Association Between Pro-Inflammatory Potential of Diet and Inflammatory Parameters in a Group of Patients with Inflammatory Bowel Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Blood Analysis
2.3. Dietary Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaplan, G.G. The rising burden of inflammatory bowel disease in Poland. Pol. Arch. Intern. Med. 2022, 132, 16257. [Google Scholar] [CrossRef] [PubMed]
- Zagórowicz, E.; Walkiewicz, D.; Kucha, P.; Perwieniec, J.; Maluchnik, M.; Wieszczy, P.; Reguła, J. Nationwide data on epidemiology of inflammatory bowel disease in Poland between 2009 and 2020. Pol. Arch. Intern. Med. 2022, 132, 16194. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.; Shi, H.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan Sung, J.J.Y.; et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 2018, 390, 2769–2778, Erratum in Lancet 2020, 396, e56. https://doi.org/10.1016/S0140-6736(20)32028-6. [Google Scholar] [CrossRef] [PubMed]
- Devkota, S.; Chang, E.B. Interactions between diet, bile acid metabolism, gut microbiota, and inflammatory bowel diseases. Dig. Dis. 2015, 33, 351–356. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bischoff, S.C.; Escher, J.; Hébuterne, X.; Kłęk, S.; Krznaric, Z.; Schneider, S.; Shamir, R.; Stardelova, K.; Wierdsma, N.; Wiskin, A.E.; et al. ESPEN practical guideline: Clinical Nutrition in inflammatory bowel disease. Clin. Nutr. 2020, 39, 632–653. [Google Scholar] [CrossRef] [PubMed]
- Peters, V.; Bolte, L.; Schuttert, E.M.; Andreu-Sánchez, S.; Dijkstra, G.; Weersma, R.K.; Campmans-Kuijpers, M.J.E. Western and Carnivorous Dietary Patterns are Associated with Greater Likelihood of IBD Development in a Large Prospective Population-based Cohort. J. Crohns Colitis 2022, 16, 931–939. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Spooren, C.E.; Pierik, M.J.; Zeegers, M.P.; Feskens, E.J.; Masclee, A.A.; Jonkers, D.M. Review article: The association of diet with onset and relapse in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2013, 38, 1172–1187. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.A.; Fiuza, J.G.; Rodrigues, C.A.M.; Craveiro, N.; Gil Pereira, J.; Sousa, P.C.R.F.; Martins, D.C.P.; Cancela, E.M.; Ministro Dos Santos, M.P. Inflammatory bowel disease and cardiac function: A systematic review of literature with meta-analysis. Therap. Adv. Gastroenterol. 2024, 17, 17562848241299534. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Faghfoori, Z.; Shakerhosseini, R.; Navai, L.; Somi, M.H.; Nikniaz, Z.; Abadi, A. Effects of an Oral Supplementation of Germinated Barley Foodstuff on Serum CRP Level and Clinical Signs in Patients with Ulcerative Colitis. Health Promot. Perspect. 2014, 4, 116–121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pieczyńska, J.; Płaczkowska, S.; Pawlik-Sobecka, L.; Kokot, I.; Sozański, R.; Grajeta, H. Association of Dietary Inflammatory Index with Serum IL-6, IL-10, and CRP Concentration during Pregnancy. Nutrients 2020, 12, 2789. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hou, J.K.; Abraham, B.; El-Serag, H. Dietary intake and risk of developing inflammatory bowel disease: A systematic review of the literature. Am. J. Gastroenterol. 2011, 106, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Zhuang, X.; Zhao, M.; Zhuo, S.; Li, X.; Ma, R.; Li, N.; Liu, C.; Zhu, Y.; Tang, C.; et al. Index-Based Dietary Patterns and Inflammatory Bowel Disease: A Systematic Review of Observational Studies. Adv. Nutr. 2021, 12, 2288–2300. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bakhtiari, Z.; Mahdavi, R.; Masnadi Shirazi, K.; Nikniaz, Z. Association between dietary inflammatory index and disease activity in patients with ulcerative colitis. Sci. Rep. 2024, 14, 21679. [Google Scholar] [CrossRef]
- Ruiz-Saavedra, S.; Salazar, N.; Suárez, A.; de Los Reyes-Gavilán, C.G.; Gueimonde, M.; González, S. Comparison of Different Dietary Indices as Predictors of Inflammation, Oxidative Stress and Intestinal Microbiota in Middle-Aged and Elderly Subjects. Nutrients 2020, 12, 3828. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Asadi, Z.; Ghaffarian Zirak, R.; Yaghooti Khorasani, M.; Saedi, M.; Parizadeh, S.M.; Jafarzadeh-Esfehani, R.; Khorramruz, F.; Jandari, S.; Mohammadi-Bajgiran, M.; Zare-Feyzabadi, R.; et al. Dietary Inflammatory Index is associated with Healthy Eating Index, Alternative Healthy Eating Index, and dietary patterns among Iranian adults. J. Clin. Lab. Anal. 2020, 34, e23523. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Tabung, F.; Hébert, J.R. A population-based dietary inflammatory index predicts levels of C-reactive protein in the Seasonal Variation of Blood Cholesterol Study (SEASONS). Public Health Nutr. 2014, 17, 1825–1833. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fowler, M.E.; Akinyemiju, T.F. Meta-analysis of the association between dietary inflammatory index (DII) and cancer outcomes. Int. J. Cancer 2017, 141, 2215–2227. [Google Scholar] [CrossRef]
- Shivappa, N.; Godos, J.; Hébert, J.R.; Wirth, M.D.; Piuri, G.; Speciani, A.F.; Grosso, G. Dietary Inflammatory Index and Cardiovascular Risk and Mortality-A Meta-Analysis. Nutrients 2018, 10, 200. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abbasalizad Farhangi, M.; Vajdi, M.; Nikniaz, L.; Nikniaz, Z. The interaction between dietary inflammatory index and 6 P21 rs2010963 gene variants in metabolic syndrome. Eat. Weight Disord. 2020, 25, 1049–1060. [Google Scholar] [CrossRef]
- Farhangi, M.A.; Nikniaz, L.; Nikniaz, Z.; Dehghan, P. Dietary inflammatory index potentially increases blood pressure and markers of glucose homeostasis among adults: Findings from an updated systematic review and meta-analysis. Public Health Nutr. 2020, 23, 1362–1380. [Google Scholar] [CrossRef]
- Nikniaz, L.; Nikniaz, Z.; Shivappa, N.; Hébert, J.R. The association between dietary inflammatory index and metabolic syndrome components in Iranian adults. Prim. Care Diabetes 2018, 12, 467–472. [Google Scholar] [CrossRef]
- Marx, W.; Veronese, N.; Kelly, J.T.; Smith, L.; Hockey, M.; Collins, S.; Trakman, G.L.; Hoare, E.; Teasdale, S.B.; Wade, A.; et al. The Dietary Inflammatory Index and Human Health: An Umbrella Review of Meta-Analyses of Observational Studies. Adv Nutr. 2021, 12, 1681–1690. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cavicchia, P.P.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Hébert, J.R. A new dietary inflammatory index predicts interval changes in serum high-sensitivity C-reactive protein. J. Nutr. 2009, 139, 2365–2372. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tabung, F.K.; Smith-Warner, S.A.; Chavarro, J.E.; Fung, T.T.; Hu, F.B.; Willett, W.C.; Giovannucci, E.L. An empirical dietary inflammatory pattern score enhances prediction of circulating inflammatory biomarkers in adults. J. Nutr. 2017, 147, 1567–1577. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lo, C.H.; Lochhead, P.; Khalili, H.; Song, M.; Tabung, F.K.; Burke, K.E.; Richter, J.M.; Giovannucci, E.L.; Chan, A.T.; Ananthakrishnan, A.N. Dietary Inflammatory Potential and Risk of Crohn’s Disease and Ulcerative Colitis. Gastroenterology 2020, 159, 873–883.e1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Narula, N.; Wong, E.C.L.; Dehghan, M.; Marshall, J.K.; Moayyedi, P.; Yusuf, S. Does a High-inflammatory Diet Increase the Risk of Inflammatory Bowel Disease? Results From the Prospective Urban Rural Epidemiology (PURE) Study: A Prospective Cohort Study. Gastroenterology 2021, 161, 1333–1335.e1. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Hébert, J.R.; Rashvand, S.; Rashidkhani, B.; Hekmatdoost, A. Inflammatory Potential of Diet and Risk of Ulcerative Colitis in a Case-Control Study from Iran. Nutr Cancer 2016, 68, 404–409. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Keshteli, A.H.; Valcheva, R.; Nickurak, C.; Park, H.; Mandal, R.; van Diepen, K.; Kroeker, K.I.; van Zanten, S.V.; Halloran, B.; Wishart, D.S.; et al. Anti-Inflammatory Diet Prevents Subclinical Colonic Inflammation and Alters Metabolomic Profile of Ulcerative Colitis Patients in Clinical Remission. Nutrients 2022, 14, 3294. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rocha, I.; Torrinhas, R.; Fonseca, D.; Lyra, C.O.; de Sousa Alves Neri, J.L.; Balmant, B.D.; Callado, L.; Charlton, K.; Queiroz, N.; Waitzberg, D.L. Pro-inflammatory Diet is correlated with high Veillonella rogosae, gut inflammation and clinical relapse of inflammatory bowel disease. Nutrients 2023, 15, 4148. [Google Scholar] [CrossRef]
- Lamers, C.R.; de Roos, N.M.; Witteman, B.J.M. The association between inflammatory potential of diet and disease activity: Results from a cross-sectional study in patients with inflammatory bowel disease. BMC Gastroenterol. 2020, 20, 316. [Google Scholar] [CrossRef]
- Mirmiran, P.; Moslehi, N.; Morshedzadeh, N.; Shivappa, N.; Hébert, J.R.; Farsi, F.; Daryani, N.E. Does the inflammatory potential of diet affect disease activity in patients with inflammatory bowel disease? Nutr. J. 2019, 18, 65. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gajendran, M.; Loganathan, P.; Catinella, A.P.; Hashash, J.G. A comprehensive review and update on Crohn’s disease. Dis. Mon. 2018, 64, 20–57. [Google Scholar] [CrossRef] [PubMed]
- Glinkowski, S.; Marcinkowska, D. Ulcerative colitis: Assessment of disease activity based on contemporary scales. Nowa Med. 2018, 25, 123–137. [Google Scholar] [CrossRef]
- WHO. Obesity: Preventing and Managing The Global Epidemic. Report of a WHO Consultation; Technical Report; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Jarosz, M.; Rychlik, E.; Sto’s, K.; Charzewska, J. Normy Zywienia dla Populacji Polski i ich Zastosowanie; Instytut Żywności i Żywienia: Warsaw, Poland, 2020. [Google Scholar]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef]
- Minihane, A.M.; Vinoy, S.; Russell, W.R.; Baka, A.; Roche, H.M.; Tuohy, K.M.; Teeling, J.L.; Blaak, E.E.; Fenech, M.; Vauzour, D.; et al. Low-grade inflammation, diet composition and health: Current research evidenceand its translation. Br. J. Nutr. 2015, 114, 999–1012. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, D.; Albenberg, L.; Compher, C.; Baldassano, R.; Piccoli, D.; Lewis, J.D.; Wu, G.D. Dietin the pathogenesis and treatment of inflammatory Bowel Diseases. Gastroenterology 2015, 148, 1087–1106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, J.H.; Peyrin-Biroulet, L.; Eisenhut, M.; Shin, J.I. IBD immunopathogenesis: A comprehensive review of inflammatory molecules. Autoimmun. Rev. 2017, 16, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.H.; Khalili, H.; Song, M.; Giovannucci, E.L.; Chan, A.T.; Ananthakrishnan, A.N. Healthy lifestyle is associated with reduced mortality in patients with inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 2021, 19, 87–95.e4. [Google Scholar] [CrossRef]
- Scaioli, E.; Liverani, E.; Belluzzi, A. The Imbalance between n-6/n-3 Polyunsaturated Fatty Acids and Inflammatory Bowel Disease: A Comprehensive Review and Future Therapeutic Perspectives. Int. J. Mol. Sci. 2017, 18, 2619. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Anneberg, O.M.; Petersen, I.S.B.; Jess, T.; De Freitas, M.B.; Jalili, M. The dietary inflammatory potential and its role in the risk and progression of inflammatory bowel disease: A systematic review. Clin. Nutr. 2025, 47, 146–156. [Google Scholar] [CrossRef]
- Tabung, F.K.; Steck, S.E.; Zhang, J.; Ma, Y.; Liese, A.D.; Agalliu, I.; Hingle, M.; Hou, L.; Hurley, T.G.; Jiao, L.; et al. Construct validation of the dietary inflammatory index among postmenopausal women. Ann. Epidemiol. 2015, 25, 398–405. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Varkaneh, H.K.; Fatahi, S.; Tajik, S.; Rahmani, J.; Zarezadeh, M.; Shab-Bidar, S. Dietary inflammatory index in relation to obesity and body mass index: A meta-analysis. Nutr. Food Sci. 2018, 48, 702–721. [Google Scholar] [CrossRef]
- Jowett, S.L.; Seal, C.J.; Pearce, M.S.; Phillips, E.; Gregory, W.; Barton, J.R.; Welfare, M.R. Influence of dietary factors on the clinical course of ulcerative colitis: A prospective cohort study. Gut 2004, 53, 1479–1484. [Google Scholar] [CrossRef]
- Croft, A.; Lord, A.; Radford-Smith, G. Markers of systemic inflammation in Acute attacks of Ulcerative Colitis: What level of C-reactive protein constitutes severe colitis? J. Crohns Colitis 2022, 16, 1089–1096. [Google Scholar] [CrossRef]
- Lev-Tzion, R.; Griffiths, A.M.; Leder, O.; Turner, D. Omega 3 fatty acids (fish oil) for maintenance of remission in Crohn’s disease. Cochrane Database Syst. Rev. 2014, 2014, CD006320. [Google Scholar] [CrossRef]
- Turner, D.; Shah, P.S.; Steinhart, A.H.; Zlotkin, S.; Griffiths, A.M. Maintenance of remission in inflammatory bowel disease using omega-3 fatty acids (fish oil): A systematic review and meta-analyses. Inflamm. Bowel Dis. 2011, 17, 336–345. [Google Scholar] [CrossRef] [PubMed]
IBD n(%), Mean ± SD | CD n(%), Mean ± SD | UC n(%), Mean ± SD | p | |
---|---|---|---|---|
Patients | 90 (100) | 46 (51.1) | 44 (48.9) | 0.1278 |
Age [years] | 36.9 ± 9.7 | 33.8 ± 9.4 | 42.6 ± 10.7 | 0.0010 |
Female | 52 (57.8) | 28 (60.9) | 24 (54.5) | 0.1057 |
Duration of the disease [years] | 8.2 ± 5.6 | 8.1 ± 5.4 | 8.2 ± 4.6 | 0.7234 |
CDAI (0/1/2/3) | 15 (32.6)/10 (21.7)/17 (37.0)/4 (8.7) | |||
Partial Mayo Score (0/1/2/3) | 17 (38.6)/10 (22.7)/11 (25)/6 (13.6) | |||
Biological therapy | 74 (82.2) | 41 (89.1) | 33 (75) | 0.3125 |
Smokers | 21 (23.3) | 10 (21.7) | 11 (25) | 0.6784 |
BMI [kg/m2] | 24.2 ± 4.6 | 23.7 ± 4.1 | 24.5 ± 4.3 | 0.4705 |
≤18.5 | 20 (22.2) | 10 (21.7) | 10 (22.7) | 0.6545 |
18.5–24.9 | 36 (40) | 20 (43.5) | 16 (36.4) | |
≥25.0 | 34 (37.8) | 16 (34.8) | 18 (40.9) | |
IL-6 [pg/mL] | 5.3 ± 1.8 | 5.1 ± 1.7 | 6.1 ± 1.5 | 0.2178 |
IL-1β [pg/mL] | 7.2 ± 1.8 | 7.4 ± 1.9 | 6.9 ± 2.2 | 0.2566 |
IL-10 [pg/mL] | 8.9 ± 1.8 | 7.9 ± 1.9 | 9.3 ± 2.1 | 0.5122 |
Dietary assessment | ||||
DII | −0.39 ± 0.52 | −0.42 ± 0.47 | −0.37 ± 0.54 | 0.6452 |
Energy intake [kcal] | 1565 ± 290 | 1534 ± 287 | 1586 ± 321 | 0.7658 |
Calories from carbohydrates [% E] | 52.1 ± 6.3 | 53.1 ± 6.1 | 52.8 ± 6.6 | |
Calories from fats [% E] | 26.9 ± 6.2 | 26.6 ± 7.1 | 27.7 ± 5.4 | 0.3725 |
Calories from proteins [% E] | 18.1 ± 3.7 | 18.1 ± 4.2 | 18.1 ± 3.1 | 0.6034 |
Fat [g] | 41.7 ± 8.9 | 40.5 ± 9.1 | 43.8 ± 8.7 | 0.4335 |
SFA [g] | 17.8 ± 1.6 | 17.2 ± 1.7 | 18.1 ± 1.7 | 0.6785 |
MUFA [g] | 14.1 ± 2.7 | 13.7 ± 3.3 | 14.7 ± 2.1 | 0.4781 |
PUFA [g] | 7.1 ± 2.1 | 7.2 ± 2.2 | 7.1 ± 1.8 | 0.4776 |
Cholesterol [mg] | 211 ± 15.7 | 212.6 ± 15.9 | 210.7 ± 15.6 | 0.3132 |
Protein [g] | 67.8 ± 9.1 | 65.4 ± 8.9 | 71.7 ± 9.2 * | 0.0231 |
Fiber [g] | 14.2 ± 3.5 | 9.7 ± 4.5 | 16.9 ± 3.7 * | 0.0227 |
Carbohydrates [g] | 237.7 ± | 235.5 ± 80.4 | 242.8 ± 72.3 | 0.3234 |
Simple sugars [g] | 10.7 ± 3.8 | 11.5 ± 4.1 | 9.8 ± 3.3 | 0.6543 |
Dietary folate equivalents [μg] | 211.5 ± 40.9 | 212.1 ± 39.1 | 210.5 ± 42.4 | 0.4137 |
Vitamin A [μg retinol equivalent] | 1278.7 ± 280.9 | 1255.4 ± 310.1 | 1307.3 ± 270.5 | 0.7651 |
Vitamin E [mg α-tokoferol equivalent] | 5.3 ± 2.0 | 5.4 ± 2.1 | 5.3 ± 1.8 | 0.6743 |
Vitamin C [mg] | 74.1 ± 35.1 | 72.7 ± 34.1 | 76.1 ± 36.2 | 0.4556 |
Vitamin B-12 [μg] | 2.1 ± 0.6 | 2.1 ± 0.5 | 2.2 ± 0.8 | 0.3045 |
Vitamin D [μg] | 2.4 ± 1.3 | 2.3 ± 1.2 | 2.5 ± 1.6 | 0.5484 |
Calcium [mg] | 528.4 ± 100.4 | 522.1 ± 90.2 | 531.4 ± 110.6 | 0.5905 |
Magnesium [mg] | 305.6 ± 89.7 | 299.3 ± 88.7 | 310.3 ± 90.3 | 0.4825 |
Iron [mg] | 8.6 ± 2.9 | 8.7 ± 3.1 | 8.3 ± 2.9 | 0.2384 |
Zinc [mg] | 7.9 ± 2.5 | 7.7 ± 2.1 | 8.1 ± 3.1 | 0.3705 |
Sodium [μg] | 2875.8 ± 260.8 | 3074.5 ± 210.1 | 2779.8 ± 310.2 | 0.4225 |
Potassium [mg] | 2501.5 ± 178.6 | 2553.1 ± 216.5 | 2468.5 ± 122.7 | 0.5672 |
Variables | DII | p-Value | ||
---|---|---|---|---|
T1 (−2.34; −0.61) | T2 (−0.61; 0.27) | T3 (0.27; 1.74) | ||
Energy intake [kcal] | 1698.1 ± 371.6 | 1485.2 ± 333.8 | 1429.2 ± 339.1 | 0.163 |
Protein [g] | 70.3 ± 13.1 | 67.8 ± 8.5 | 65.2 ± 11.5 | 0.042 |
Carbohydrate [g] | 251.4 ± 70.9 | 237.3 ± 66.2 | 228.4 ± 74.8 | 0.451 |
Fat [g] | 52.9 ± 12.7 | 47.1 ± 9.9 | 40.9 ± 13.1 | 0.011 |
Cholesterol [mg] | 230.8 ± 50.8 | 220.2 ± 75.8 | 210.9 ± 59.98 | 0.311 |
SFA [g] | 17.9 ± 4.9 | 17.2 ± 3.5 | 17.4 ± 5.6 | 0.872 |
MUFA [g] | 18.5 ± 5.5 | 16.6 ± 6.4 | 15.5 ± 7.5 | 0.142 |
PUFA [g] | 8.94 ± 2.5 | 5.9 ± 3.4 | 4.37 ± 2.8 | 0.011 |
Fiber [g] | 19.5 ± 3.6 | 16.5 ± 2.8 | 14.1 ± 2.7 | 0.012 |
Beta Carotene [µg] | 720.9 ± 313.1 | 439.5 ± 322.5 | 282.8 ± 271.9 | 0.011 |
Vitamin A [μg retinol equivalent] | 1572.8 ± 560.3 | 909.4 ± 408.4 | 780.6 ± 343.3 | 0.014 |
Vitamin B1 [mg] | 2.0 ± 0.4 | 2.0 ± 0.3 | 1.99 ± 0.5 | 0.331 |
Vitamin B2 [mg] | 1.5 ± 0.3 | 1.3 ± 0.3 | 1.2 ± 0.3 | 0.005 |
Vitamin B3 [mg] | 20.9 ± 4.4 | 20.6 ± 4.2 | 19.5 ± 5.5 | 0.681 |
Vitamin B6 [mg] | 1.9 ± 0.8 | 1.7 ± 2.3 | 0.9 ± 0.2 | 0.001 |
Dietary folate equivalents [μg] | 0.8 ± 0.3 | 0.9 ± 0.2 | 0.8 ± 0.3 | 0.081 |
Vitamin B12 [µg] | 3.6 ± 1.5 | 2.8 ± 1.3 | 2.3 ± 1.3 | 0.001 |
Vitamin C [mg] | 92.4 ± 33.3 | 63.5 ± 19.4 | 47.9 ± 17.3 | 0.001 |
Vitamin D [µg] | 2.3 ± 1.2 | 2.1 ± 0.9 | 2.3 ± 1.2 | 0.123 |
Vitamin E [mg α-tokoferol equivalent] | 5.3 ± 3.88 | 4.0 ± 1.5 | 3.2 ± 1.5 | 0.002 |
Caffeine [g] | 190.9 ± 93.9 | 185.1 ± 93.1 | 252.3 ± 120.3 | 0.011 |
Zinc [mg] | 7.3 ± 1.3 | 6.4 ± 1.4 | 5.4 ± 1.4 | 0.001 |
Selenium [µg] | 120.0 ± 3.1 | 100.3 ± 3.4 | 80.8 ± 2.9 | 0.001 |
Magnesium [mg] | 239.3 ± 52.1 | 199.2 ± 36.7 | 181.5 ± 52.8 | 0.001 |
Iron [mg] | 16.1 ± 3.3 | 14.6 ± 2.7 | 13.3 ± 3.4 | 0.005 |
Onion [g] | 9.3 ± 18.2 | 8.9 ± 12.4 | 9.2 ± 14.5 | 0.991 |
Garlic [g] | 0.8 ± 0.6 | 0.3 ± 0.4 | 0.5 ± 0.9 | 0.259 |
Green/black tea [g] | 584.9 ± 510.4 | 711.9 ± 471.3 | 1043.2 ± 434.2 | 0.012 |
DII Tertiles | p-Value | |||
---|---|---|---|---|
T1 (−2.34; −0.61) | T2 (−0.61; 0.27) | T3 (0.27; 1.74) | ||
Age [years] | 30.1 ± 8.7 | 35.5 ± 9.9 | 40.1 ± 9.8 | 0.0213 |
Sex | 0.6574 | |||
Female | 16 (57.1) | 18 (56.3) | 17 (56.7) | |
Male | 12 (42.9) | 14 (43.7) | 13 (43.3) | |
Disease duration [years] | 8.1 ± 5.5 | 7.9 ± 5.3 | 8.7 ± 5.7 | 0.3487 |
Disease activity | 0.0382 | |||
Remission and mild stage | 23 (82.1) | 19 (59.4) | 10 (33.3) | |
Moderate and severe stage | 5 (17.9) | 13 (40.6) | 20 (66.7) | |
Smokers | 6 (21.4) | 8 (25) | 7 (23.3) | 0.2381 |
Biological treatment | 23 (82.1) | 26 (81.3) | 25 (83.3) | 0.6473 |
BMI [kg/m2] | 23.7 ± 5.6 | 24.3 ± 4.7 | 25.3 ± 4.1 | 0.2361 |
IL-6 [pg/mL] | 5.3 ± 1.9 | 5.2 ± 1.5 | 6.1 ± 1.9 | 0.1218 |
IL-1β [pg/mL] | 4.9 ± 1.3 | 7.2 ± 1.8 | 6.9 ± 1.9 | 0.2116 |
IL-10 [pg/mL] | 8.9 ± 1.5 | 7.7 ± 1.8 | 10.3 ± 2.2 | 0.5632 |
DII Categories | DII (Continuous) | ||||
---|---|---|---|---|---|
T1 (n = 28) | T2 (n = 32) | T3 (n = 30) | |||
OR (95% CI) | OR (95% CI) | OR (95% CI) | p-Value *** | ||
Crude model | 1 (Ref) | 2.76 (1.15; 6.85) | 2.41 (0.98; 5.58) | 1.73 (1.21; 2.74) | 0.031 |
Model 1 * | 1 (Ref) | 3.14 (1.16; 8.56) | 2.75 (1.15; 6.80) | 1.84 (1.20; 3.21) | 0.022 |
Model 2 ** | 1 (Ref) | 3.49 (1.19; 8.04) | 3.13 (1.11; 9.51) | 2.25 (1.23; 4.26) | 0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godala, M.; Gaszyńska, E.; Malecka-Wojciesko, E. Association Between Pro-Inflammatory Potential of Diet and Inflammatory Parameters in a Group of Patients with Inflammatory Bowel Disease. Nutrients 2025, 17, 2858. https://doi.org/10.3390/nu17172858
Godala M, Gaszyńska E, Malecka-Wojciesko E. Association Between Pro-Inflammatory Potential of Diet and Inflammatory Parameters in a Group of Patients with Inflammatory Bowel Disease. Nutrients. 2025; 17(17):2858. https://doi.org/10.3390/nu17172858
Chicago/Turabian StyleGodala, Małgorzata, Ewelina Gaszyńska, and Ewa Malecka-Wojciesko. 2025. "Association Between Pro-Inflammatory Potential of Diet and Inflammatory Parameters in a Group of Patients with Inflammatory Bowel Disease" Nutrients 17, no. 17: 2858. https://doi.org/10.3390/nu17172858
APA StyleGodala, M., Gaszyńska, E., & Malecka-Wojciesko, E. (2025). Association Between Pro-Inflammatory Potential of Diet and Inflammatory Parameters in a Group of Patients with Inflammatory Bowel Disease. Nutrients, 17(17), 2858. https://doi.org/10.3390/nu17172858