANTAB Software
2.4. Statistical Analysis
3. Results
3.1. Physiological Results
3.2. Cognitive Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUS | American University of Sharjah |
UAE | United Arab Emirates |
25-OHD | 25-hydroxyvitamin D |
CANTAB | Cambridge Neuropsychological Test Automated Battery |
CVD | Cardiovascular Disease |
PRM | Pattern Recognition Memory |
SWM | Spatial Working Memory |
PAL | Paired Associates Learning |
OTS | One Touch Stocking of Cambridge |
VRM | Verbal Recognition Memory |
PFC | Prefrontal Cortex |
LTP | Long-term potentiation |
WHO | World Health Organization |
References
- Holick, M.F. Vitamin D status: Measurement, interpretation, and clinical application. Ann. Epidemiol. 2009, 19, 73–78. [Google Scholar] [CrossRef]
- Grant, W.B.; Wimalawansa, S.J.; Pludowski, P.; Cheng, R.Z. Vitamin D: Evidence-Based Health Benefits and Recommendations for Population Guidelines. Nutrients 2025, 17, 277. [Google Scholar] [CrossRef]
- Melguizo-Rodríguez, L.; Costela-Ruiz, V.J.; García-Recio, E.; De Luna-Bertos, E.; Ruiz, C.; Illescas-Montes, R. Role of Vitamin D in the Metabolic Syndrome. Nutrients 2021, 13, 830. [Google Scholar] [CrossRef]
- Papandreou, D.; Hamid Zujaja-Tul, N. The Role of Vitamin D in Diabetes and Cardiovascular Disease: An Updated Review of the Literature. Dis. Markers 2015, 2015, 580474. [Google Scholar] [CrossRef] [PubMed]
- Dibaba, D.T. Effect of vitamin D supplementation on serum lipid profiles: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 890–902. [Google Scholar] [CrossRef]
- Wiciński, M.; Adamkiewicz, D.; Adamkiewicz, M.; Śniegocki, M.; Podhorecka, M.; Szychta, P.; Malinowski, B. Impact of Vitamin D on Physical Efficiency and Exercise Performance—A Review. Nutrients 2019, 11, 2826. [Google Scholar] [CrossRef]
- Peeling, P.; Fulton, S.K.; Binnie, M.; Goodman, C. Training environment and Vitamin D status in athletes. Int. J. Sports Med. 2013, 34, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Cannell, J.J.; Hollis, B.W.; Sorenson, M.B.; Taft, T.N.; Anderson, J.J.B. Athletic performance and vitamin D. Med. Sci. Sports Exerc. 2009, 41, 1102–1110. [Google Scholar] [CrossRef]
- Ogan, D.; Pritchett, K. Vitamin D and the athlete: Risks, recommendations, and benefits. Nutrients 2013, 5, 1856–1868. [Google Scholar] [CrossRef]
- Soni, M.; Kos, K.; Lang, I.A.; Jones, K.; Melzer, D.; Llewellyn, D.J. Vitamin D and cognitive function. Scand. J. Clin. Lab. Investig. 2012, 72 (Suppl. 243), 79–82. [Google Scholar]
- Gezen-Ak, D.; Dursun, E. Vitamin D, a Secosteroid Hormone and Its Multifunctional Receptor, Vitamin D Receptor, in Alzheimer’s Type Neurodegeneration. J. Alzheimer’s Dis. 2023, 95, 1273–1299. [Google Scholar] [CrossRef] [PubMed]
- Shea, M.K.; Barger, K.; Dawson-Hughes, B.; Leurgans, S.E.; Fu, X.; James, B.D.; Holland, T.M.; Agarwal, P.; Wang, J.; Matuszek, G.; et al. Brain vitamin D forms, cognitive decline, and neuropathology in community-dwelling older adults. Alzheimer’s Dement. 2023, 19, 2389–2396. [Google Scholar] [CrossRef]
- Dean, A.J.; Bellgrove, M.A.; Hall, T.; Phan, W.M.J.; Eyles, D.W.; Kvaskoff, D.; McGrath, J.J.; Hashimoto, K. Effects of vitamin D supplementation on cognitive and emotional functioning in young adults—A randomised controlled trial. PLoS ONE 2011, 6, e25966. [Google Scholar] [CrossRef] [PubMed]
- Cui, A.; Zhang, T.; Xiao, P.; Fan, Z.; Wang, H.; Zhuang, Y. Global and regional prevalence of vitamin D deficiency in population-based studies from 2000 to 2022: A pooled analysis of 7.9 million participants. Front. Nutr. 2023, 10, 1070808. [Google Scholar] [CrossRef]
- Sampat, N.; Al-Balushi, B.; Al-Subhi, L.; Al-Adawi, S.; Essa, M.M.; Qoronfleh, M.W. Vitamin D: Public Health Status Regional Gulf Region. Int. J. Nutr. Pharmacol. Neurol. Dis. 2019, 9, 117–135. [Google Scholar]
- Dawodu, A.; Absood, G.; Patel, M.; Agarwal, M.; Ezimokhai, M.; Abdulrazzaq, Y.; Khalayli, G. Biosocial factors affecting vitamin D status of women of childbearing age in the United Arab Emirates. J. Biosoc. Sci. 1998, 30, 431–437. [Google Scholar] [CrossRef]
- Saadi, H.F.; Nagelkerke, N.; Benedict, S.; Qazaq, H.S.; Zilahi, E.; Mohamadiyeh, M.K.; Al-Suhaili, A.I. Predictors and relationships of serum 25 hydroxyvitamin D concentration with bone turnover markers, bone mineral density, and vitamin D receptor genotype in Emirati women. Bone 2006, 39, 1136–1143. [Google Scholar] [CrossRef]
- Dawodu, A.; Dawson, K.P.; Amirlak, I.; Kochiyil, J.; Agarwal, M.; Badrinath, P. Diet, clothing, sunshine exposure and micronutrient status of Arab infants and young children. Ann. Trop. Paediatr. 2001, 21, 39–44. [Google Scholar] [CrossRef]
- Al Anouti, F.; Thomas, J.; Abdel-Wareth, L.; Rajah, J.; Grant, W.B.; Haq, A. Vitamin D deficiency and sun avoidance among university students at Abu Dhabi, United Arab Emirates. Dermato-Endocrinology 2011, 3, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Muhairi, S.J.; Mehairi, A.E.; Khouri, A.A.; Naqbi, M.M.; Maskari, F.A.; Al Kaabi, J.; Al Dhaheri, A.S.; Nagelkerke, N.; Shah, S.M. Vitamin D deficiency among healthy adolescents in Al Ain, United Arab Emirates. BMC Public Health 2013, 13, 33. [Google Scholar] [CrossRef]
- Nimri, L.F. Vitamin D status of female UAE college students and associated risk factors. J. Public Health 2018, 40, e284–e290. [Google Scholar] [CrossRef]
- Loney, T.; Aw, T.-C.; Handysides, D.G.; Ali, R.; Blair, I.; Grivna, M.; Shah, S.M.; Sheek-Hussein, M.; El-Sadig, M.; Sharif, A.A.; et al. An analysis of the health status of the United Arab Emirates: The ‘Big 4’ public health issues. Glob. Health Action 2013, 6, 20100. [Google Scholar] [CrossRef]
- Bilezikian, J.P.; Formenti, A.M.; Adler, R.A.; Binkley, N.; Bouillon, R.; Lazaretti-Castro, M.; Marcocci, C.; Napoli, N.; Rizzoli, R.; Giustina, A. Vitamin D: Dosing, levels, form, and route of administration: Does one approach fit all? Rev. Endocr. Metab. Disord. 2021, 22, 1201–1218. [Google Scholar] [CrossRef]
- Pettersen, J.A. Does high dose vitamin D supplementation enhance cognition? A randomized trial in healthy adults. Exp. Gerontol. 2017, 90, 90–97. [Google Scholar] [CrossRef]
- Lee, Y.; Siddiqui, W.J. Cholesterol Levels; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK542294 (accessed on 25 August 2025).
- Millán, J.; Pintó, X.; Muñoz, A.; Zuniga, M.; Rubiés-Prat, J.; Pallardo, L.F.; Masana, L.; Mangas, A.; Hernandez-Mijares, A.; Gonzalez-Santos, P.; et al. Lipoprotein ratios: Physiological significance and clinical usefulness in cardiovascular prevention. Vasc. Health Risk Manag. 2009, 5, 757–765. [Google Scholar]
- AlBlooshi, S.; Al Anouti, F.; Hijazi, R. Knowledge about Vitamin D among Women in the United Arab Emirates. Int. J. Environ. Res. Public Health 2023, 20, 1252. [Google Scholar] [CrossRef]
- Al-Hazzaa, H.M.; Musaiger, A.O. Physical activity patterns and eating habits of adolescents living in major Arab cities. The Arab Teens Lifestyle Study. Saudi Med. J. 2010, 31, 210–211. [Google Scholar] [PubMed]
- Dawson-Hughes, B.; Staten, M.A.; Knowler, W.C.; Nelson, J.; Vickery, E.M.; LeBlanc, E.S.; Neff, L.M.; Park, J.; Pittas, A.G. Intratrial Exposure to Vitamin D and New-Onset Diabetes Among Adults with Prediabetes: A Secondary Analysis from the Vitamin D and Type 2 Diabetes (D2d) Study. Diabetes Care 2020, 43, 2916–2922. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.B.; Boucher, B.J.; Cheng, R.Z.; Pludowski, P.; Wimalawansa, S.J. Vitamin D and Cardiovascular Health: A Narrative Review of Risk Reduction Evidence. Nutrients 2025, 17, 2102. [Google Scholar] [CrossRef]
- World Health Organisation (WHO). WHO Guidelines on Physical Activity and Sedentary Behaviour. 2020. Available online: https://www.who.int/publications/i/item/9789240015128 (accessed on 25 August 2025).
- Dubai Household Health Survey. Preliminary Summary of Results Related to Health Care Financing. Dubai Health Authority. 2009. Available online: https://www.dsc.gov.ae/Publication/DHA%20DHHS%20Health%20Care%20Financing%20February%2006%202011.pdf (accessed on 25 August 2025).
- Ouyang, S.; Li, Q.; Liu, Z.; Yin, Y. The relationship between physical activity levels and serum vitamin D levels varies among children and adolescents in different age groups. Front. Nutr. 2024, 11, 1435396. [Google Scholar] [CrossRef]
- Konradsen, S.; Ag, H.; Lindberg, F.; Hexeberg, S.; Jorde, R. Serum 1,25-dihydroxy vitamin D is inversely associated with body mass index. Eur. J. Nutr. 2008, 47, 87–91. [Google Scholar] [CrossRef]
- Balion, C.; Griffith, L.E.; Strifler, L.; Henderson, M.; Patterson, C.; Heckman, G.; Llewellyn, D.J.; Raina, P. Vitamin D, cognition, and dementia: A systematic review and meta-analysis. Neurology 2012, 79, 1397–1405. [Google Scholar] [CrossRef]
- Darwish, H.; Zeinoun, P.; Ghusn, H.; Khoury, B.; Tamim, H.; Khoury, S.J. Serum 25-hydroxyvitamin D predicts cognitive performance in adults. Neuropsychiatr. Dis. Treat. 2015, 11, 2217–2223. [Google Scholar] [CrossRef]
- Annweiler, C.; Dursun, E.; Féron, F.; Gezen-Ak, D.; Kalueff, A.V.; Littlejohns, T.; Llewellyn, D.J.; Millet, P.; Scott, T.; Tucker, K.L.; et al. Vitamin D and cognition in older adults: Updated international recommendations. J. Intern. Med. 2015, 277, 45–57. [Google Scholar] [CrossRef]
- Oosterwerff, M.M.; Meijnen, R.; Van Schoor, N.M.; Knol, D.L.; Kramer, M.H.H.; Van Poppel, M.N.M.; Lips, P.; Eekhoff, E.M.W. Effect of vitamin D supplementation on physical performance and activity in non-western immigrants. Endocr. Connect. 2014, 3, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Al-Othman, A.; Al-Musharaf, S.; Al-Daghri, N.M.; Krishnaswamy, S.; Yusuf, D.S.; Alkharfy, K.M.; Al-Saleh, Y.; Al-Attas, O.S.; Alokail, M.S.; Moharram, O.; et al. Effect of physical activity and sun exposure on vitamin D status of Saudi children and adolescents. BMC Pediatr. 2012, 12, 92. [Google Scholar] [CrossRef]
- Sadiya, A.; Ahmed, S.M.; Skaria, S.; Abusnana, S. Vitamin D status and its relationship with metabolic markers in persons with obesity and type 2 diabetes in the UAE: A cross-sectional study. J. Diabetes Res. 2014, 2014, 869307. [Google Scholar] [CrossRef] [PubMed]
- Al-Daghri, N.M.; Al-Saleh, Y.; Aljohani, N.; Alokail, M.; Al-Attas, O.; Alnaami, A.M.; Sabico, S.; Alsulaimani, M.; Al-Harbi, M.; Alfawaz, H.; et al. Vitamin D Deficiency and Cardiometabolic Risks: A Juxtaposition of Arab Adolescents and Adults. PLoS ONE 2015, 10, e0131315. [Google Scholar] [CrossRef]
- Erickson, K.I.; Hillman, C.H.; Kramer, A.F. Physical activity, brain, and cognition. Curr. Opin. Behav. Sci. 2015, 4, 27–32. [Google Scholar] [CrossRef]
- Umegaki, H.; Sakurai, T.; Arai, H. Active Life for Brain Health: A Narrative Review of the Mechanism Underlying the Protective Effects of Physical Activity on the Brain. Front. Aging Neurosci. 2021, 13, 761674. [Google Scholar] [CrossRef] [PubMed]
- Northey, J.M.; Cherbuin, N.; Pumpa, K.L.; Smee, D.J.; Rattray, B. Exercise interventions for cognitive function in adults older than 50: A systematic review with meta-analysis. Br. J. Sports Med. 2018, 52, 154–160. [Google Scholar] [CrossRef]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef]
- Kouba, B.R.; Rodrigues, A.L.S. Neuroplasticity-related effects of vitamin D relevant to its neuroprotective effects: A narrative review. Pharmacol. Biochem. Behav. 2024, 245, 173899. [Google Scholar] [CrossRef]
- Neveu, I.; Naveilhan, P.; Jehan, F.; Baudet, C.; Wion, D.; De Luca, H.F.; Brachet, P. 1,25-dihydroxyvitamin D3 regulates the synthesis of nerve growth factor in primary cultures of glial cells. Brain Res. Mol. Brain Res. 1994, 24, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Naveilhan, P.; Neveu, I.; Wion, D.; Brachet, P. 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport 1996, 7, 2171–2175. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, H.A.; Rasouli, J.; Ciric, B.; Rostami, A.; Zhang, G.-X. 1,25-Dihydroxyvitamin D3 enhances neural stem cell proliferation and oligodendrocyte differentiation. Exp. Mol. Pathol. 2015, 98, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Latimer, C.S.; Brewer, L.D.; Searcy, J.L.; Chen, K.-C.; Popović, J.; Kraner, S.D.; Thibault, O.; Blalock, E.M.; Landfield, P.W.; Porter, N.M. Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats. Proc. Natl. Acad. Sci. USA 2014, 111, E4359–E4366. [Google Scholar]
- Kouba, B.R.; Torrá, A.C.N.C.; Camargo, A.; Rodrigues, A.L.S. The antidepressant-like effect elicited by vitamin D3 is associated with BDNF/TrkB-related synaptic protein synthesis. Metab. Brain Dis. 2023, 38, 601–611. [Google Scholar]
- Zanatta, L.; Goulart, P.B.; Gonçalves, R.; Pierozan, P.; Winkelmann-Duarte, E.C.; Woehl, V.M.; Pessoa-Pureur, R.; Silva, F.R.M.B.; Zamoner, A. 1α,25-dihydroxyvitamin D(3) mechanism of action: Modulation of L-type calcium channels leading to calcium uptake and intermediate filament phosphorylation in cerebral cortex of young rats. Biochim. Biophys. Acta 2012, 1823, 1708–1719. [Google Scholar] [CrossRef]
- Bayat, M.; Kohlmeier, K.A.; Haghani, M.; Haghighi, A.B.; Khalili, A.; Bayat, G.; Hooshmandi, E.; Shabani, M. Co-treatment of vitamin D supplementation with enriched environment improves synaptic plasticity and spatial learning and memory in aged rats. Psychopharmacology 2021, 238, 2297–2312. [Google Scholar] [CrossRef]
- Kesby, J.P.; Eyles, D.W.; Burne, T.H.J.; McGrath, J.J. The effects of vitamin D on brain development and adult brain function. Mol. Cell. Endocrinol. 2017, 347, 121–127. [Google Scholar] [CrossRef]
- Petanjek, Z.; Judaš, M.; Šimić, G.; Rašin, M.R.; Uylings, H.B.M.; Rakic, P.; Kostović, I. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc. Natl. Acad. Sci. USA 2011, 108, 13281–13286. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, A.; Rezaeitalab, F.; Farahmand, S.K.; Khorasani, Z.M.; Arabi, S.M.; Bahrami-Taghanaki, H.; Ferns, G.A.; Ghayour-Mobarhan, M. High-dose vitamin D supplementation and improvement in cognitive abilities, insomnia, and daytime sleepiness in adolescent girls. Basic Clin. Neurosci. 2021, 12, 339–348. [Google Scholar] [PubMed]
- Bailey, K.R.F.; Pettersen, J.A. Vitamin D is associated with visual memory in young northern adolescents. Nutr. Neurosci. 2024, 27, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Tokarchuk, A.; Abenavoli, L.; Kobyliak, N.; Khomenko, M.; Revun, M.; Dolgaia, N.; Molochek, N.; Tsyryuk, O.; Garnytska, A.; Konakh, V.; et al. Nutrition program, physical activity and gut microbiota modulation: A randomized controlled trial to promote a healthy lifestyle in students with vitamin D3 deficiency. Minerva Med. 2022, 113, 683–694. [Google Scholar] [CrossRef]
- Heaney, R.P.; Davies, K.M.; Chen, T.C.; Holick, M.F.; Barger-Lux, M.J. Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am. J. Clin. Nutr. 2003, 77, 204–210. [Google Scholar] [CrossRef]
Table | Measure Name | Measure Description | Cognitive Function |
---|---|---|---|
OTS | OTSMDLFC | KEY: OTS Median Latency to First Choice: The median latency, measured from the appearance of the stocking balls until the first box choice was made by the subject. Calculated across all assessed trials where the subject’s first response was correct. | Spatial planning; spatial working memory; executive function |
OTS | OTSPSFC | KEY: OTS Problems Solved on First Choice: The total number of assessed trials where the subject chose the correct answer on their first attempt. Calculated across all assessed trials. | 0 |
PAL | PALFAMS28 | KEY: PAL First Attempt Memory Score: The number of times a subject chose the correct box on their first attempt when recalling the pattern locations. Calculated across assessed trials, omitting the 12 box level to provide a direct comparison to the Recommended Standard | Visual episodic memory; learning |
PAL | PALTEA28 | KEY: PAL Total Errors (Adjusted): The number of times the subject chose the incorrect box for a stimulus on assessment problems (PALTE), plus an adjustment for the estimated number of errors they would have made on any problems, attempts, and recalls they did not reach. This measure allows you to compare performance on errors made across all subjects, regardless of those who terminated early versus those who completed the final stage of the task. In this task variant, PALTEA does not include the 12 box level to provide a direct comparison to the Recommended Standard. | 0 |
SWM | SWMBE4 | KEY: SWM Between errors 4 boxes: The number of times a subject revisits a box in which a token has previously been found. Calculated across all trials with 4 tokens only. | 0 |
SWM | SWMS | KEY: SWM Strategy (6–8 boxes): The number of times a subject begins a new search pattern from the same box they started with previously. If they always begin a search from the same starting point, we infer that the subject is employing a planned strategy for finding the tokens. Therefore, a low score indicates high strategy use (1 = they always begin the search from the same box), a high score indicates that they are beginning their searches from many different boxes. Calculated across assessed trials with 6 tokens or 8 tokens. | Spatial memory; spatial working memory; heuristic strategy; executive function |
VRM | VRMFRDS | KEY: VRM Free Recall: Distinct Stimuli: The total number of distinct words that are correctly recalled from the presentation phase by the subject during the immediate free recall stage. | Verbal memory |
VRM | VRMIRTC | KEY: VRM Immediate Recognition: Total Correct: The total number of target words that the subject correctly recognizes, plus the total number of distractor words that the subject correctly rejects. | 0 |
Physiological Parameters | ||||
---|---|---|---|---|
n = (32) | Group A n = (13) | Group B n = (19) | ||
Vitamin D insufficient/not supplemented | Vitamin D insufficient/supplemented | |||
Mean Values ± SD | Pre | Post | Pre | Post |
BMI (kg/m2) | 25 ± 8 | 24 ± 8 | 25 ± 6 | 24 ± 5 |
VO2 Max (mL/kg/min) | 29 ± 6 | 32 ± 8 (†) | 27 ± 4 | 31 ± 4 (†) |
Waist/Hip Ratio | 0.83 ± 0.10 | 0.82 ± 0.20 | 0.80 ± 0.10 | 0.83 ± 0.10 |
Systolic Blood Pressure (mmHg) | 123 ± 22 | 113 ± 16 | 115 ± 15 | 114 ± 10 |
Diastolic Blood Pressure (mmHg) | 74 ± 9 | 70 ± 10 | 67 ± 10 | 67 ± 8 |
Pulse Rate (bpm) | 82 ± 12 | 83 ± 21 | 76 ± 10 | 81 ± 11 |
Fat Percentage (%) | 26 ± 11 | 26 ± 10 | 32 ± 9 | 31 ± 9 |
Fat mass (kg) | 20 ± 20 | 20 ± 14 | 22 ± 10 | 21 ± 10 |
Muscle mass (kg) | 50 ± 17 | 49 ± 17 | 43 ± 10 | 43 ± 10 |
Biochemical Parameters | |||||
---|---|---|---|---|---|
n = (32) | Group A n = (13) | Group B n = (19) | |||
Vitamin D insufficient/not supplemented | Vitamin D insufficient/supplemented | Reference Ranges [23,25,26] | |||
Mean Values ± SD | Pre | Post | Pre | Post | |
Cholesterol (mg/dL) | 166 ± 27 | 171 ± 17 (†) | 180 ± 30 | 180 ± 30 | Desirable: <200 Borderline: 200–239 High: > or =240 |
Triglycerides (mg/dL) | 70 ± 30 | 90 ± 40 (†) | 61 ± 15 | 63 ± 15 | Normal: <150 High: 200–499 Very High: > or =500 |
LDL-cholesterol (mg/dL) | 95 ± 23 | 106 ± 20 (†) | 107 ± 21 | 112 ± 26 | Optimal: <100 Near or above optimal: 100–129 Borderline High: 130–159 High: 160–189 Very High: > or =190 |
HDL-cholesterol (mg/dL) | 53 ± 14 | 54 ± 12 | 56 ± 13 | 57 ± 11 | Heart Disease Risk Major Risk: <40 Negative Risk: > or =60 |
Total cholesterol/HDL-cholesterol Ratio | 3.3 ± 0.7 | 3.2 ± 0.7 | 3.2 ±0. 6 | 3.2 ± 0.7 | Ideal: Below 3.5 Acceptable: 4.5–5.0 High Risk: Above 5.0 Very High Risk: Above 6.0 |
Vitamin D3 25-OH (ng/mL) (*) | 22 ± 3 | 23 ± 6 | 13 ± 4 | 32 ± 9 (†) | Deficiency: <20 Insufficiency: 21–29 Sufficiency: 30–50 Excess: 50–100 Toxicity: >150 |
Group A (n = 10) | Group B (n = 19) | Between-Group Change Score Comparison | |
---|---|---|---|
Median (Range) | Median (Range) | Mann–Whitney U Test | |
SWMBE6 | U = 98.0, p = 0.93, r = 0.00 | ||
Pre-intervention | 1 (0–6) | 0.83 (0–8) | |
Post-intervention | 1.14 (0–11) | 0.5 (0–10) | |
Wilcoxon signed rank test | (Z = −0.53, p = 0.72) | (Z = −0.1, p = 0.93) | |
OTSMDLFC | U = 94.0, p = 0 .81, r = 0.00 | ||
Pre-intervention | 10,700 (5700–28,600) | 11,200 (5282–21,131) | |
Post-intervention | 10,900 (6201–15,377) | 8000 (4189–15,725) | |
Wilcoxon signed rank test | (Z = −1.38, p = 0.19) | (Z = −2.58, p = 0.01) | |
OTSPSFC | U = 93.0, p = 0.77, r = 0.00 | ||
Pre-intervention | 12 (3–14) | 11 (1–14) | |
Post-intervention | 13 (10–15) | 13 (7–15) | |
Wilcoxon signed rank test | (Z = −1.97, p = 0.06) | (Z = −2.14, p = 0.03) | |
PALFAMS28 | U = 52.5, p = 0 .03, r = 0.15 | ||
Pre-intervention | 15 (9–19) | 17 (9–20) | |
Post-intervention | 17 (14–20) | 18 (14–20) | |
Wilcoxon signed rank test | (Z = −2.83, p = 0.002) | (Z = −1.38, p = 0.18) | |
PALTEA28 | U = 62.0, p = 0 .10, r = 0.10 | ||
Pre-intervention | 5.8 (1–15) | 2.8 (0–18) | |
Post-intervention | 1.1 (0–4) | 1.2 (0–21) | |
Wilcoxon signed rank test | (Z = −2.67, p = 0.004) | (Z = −1.5, p = 0.14) | |
PRMPCD | U = 88.0, p = 0 .60, r = 0.01 | ||
Pre-intervention | 92 (67–100) | 97 (83–100) | |
Post-intervention | 92 (50–100) | 97 (58–100) | |
Wilcoxon signed rank test | (Z = −0.09, p = 1.00) | (Z = −0.68, p = 0.53) | |
PRMPCI | U = 66.0, p = 0.08, r = 0.10 | ||
Pre-intervention | 96 (92–100) | 99 (92–100) | |
Post-intervention | 98 (83–100) | 99 (50–100) | |
Wilcoxon signed rank test | (Z = −1.0, p = 0.53) | (Z = −0.65, p = 0.66) | |
SWMBE12 | U = 84.0, p = 0 .49, r =0.02 | ||
Pre-intervention | 30 (12–45) | 18 (0–49) | |
Post-intervention | 20 (7–47) | 18 (0–48) | |
Wilcoxon signed rank test | (Z = −0.77, p = 0.49) | (Z = −0.02, p = 0.99) | |
SWMBE4 | U = 64.5, p = 0.07, r = 0.12 | ||
Pre-intervention | 0.4 (0–2) | 0.4 (0–4) | |
Post-intervention | 0.4 (0–3) | 0.1 (0–2) | |
Wilcoxon signed rank test | (Z = 0.0, p = 1.00) | (Z = −2.53, p = 0.02) | |
SWMBE468 | U = 91.0, p = 0 .71, r = 0.01 | ||
Pre-intervention | 11 (0–26) | 4.6 (0–25) | |
Post-intervention | 4 (0–29) | 3.5 (0–29) | |
Wilcoxon signed rank test | (Z = −1.3, p = 0.22) | (Z = −0.94, p = 0.36) | |
SWMBE8 | U = 82.0, p = 0.44, r = 0.02 | ||
Pre-intervention | 10 (0–18) | 3 (0–19) | |
Post-intervention | 4 (0–15) | 3 (0–24) | |
Wilcoxon signed rank test | (Z = −1.61, p = 0.12) | (Z = −0.51, p = 0.63) | |
SWMS | U = 63.5, p = 0.11, r = 0.10 | ||
Pre-intervention | 8 (2–11) | 7 (2–11) | |
Post-intervention | 8 (2–10) | 6 (2–10) | |
Wilcoxon signed rank test | (Z = −0.1, p = 1.00) | (Z = −2.07, p = 0.04) | |
VRMDRTC | U = 91.5, p = 0.72, r = 0.00 | ||
Pre-intervention | 34 (24–36) | 32 (28–36) | |
Post-intervention | 34 (30–36) | 33 (29–36) | |
Wilcoxon signed rank test | (Z = −0.57, p = 0.66) | (Z = −1.2, p = 0.26) | |
VRMFRDS | U = 75.0, p = 0.28, r = 0.04 | ||
Pre-intervention | 6.3 (5–12) | 6.3 (0–13) | |
Post-intervention | 7.2 (5–13) | 9 (5–15) | |
Wilcoxon signed rank test | (Z = −0.86, p = 0.52) | (Z = −2.09, p = 0.03) | |
VRMIRTC | U = 86.0, p = 0.54, r = 0.01 | ||
Pre-intervention | 32 (26–35) | 30 (26–36) | |
Post-intervention | 34 (30–35) | 33 (29–36) | |
Wilcoxon signed rank test | (Z = −1.67, p = 0.01) | (Z = −3.061, p = 0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalibalta, S.; Khalil, R.; Baghdan, R.; Sekian, S.; Davison, G.W. Vitamin D Supplementation Enhances Cognitive Outcomes in Physically Active Vitamin D-Deficient University Students in the United Arab Emirates: A 10-Week Intervention Study. Nutrients 2025, 17, 2869. https://doi.org/10.3390/nu17172869
Dalibalta S, Khalil R, Baghdan R, Sekian S, Davison GW. Vitamin D Supplementation Enhances Cognitive Outcomes in Physically Active Vitamin D-Deficient University Students in the United Arab Emirates: A 10-Week Intervention Study. Nutrients. 2025; 17(17):2869. https://doi.org/10.3390/nu17172869
Chicago/Turabian StyleDalibalta, Sarah, Reem Khalil, Rami Baghdan, Sylvie Sekian, and Gareth W. Davison. 2025. "Vitamin D Supplementation Enhances Cognitive Outcomes in Physically Active Vitamin D-Deficient University Students in the United Arab Emirates: A 10-Week Intervention Study" Nutrients 17, no. 17: 2869. https://doi.org/10.3390/nu17172869
APA StyleDalibalta, S., Khalil, R., Baghdan, R., Sekian, S., & Davison, G. W. (2025). Vitamin D Supplementation Enhances Cognitive Outcomes in Physically Active Vitamin D-Deficient University Students in the United Arab Emirates: A 10-Week Intervention Study. Nutrients, 17(17), 2869. https://doi.org/10.3390/nu17172869