High Polyunsaturated Fatty Acid Intake Attenuates the Genetic Risk of Higher Waist Circumference in a Sri Lankan Adult Population
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Anthropometric Measures
2.3. Biochemical and Clinical Measures
2.4. Dietary Assessment
2.5. SNP Selection and Genotyping
2.6. Statistical Analysis
3. Results
3.1. Association of Anthropometric, Biochemical and Dietary Characteristics with Central Obesity
3.2. Association of GRS with Anthropometric, Biochemical and Dietary Characteristics
3.3. Interaction Between 10 SNP Metabolic GRS and Dietary Factors on Anthropometric and Biochemical Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body Mass Index |
WC | Waist Circumference |
GRS | Genetic Risk Score |
PUFA | Polyunsaturated Fatty Acids |
SNP | Single Nucleotide Polymorphism |
FFQ | Food Frequency Questionnaire |
SPSS | Statistical Package for the Social Sciences |
HWE | Hardy–Weinberg Equilibrium |
HDL | High-Density Lipoprotein |
LDL | Low-Density Lipoprotein |
VLDL | Very-Low-Density Lipoprotein |
PPAR | Peroxisome Proliferator-Activated Receptor |
SREBP | Sterol Regulatory Element-Binding Protein |
KASP | Kompetitive Allele-Specific PCR |
GOOD | Genetics of Obesity and Diabetes |
CAPN10 | Calpain 10 |
KCNJ11 | Potassium Inwardly-Rectifying Channel Subfamily J Member 11 |
TCF7L2 | Transcription Factor 7 Like 2 |
FTO | Fat Mass and Obesity Associated |
MC4R | Melanocortin-4 Receptor |
References
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology Management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef]
- Mahadevan, M.; Bose, M.; Gawron, K.M.; Blumberg, R. Metabolic Syndrome and Chronic Disease Risk in South Asian Immigrants: A Review of Prevalence, Factors, and Interventions. Healthcare 2023, 11, 720. [Google Scholar] [CrossRef]
- Chew, N.W.; Ng, C.H.; Tan, D.J.H.; Kong, G.; Lin, C.; Chin, Y.H.; Lim, W.H.; Huang, D.Q.; Quek, J.; Fu, C.E.; et al. The global burden of metabolic disease: Data from 2000 to 2019. Cell Metab. 2023, 35, 414–428.e3. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, S.; Ali, A.; Asghar, M.; Hussain, I.; Sarwar, A. Prevalence of type 2 diabetes and pre-diabetes in Sri Lanka: A systematic review and meta-analysis. BMJ Open 2023, 13, e068445. [Google Scholar] [CrossRef]
- Katulanda, P.; Jayawardena, M.A.R.; Sheriff, M.H.R.; Constantine, G.R.; Matthews, D.R. Prevalence of overweight and obesity in Sri Lankan adults. Obes. Rev. 2010, 11, 751–756. [Google Scholar] [CrossRef]
- Jayawardana, N.W.I.A.; Jayalath, W.A.T.A.; Madhujith, W.M.T.; Ralapanawa, U.; Jayasekera, R.S.; Alagiyawanna, S.A.S.B.; Bandara, A.M.K.R.; Kalupahana, N.S. Lifestyle factors associated with obesity in a cohort of males in the central province of Sri Lanka: A cross-sectional descriptive study. BMC Public Health 2017, 17, 27. [Google Scholar] [CrossRef]
- Illangasekera, Y.A.; Kumarasiri, R.P.; Fernando, D.J.; Dalton, C.F. Association of FTO and near MC4R variants with obesity measures in urban and rural dwelling Sri Lankans. Obes. Res. Clin. Pract. 2016, 10 (Suppl. S1), S117–S124. [Google Scholar] [CrossRef]
- Wickramasinghe, V.; Arambepola, C.; Bandara, P.; Abeysekera, M.; Kuruppu, S.; Dilshan, P.; Dissanayake, B. Distribution of obesity-related metabolic markers among 5–15 year old children from an urban area of Sri Lanka. Ann. Hum. Biol. 2013, 40, 168–174. [Google Scholar] [CrossRef]
- Surendran, S.; Alsulami, S.; Lankeshwara, R.; Jayawardena, R.; Wetthasinghe, K.; Sarkar, S.; Ellahi, B.; Lovegrove, J.A.; Anthony, D.J.; Vimaleswaran, K.S. A genetic approach to examine the relationship between vitamin B12 status and metabolic traits in a South Asian population. Int. J. Diabetes Dev. Ctries. 2019, 40, 21–31. [Google Scholar] [CrossRef]
- Surendran, S.; Adaikalakoteswari, A.; Saravanan, P.; Shatwaan, I.A.; Lovegrove, J.A.; Vimaleswaran, K.S. An update on vitamin B12-related gene polymorphisms and B12 status. Genes Nutr. 2018, 13, 2. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, R.; Swaminathan, S.; Byrne, N.M.; Soares, M.J.; Katulanda, P.; PHills, A.P. Development of a food frequency questionnaire for Sri Lankan adults. Nutr. J. 2012, 11, 63. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, R.; Byrne, N.M.; Soares, M.J.; Katulanda, P.; Hills, A.P. Food consumption of Sri Lankan adults: An appraisal of serving characteristics. Public Health Nutr. 2012, 16, 653–658. [Google Scholar] [CrossRef]
- Yan, S.-T.; Li, C.-L.; Tian, H.; Li, J.; Pei, Y.; Liu, Y.; Gong, Y.-P.; Fang, F.-S.; Sun, B.-R. Association of calpain-10 rs2975760 polymorphism with type 2 diabetes mellitus: A meta-analysis. Int. J. Clin. Exp. Med. 2014, 7, 3800–3807. [Google Scholar]
- Baier, L.J.; Permana, P.A.; Yang, X.; Pratley, R.E.; Hanson, R.L.; Shen, G.-Q.; Mott, D.; Knowler, W.C.; Cox, N.J.; Horikawa, Y.; et al. A calpain-10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance. J. Clin. Investig. 2000, 106, R69–R73. [Google Scholar] [CrossRef]
- Lapik, I.A.; Ranjit, R.; Galchenko, A.V. Impact of KCNJ11 rs5219, UCP2 rs659366, and MTHFR rs1801133 Polymorphisms on Type 2 Diabetes: A Cross-Sectional Study. Rev. Diabet. Stud. 2021, 17, 21–29. [Google Scholar] [CrossRef]
- Grant, S.F.A.; Thorleifsson, G.; Reynisdottir, I.; Benediktsson, R.; Manolescu, A.; Sainz, J.; Helgason, A.; Stefansson, H.; Emilsson, V.; Helgadottir, A.; et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 2006, 38, 320–323. [Google Scholar] [CrossRef]
- Bride, L.; Naslavsky, M.; Yamamoto, G.L.; Scliar, M.; Pimassoni, L.H.; Aguiar, P.S.; de Paula, F.; Wang, J.; Duarte, Y.; Passos-Bueno, M.R.; et al. TCF7L2 rs7903146 polymorphism association with diabetes and obesity in an elderly cohort from Brazil. PeerJ 2021, 9, e11349. [Google Scholar] [CrossRef] [PubMed]
- Cropano, C.; Santoro, N.; Groop, L.; Dalla Man, C.; Cobelli, C.; Galderisi, A.; Kursawe, R.; Pierpont, B.; Goffredo, M.; Caprio, S. The rs7903146 Variant in the TCF7L2 Gene Increases the Risk of Prediabetes/Type 2 Diabetes in Obese Adolescents by Impairing β-Cell Function and Hepatic Insulin Sensitivity. Diabetes Care 2017, 40, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Scuteri, A.; Sanna, S.; Chen, W.M.; Uda, M.; Albai, G.; Strait, J.; Najjar, S.; Nagaraja, R.; Orrú, M.; Usala, G.; et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007, 3, e115. [Google Scholar] [CrossRef]
- Steemburgo, T.; Azevedo, M.J.; Gross, J.L.; Milagro, F.I.; Campión, J.; Martínez, J.A. The rs9939609 polymorphism in the FTO gene is associated with fat and fiber intakes in patients with type 2 diabetes. J. Nutr. Nutr. 2013, 6, 97–106. [Google Scholar] [CrossRef]
- Vimaleswaran, K.S.; Bodhini, D.; Lakshmipriya, N.; Ramya, K.; Anjana, R.M.; Sudha, V.; Lovegrove, J.A.; Kinra, S.; Mohan, V.; Radha, V. Interaction between FTO gene variants and lifestyle factors on metabolic traits in an Asian Indian population. Nutr. Metab. 2016, 13, 39. [Google Scholar] [CrossRef] [PubMed]
- Dastgheib, S.A.; Bahrami, R.; Setayesh, S.; Salari, S.; Mirjalili, S.R.; Noorishadkam, M.; Sadeghizadeh-Yazdi, J.; Akbarian, E.; Neamatzadeh, H. Evidence from a meta-analysis for association of MC4R rs17782313 and FTO rs9939609 polymorphisms with susceptibility to obesity in children. Diabetes Metab. Syndr. 2021, 15, 102234. [Google Scholar] [CrossRef]
- Bakhashab, S.; Filimban, N.; Altall, R.M.; Nassir, R.; Qusti, S.Y.; Alqahtani, M.H.; Abuzenadah, A.M.; Dallol, A. The Effect Sizes of PPARγ rs1801282, FTO rs9939609, and MC4R rs2229616 Variants on Type 2 Diabetes Mellitus Risk among the Western Saudi Population: A Cross-Sectional Prospective Study. Genes 2020, 11, 98. [Google Scholar] [CrossRef]
- Jensen, D.P.; Urhammer, S.A.; Eiberg, H.; Borch-Johnsen, K.; Jørgensen, T.; Hansen, T.; Pedersen, O. Variation in CAPN10 in relation to type 2 diabetes, obesity and quantitative metabolic traits: Studies in 6018 whites. Mol. Genet. Metab. 2006, 89, 360–367. [Google Scholar] [CrossRef]
- Salanti, G.; Amountza, G.; ENtzani, E.; AIoannidis, J.P. Hardy–Weinberg equilibrium in genetic association studies: An empirical evaluation of reporting, deviations, and power. Eur. J. Hum. Genet. 2005, 13, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Heckman, M.G.; Davis, J.M.; Crowson, C.S. Post Hoc Power Calculations: An Inappropriate Method for Interpreting the Findings of a Research Study. J. Rheumatol. 2022, 49, 867–870. [Google Scholar] [CrossRef] [PubMed]
- Cauchi, S.; El Achhab, Y.; Choquet, H.; Dina, C.; Krempler, F.; Weitgasser, R.; Nejjari, C.; Patsch, W.; Chikri, M.; Meyre, D.; et al. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: A global meta-analysis. J. Mol. Med. 2007, 85, 777–782. [Google Scholar] [CrossRef]
- Lyssenko, V.; Lupi, R.; Marchetti, P.; Del Guerra, S.; Orho-Melander, M.; Almgren, P.; Sjögren, M.; Ling, C.; Eriksson, K.-F.; Lethagen, A.-L.; et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J. Clin. Investig. 2007, 117, 2155–2163. [Google Scholar] [CrossRef]
- Loos, R.J.F.; Lindgren, C.M.; Li, S.; Wheeler, E.; Zhao, J.H.; Prokopenko, I.; Inouye, M.; Freathy, R.M.; Attwood, A.P.; Beckmann, J.S.; et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat. Genet. 2008, 40, 768–775. [Google Scholar] [CrossRef]
- Bineid, M.M.; Ventura, E.F.; Samidoust, A.; Radha, V.; Anjana, R.M.; Sudha, V.; Walton, G.E.; Mohan, V.; Vimaleswaran, K.S. A Systematic Review of the Effect of Gene–Lifestyle Interactions on Metabolic-Disease-Related Traits in South Asian Populations. Nutr. Rev. 2024, 83, 1061–1082. [Google Scholar] [CrossRef]
- Aranceta, J.; Pérez-Rodrigo, C. Recommended dietary reference intakes, nutritional goals and dietary guidelines for fat and fatty acids: A systematic review. Br. J. Nutr. 2012, 107 (Suppl. S2), S8–S22. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Innes, J.K.; Calder, P.C. Omega-6 fatty acids and inflammation. Prostaglandins Leukot. Essent. Fat. Acids 2018, 132, 41–48. [Google Scholar] [CrossRef]
- Calder, P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2015, 1851, 469–484. [Google Scholar] [CrossRef]
- Kalupahana, N.S.; Goonapienuwala, B.L.; Moustaid-Moussa, N. Omega-3 Fatty Acids and Adipose Tissue: Inflammation and Browning. Annu. Rev. Nutr. 2020, 40, 25–49. [Google Scholar] [CrossRef]
- Clarke, S.D. Polyunsaturated fatty acid regulation of gene transcription: A mechanism to improve energy balance and insulin resistance. Br. J. Nutr. 2000, 83 (Suppl. S1), S59–S66. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, K.A.; Barroso, I. The genetics of obesity: FTO leads the way. Trends Genet. 2010, 26, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Cone, R.D. The Central Melanocortin System and Energy Homeostasis. Trends Endocrinol. Metab. 1999, 10, 211–216. [Google Scholar] [CrossRef]
- Patel, Y.M. Lane MD: Role of calpain in adipocyte differentiation. Proc. Natl. Acad. Sci. USA 1999, 96, 1279–1284. [Google Scholar] [CrossRef] [PubMed]
- Nichols, C.G. KATP channels as molecular sensors of cellular metabolism. Nature 2006, 440, 470–476. [Google Scholar] [CrossRef]
- Hinney, A.; Bettecken, T.; Tarnow, P.; Brumm, H.; Reichwald, K.; Lichtner, P.; Scherag, A.; Nguyen, T.T.; Schlumberger, P.; Rief, W.; et al. Prevalence, spectrum, and functional characterization of melanocortin-4 receptor gene mutations in a representative population-based sample and obese adults from Germany. J. Clin. Endocrinol. Metab. 2006, 91, 1761–1769. [Google Scholar] [CrossRef] [PubMed]
- Abeywardena, M.Y.; Patten, G.S. Role of ω3 long-chain polyunsaturated fatty acids in reducing cardio-metabolic risk factors. Endocr. Metab. Immune Disord.-Drug Targets 2011, 11, 232–246. [Google Scholar] [CrossRef]
- Phillips, C.M.; Tierney, A.C.; Roche, H.M. Gene-nutrient interactions in the metabolic syndrome. J. Nutr. Nutr. 2008, 1, 136–151. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.M. Nutrigenetics and metabolic disease: Current status and implications for personalised nutrition. Nutrients 2013, 5, 32–57. [Google Scholar] [CrossRef]
- Eyres, L.; Eyres, M.F.; Chisholm, A.; Brown, R.C. Coconut oil consumption and cardiovascular risk factors in humans. Nutr. Rev. 2016, 74, 267–280. [Google Scholar] [CrossRef]
- Neelakantan, N.; Seah, J.Y.H.; van Dam, R.M. The Effect of Coconut Oil Consumption on Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis of Clinical Trials. Circulation 2020, 141, 803–814. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines Approved by the Guidelines Review Committee. In Saturated Fatty Acid and Trans-Fatty Acid Intake for Adults and Children: WHO Guideline; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Misra, A.; Singhal, N.; Sivakumar, B.; Bhagat, N.; Jaiswal, A.; Khurana, L. Nutrition transition in India: Secular trends in dietary intake and their relationship to diet-related non-communicable diseases. J. Diabetes 2011, 3, 278–292. [Google Scholar] [CrossRef] [PubMed]
- Isharwal, S.; Misra, A.; Wasir, J.S.; Nigam, P. Diet & insulin resistance: A review & Asian Indian perspective. Indian J. Med. Res. 2009, 129, 485–499. [Google Scholar] [PubMed]
Parameter | Mean ± SE | p Value | |
---|---|---|---|
Non-Centrally Obese (n = 54) | Centrally Obese (n = 51) | ||
Age (years) | 36.87 ± 0.93 | 39.25 ± 0.97 | 0.078 |
BMI (kg/m2) | 22.43 ± 0.42 | 26.81 ± 2.95 | <0.001 |
Waist Circumference (cm) | 86.25 ± 1.99 | 80.34 ± 2.95 | 0.039 |
Hip Circumference (cm) | 93.50 ± 2.04 | 87.85 ± 2.85 | 0.054 |
Waist Hip Ratio | 0.92 ± 0.01 | 0.91 ± 0.18 | 0.297 |
Fat Mass (kg/m2) | 23.84 ± 0.86 | 30.51 ± 0.97 | <0.001 |
Systolic Blood Pressure (mm Hg) | 116.96 ± 1.99 | 123.09 ± 2.20 | 0.019 |
Diastolic Blood Pressure (mm Hg) | 74.74 ± 2.61 | 74.92 ± 1.80 | 0.367 |
Cholesterol (mg/dL) | 202.79 ± 4.89 | 208 ± 4.69 | 0.208 |
High-Density Lipoprotein (mg/dL) | 42.81 ± 1.19 | 42.11 ± 1.09 | 0.360 |
Low-Density Lipoprotein (mg/dL) | 132.24 ± 4.23 | 135.45 ± 3.89 | 0.289 |
Very-Low-Density Lipoprotein (mg/dL) | 28.57 ± 2.71 | 30.78 ± 2.37 | 0.163 |
Glucose (mg/dL) | 83.40 ± 0.91 | 89.92 ± 4.33 | 0.051 |
Insulin (pmol/L) | 54.86 ± 5.55 | 81.88 ± 7.72 | <0.001 |
HbA1c (%) | 5.33 ± 0.06 | 5.52 ± 0.13 | 0.090 |
Total Energy (kcal) | 2048.93 ± 60.54 | 2130.23 ± 66.23 | 0.218 |
Protein (%) | 58.78 ± 2.61 | 59.44 ± 2.42 | 0.419 |
Carbohydrate (%) | 355.74 ± 10.16 | 365.02 ± 11.36 | 0.319 |
Fat (%) | 50.06 ± 2.85 | 52.93 ± 2.70 | 0.378 |
Fibre (g/day) | 16.36 ± 1.07 | 16.88 ± 1.86 | 0.932 |
PUFA (g/day) | 3.35 ± 0.23 | 3.40 ± 0.26 | 0.717 |
Genetic Risk Score | 0.48 ± 0.06 | 0.56 ± 0.07 | 0.616 |
Variables | GRS Groups | p Value | |
---|---|---|---|
Low Risk (n = 50) | High Risk (n = 55) | ||
Mean ± SE | |||
BMI (kg/m2) | 25.49 ± 0.65 | 23.71 ± 0.48 | 0.581 |
Waist Circumference (cm) | 80.95 ± 2.80 | 85.60 ± 2.22 | 0.105 |
Hip Circumference (cm) | 89.01 ± 2.71 | 92.34 ± 2.27 | 0.191 |
Waist Hip Ratio | 0.90 ± 0.14 | 0.93 ± 0.01 | 0.528 |
Fat Mass (kg/m2) | 28.68 ± 1.17 | 25.63 ± 0.84 | 0.371 |
Systolic Blood Pressure (mm Hg) | 122.18 ± 2.38 | 117.90 ± 1.86 | 0.874 |
Diastolic Blood Pressure (mm Hg) | 75.84 ± 1.52 | 73.90 ± 2.72 | 0.500 |
Cholesterol (mg/dL) | 206.34 ± 5.18 | 204.72 ± 4.48 | 0.936 |
High-Density Lipoprotein (mg/dL) | 42.46 ± 1.17 | 42.49 ± 1.12 | 0.213 |
Low-Density Lipoprotein (mg/dL) | 135.51 ± 4.63 | 132.24 ± 3.52 | 0.954 |
Very-Low-Density Lipoprotein (mg/dL) | 28.36 ± 2.35 | 30.80 ± 2.71 | 0.218 |
Glucose (mg/dL) | 90.34 ± 4.41 | 83.14 ± 0.87 | 0.577 |
Insulin (pmol/L) | 76.16 ± 7.54 | 60.55 ± 6.18 | 0.135 |
HbA1c (%) | 5.567 ± 0.13 | 5.29 ± 0.05 | 0.267 |
Total Energy (kcal) | 2058.13 ± 66.64 | 2115.96 ± 60.52 | 0.888 |
Protein (%) | 59.79 ± 2.36 | 58.48 ± 2.65 | 0.407 |
Carbohydrate (%) | 355.29 ± 10.95 | 364.76 ± 10.56 | 0.376 |
Fat (%) | 50.21 ± 2.58 | 52.58 ± 2.93 | 0.839 |
Fibre (g/day) | 16.16 ± 1.13 | 17.02 ± 1.12 | 0.530 |
PUFA (g/day) | 3.34 ± 0.23 | 3.41 ± 0.25 | 0.069 |
Parameters | Total Energy (kcal) | Protein (%) | Carbohydrate (%) | Fat (%) | Fibre (g) | PUFA (g) |
---|---|---|---|---|---|---|
BMI (kg/m2) | 0.615 | 0.693 | 0.572 | 0.586 | 0.687 | 0.478 |
Waist Circumference (cm) | 0.016 | 0.025 | 0.004 | 0.158 | 0.011 | <0.001 |
Waist Hip Ratio | 0.558 | 0.253 | 0.545 | 0.262 | 0.255 | 0.305 |
Fat Mass (kg/m2) | 0.637 | 0.268 | 0.424 | 0.596 | 0.790 | 0.907 |
Systolic Blood Pressure (mm Hg) | 0.320 | 0.373 | 0.079 | 0.719 | 0.241 | 0.161 |
Diastolic Blood Pressure (mm Hg) | 0.894 | 0.516 | 0.880 | 0.904 | 0.779 | 0.970 |
Cholesterol (mg/dL) | 0.337 | 0.669 | 0.289 | 0.350 | 0.243 | 0.957 |
High-Density Lipoprotein (mg/dL) | 0.178 | 0.265 | 0.464 | 0.097 | 0.358 | 0.606 |
Low-Density Lipoprotein (mg/dL) | 0.231 | 0.416 | 0.303 | 0.088 | 0.082 | 0.618 |
Very-Low-Density Lipoprotein (mg/dL) | 0.489 | 0.863 | 0.406 | 0.892 | 0.894 | 0.665 |
Glucose (mg/dL) | 0.956 | 0.872 | 0.861 | 0.973 | 0.996 | 0.077 |
Insulin (pmol/L) | 0.324 | 0.069 | 0.302 | 0.127 | 0.190 | 0.289 |
HbA1c (%) | 0.999 | 0.997 | 0.999 | 0.989 | 0.999 | 0.415 |
Central Obesity | 0.222 | 0.452 | 0.273 | 0.215 | 0.501 | 0.339 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sekar, P.; Lovegrove, J.A.; Surendran, S.; Vimaleswaran, K.S. High Polyunsaturated Fatty Acid Intake Attenuates the Genetic Risk of Higher Waist Circumference in a Sri Lankan Adult Population. Nutrients 2025, 17, 2866. https://doi.org/10.3390/nu17172866
Sekar P, Lovegrove JA, Surendran S, Vimaleswaran KS. High Polyunsaturated Fatty Acid Intake Attenuates the Genetic Risk of Higher Waist Circumference in a Sri Lankan Adult Population. Nutrients. 2025; 17(17):2866. https://doi.org/10.3390/nu17172866
Chicago/Turabian StyleSekar, Padmini, Julie A. Lovegrove, Shelini Surendran, and Karani Santhanakrishnan Vimaleswaran. 2025. "High Polyunsaturated Fatty Acid Intake Attenuates the Genetic Risk of Higher Waist Circumference in a Sri Lankan Adult Population" Nutrients 17, no. 17: 2866. https://doi.org/10.3390/nu17172866
APA StyleSekar, P., Lovegrove, J. A., Surendran, S., & Vimaleswaran, K. S. (2025). High Polyunsaturated Fatty Acid Intake Attenuates the Genetic Risk of Higher Waist Circumference in a Sri Lankan Adult Population. Nutrients, 17(17), 2866. https://doi.org/10.3390/nu17172866