Substrate Oxidation Does Not Influence Middle Distance Running Performance: A Randomized Controlled Crossover Trial
Abstract
1. Introduction
2. Methods
2.1. Experimental Design
2.2. Participants
2.3. Pretrial Preparation
2.4. Familiarization, Anthropometric Measurements, and Maximal Aerobic Capacity
2.5. Experimental Protocol
2.6. Blood Sampling
2.7. 5 Km and 10 Km Running Time Trials
2.8. Perceptual Measurements
2.9. Statistical Analysis
3. Results
3.1. Performance & Metabolic Responses
3.2. Glucose
3.3. Lactate
3.4. Perceptual Responses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prins, P.J.; Noakes, T.D.; Buga, A.; Gerhart, H.D.; Cobb, B.M.; D’Agostino, D.P.; Volek, J.S.; Buxton, J.D.; Heckman, K.; Plank, E.; et al. Carbohydrate Ingestion Eliminates Hypoglycemia and Improves Endurance Exercise Performance in Triathletes Adapted to Very Low- and High-Carbohydrate Isocaloric Diets. Am. J. Physiol. Cell Physiol. 2025, 328, C710–C727. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Hawley, J.A.; Wong, S.H.S.; Jeukendrup, A.E. Carbohydrates for Training and Competition. J. Sports Sci. 2011, 29, S17–S27. [Google Scholar] [CrossRef]
- Coyle, E.F.; Coggan, A.R.; Hemmert, M.K.; Ivy, J.L. Muscle Glycogen Utilization during Prolonged Strenuous Exercise When Fed Carbohydrate. J. Appl. Physiol. 1986, 61, 165–172. [Google Scholar] [CrossRef]
- Ramonas, A.; Laursen, P.B.; Williden, M.; Kilding, A.E. The Effect of Acute Manipulation of Carbohydrate Availability on High Intensity Running Performance, Running Economy, Critical Speed, and Substrate Metabolism in Trained Male Runners. Eur. J. Sport Sci. 2023, 23, 1961–1971. [Google Scholar] [CrossRef]
- Prins, P.J.; Noakes, T.D.; Buga, A.; D’Agostino, D.P.; Volek, J.S.; Buxton, J.D.; Heckman, K.; Jones, D.W.; Tobias, N.E.; Grose, H.M.; et al. Low and High Carbohydrate Isocaloric Diets on Performance, Fat Oxidation, Glucose and Cardiometabolic Health in Middle Age Males. Front. Nutr. 2023, 10, 1084021. [Google Scholar] [CrossRef]
- de Oliveira, E.P.; Burini, R.C.; Jeukendrup, A. Gastrointestinal Complaints During Exercise: Prevalence, Etiology, and Nutritional Recommendations. Sports Med. 2014, 44, 79–85. [Google Scholar] [CrossRef]
- Sedlock, D.A. The Latest on Carbohydrate Loading: A Practical Approach. Curr. Sports Med. Rep. 2008, 7, 209–213. [Google Scholar] [CrossRef]
- Bedrač, L.; Deutsch, L.; Terzić, S.; Červek, M.; Šelb, J.; Ašič, U.; Verstraeten, L.M.G.; Kuščer, E.; Cvetko, F. Towards Precision Sports Nutrition for Endurance Athletes: A Scoping Review of Application of Omics and Wearables Technologies. Nutrients 2024, 16, 3943. [Google Scholar] [CrossRef]
- Nieman, D.C. Multiomics Approach to Precision Sports Nutrition: Limits, Challenges, and Possibilities. Front. Nutr. 2021, 8, 796360. [Google Scholar] [CrossRef] [PubMed]
- Margolis, L.M.; Wilson, M.A.; Whitney, C.C.; Carrigan, C.T.; Murphy, N.E.; Hatch, A.M.; Montain, S.J.; Pasiakos, S.M. Exercising with Low Muscle Glycogen Content Increases Fat Oxidation and Decreases Endogenous, but Not Exogenous Carbohydrate Oxidation. Metab. Clin. Exp. 2019, 97, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Purdom, T.; Kravitz, L.; Dokladny, K.; Mermier, C. Understanding the Factors That Effect Maximal Fat Oxidation. J. Int. Soc. Sports Nutr. 2018, 15, 3. [Google Scholar] [CrossRef]
- Noakes, T.D.; Prins, P.J.; Volek, J.S.; D’Agostino, D.P.; Koutnik, A.P. Low Carbohydrate High Fat Ketogenic Diets on the Exercise Crossover Point and Glucose Homeostasis. Front. Physiol. 2023, 14, 1150265. [Google Scholar] [CrossRef]
- Prins, P.J.; Noakes, T.D.; Welton, G.L.; Haley, S.J.; Esbenshade, N.J.; Atwell, A.D.; Scott, K.E.; Abraham, J.; Raabe, A.S.; Buxton, J.D.; et al. High Rates of Fat Oxidation Induced by a Low-Carbohydrate, High-Fat Diet, Do Not Impair 5-Km Running Performance in Competitive Recreational Athletes. J. Sports Sci. Med. 2019, 18, 738–750. [Google Scholar] [PubMed]
- Prins, P.J.; Noakes, T.D.; Buxton, J.D.; Welton, G.L.; Raabe, A.S.; Scott, K.E.; Atwell, A.D.; Haley, S.J.; Esbenshade, N.J.; Abraham, J. High Fat Diet Improves Metabolic Flexibility during Progressive Exercise to Exhaustion (VO2max Testing) and during 5 Km Running Time Trials. Biol. Sport 2023, 40, 465–475. [Google Scholar] [CrossRef]
- Buga, A.; Crabtree, C.D.; Stoner, J.T.; Decker, D.D.; Robinson, B.T.; Kackley, M.L.; Sapper, T.N.; Buxton, J.D.; D’Agostino, D.P.; McClure, T.S.; et al. Metabolic and Ruck Performance Effects of a Novel, Light-Weight, Energy-Dense Ketogenic Bar. Exp. Physiol. 2023, 108, 715–727. [Google Scholar] [CrossRef]
- Shan, Z.; Rehm, C.D.; Rogers, G.; Ruan, M.; Wang, D.D.; Hu, F.B.; Mozaffarian, D.; Zhang, F.F.; Bhupathiraju, S.N. Trends in Dietary Carbohydrate, Protein, and Fat Intake and Diet Quality Among US Adults, 1999–2016. JAMA 2019, 322, 1178–1187. [Google Scholar] [CrossRef]
- Lovell, T.W.J.; Sirotic, A.C.; Impellizzeri, F.M.; Coutts, A.J. Factors Affecting Perception of Effort (Session Rating of Perceived Exertion) during Rugby League Training. Int. J. Sports Physiol. Perform. 2013, 8, 62–69. [Google Scholar] [CrossRef]
- Robertson, R.J.; Goss, F.L.; Dube, J.; Rutkowski, J.; Dupain, M.; Brennan, C.; Andreacci, J. Validation of the Adult OMNI Scale of Perceived Exertion for Cycle Ergometer Exercise. Med. Sci. Sports Exerc. 2004, 36, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A New Approach to Monitoring Exercise Training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar] [PubMed]
- Turner-McGrievy, G.M.; Beets, M.W.; Moore, J.B.; Kaczynski, A.T.; Barr-Anderson, D.J.; Tate, D.F. Comparison of Traditional versus Mobile App Self-Monitoring of Physical Activity and Dietary Intake among Overweight Adults Participating in an mHealth Weight Loss Program. J. Am. Med. Inform. Assoc. 2013, 20, 513–518. [Google Scholar] [CrossRef]
- Hardy, C.J.; Rejeski, W.J. Not What, but How One Feels: The Measurement of Affect during Exercise. J. Sport Exerc. Psychol. 1989, 11, 304–317. [Google Scholar] [CrossRef]
- Prins, P.J.; Goss, F.L.; Nagle, E.F.; Beals, K.; Robertson, R.J.; Lovalekar, M.T.; Welton, G.L. Energy Drinks Improve Five-Kilometer Running Performance in Recreational Endurance Runners. J. Strength Cond. Res. 2016, 30, 2979–2990. [Google Scholar] [CrossRef] [PubMed]
- Engell, D.B.; Maller, O.; Sawka, M.N.; Francesconi, R.N.; Drolet, L.; Young, A.J. Thirst and Fluid Intake Following Graded Hypohydration Levels in Humans. Physiol. Behav. 1987, 40, 229–236. [Google Scholar] [CrossRef]
- Volek, J.S.; Freidenreich, D.J.; Saenz, C.; Kunces, L.J.; Creighton, B.C.; Bartley, J.M.; Davitt, P.M.; Munoz, C.X.; Anderson, J.M.; Maresh, C.M.; et al. Metabolic Characteristics of Keto-Adapted Ultra-Endurance Runners. Metabolism 2016, 65, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Wong, S.H.; Wong, C.K.; Lam, C.W.; Huang, Y.J.; Siu, P.M. Effect of Preexercise Meals with Different Glycemic Indices and Loads on Metabolic Responses and Endurance Running. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 281–300. [Google Scholar] [CrossRef]
- Wong, S.H.S.; Siu, P.M.; Lok, A.; Chen, Y.J.; Morris, J.; Lam, C.W. Effect of the Glycaemic Index of Pre-Exercise Carbohydrate Meals on Running Performance. Eur. J. Sport Sci. 2008, 8, 23–33. [Google Scholar] [CrossRef]
- Wu, C.-L.; Williams, C. A Low Glycemic Index Meal before Exercise Improves Endurance Running Capacity in Men. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 510–527. [Google Scholar] [CrossRef]
- Burdon, C.A.; Spronk, I.; Cheng, H.L.; O’Connor, H.T. Effect of Glycemic Index of a Pre-Exercise Meal on Endurance Exercise Performance: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 1087–1101. [Google Scholar] [CrossRef]
- Shaw, D.M.; Merien, F.; Braakhuis, A.; Maunder, E.; Dulson, D.K. Exogenous Ketone Supplementation and Keto-Adaptation for Endurance Performance: Disentangling the Effects of Two Distinct Metabolic States. Sports Med. 2020, 50, 641–656. [Google Scholar] [CrossRef]
- Chapman-Lopez, T.J.; Koh, Y. The Effects of Medium-Chain Triglyceride Oil Supplementation on Endurance Performance and Substrate Utilization in Healthy Populations: A Systematic Review. J. Obes. Metab. Syndr. 2022, 31, 217–229. [Google Scholar] [CrossRef]
- Vandenberghe, C.; St-Pierre, V.; Fortier, M.; Castellano, C.-A.; Cuenoud, B.; Cunnane, S.C. Medium Chain Triglycerides Modulate the Ketogenic Effect of a Metabolic Switch. Front. Nutr. 2020, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Lambert, E.V.; Hawley, J.A.; Goedecke, J.; Noakes, T.D.; Dennis, S.C. Nutritional Strategies for Promoting Fat Utilization and Delaying the Onset of Fatigue during Prolonged Exercise. J. Sports Sci. 1997, 15, 315–324. [Google Scholar] [CrossRef]
- Hawley, J.A.; Brouns, F.; Jeukendrup, A. Strategies to Enhance Fat Utilisation during Exercise. Sports Med. 1998, 25, 241–257. [Google Scholar] [CrossRef]
- Jeukendrup, A.E.; Thielen, J.J.; Wagenmakers, A.J.; Brouns, F.; Saris, W.H. Effect of Medium-Chain Triacylglycerol and Carbohydrate Ingestion during Exercise on Substrate Utilization and Subsequent Cycling Performance. Am. J. Clin. Nutr. 1998, 67, 397–404. [Google Scholar] [CrossRef]
- Blundell, J.E.; Burley, V.J.; Cotton, J.R.; Lawton, C.L. Dietary Fat and the Control of Energy Intake: Evaluating the Effects of Fat on Meal Size and Postmeal Satiety. Am. J. Clin. Nutr. 1993, 57, 772S–777S; discussion 777S–778S. [Google Scholar] [CrossRef]
- Rolls, B.J.; Kim-Harris, S.; Fischman, M.W.; Foltin, R.W.; Moran, T.H.; Stoner, S.A. Satiety after Preloads with Different Amounts of Fat and Carbohydrate: Implications for Obesity. Am. J. Clin. Nutr. 1994, 60, 476–487. [Google Scholar] [CrossRef]
- Best, R.; Barwick, B.; Best, A.; Berger, N.; Harrison, C.; Wright, M.; Sparrow, J. Changes in Pain and Nutritional Intake Modulate Ultra-Running Performance: A Case Report. Sports 2018, 6, 111. [Google Scholar] [CrossRef] [PubMed]
- Warrilow, A.; Pumpa, K.; Somerset, S.; Naumovski, N. The Lipids and Volume in Satiation and Satiety (LIVES) Hypothesis: A Proposed Alternative Model for the Pathogenesis of Obesity. Diabetology 2023, 4, 64–75. [Google Scholar] [CrossRef]
- Deemer, S.E.; Plaisance, E.P.; Martins, C. Impact of Ketosis on Appetite Regulation-a Review. Nutr. Res. 2020, 77, 1–11. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Study 1 (5 km TT) N = 15 | Study 2 (10 km TT) N = 15 |
---|---|---|
Age (years) | 20.8 ± 3.5 | 31.2 ± 10.9 |
Height (cm) | 182.0 ± 10.1 | 176.4 ± 6.4 |
Bodyweight (kg) | 81.3 ± 12.4 | 78.6 ± 7.8 |
Body Fat (%) | 14.0 ± 4.6 | 13.4 ± 4.4 |
Fat Free Mass (kg) | 69.3 ± 8.7 | 73.4 ± 23.4 |
Fat Mass (kg) | 11.7 ± 5.0 | 12.8 ± 8.1 |
BMI (kg/m2) | 24.6 ± 3.5 | 25.4 ± 3.3 |
Mean exercise/week (min) | 377.3 ± 195.4 | 318.8 ± 152.1 |
Exercise experience (years) | 10.5 ± 5.4 | 13.7 ± 11.6 |
VO2max (mL/kg/min) | 58.3 ± 6.2 | 54.51 ± 5.9 |
Familiarization TT (min) | 24.6 ± 3.2 | 45.7 ± 5.6 |
Variable | Study 1 (5 km TT) | Study 2 (10 km TT) | ||||||
---|---|---|---|---|---|---|---|---|
LCHF | HCLF | p-Value | Effect Size | LCHF | HCLF | p-Value | Effect Size | |
TT performance (min) | 23.3 ± 2.3 | 23.1 ± 2.4 | 0.646 | 0.06 | 44.4 ± 6.6 | 43.5 ± 6.1 | 0.118 | 0.14 |
CHO oxidation (g·min−1) | 3.49 ± 1.17 | 3.98 ± 0.84 | 0.169 | 0.38 | 1.06 ± 0.77 | 2.59 ± 0.56 | <0.001 | 2.27 |
FAT oxidation (g·min−1) | 0.68 ± 0.34 | 0.37 ± 0.26 | 0.003 | 0.72 | 0.70 ± 0.26 | 0.44 ± 0.22 | 0.001 | 1.08 |
RER | 0.90 ± 0.06 | 0.94 ± 0.04 | 0.037 | 0.78 | 0.85 ± 0.03 | 0.91 ± 0.04 | 0.002 | 1.69 |
VO2 (L·min−1) | 3.85 ± 0.42 | 3.69 ± 0.53 | 0.337 | 0.33 | 2.88 ± 0.45 | 2.83 ± 0.41 | 0.388 | 0.12 |
VO2 (mL·kg−1·min−1) | 47.7 ± 5.7 | 46.2 ± 7.5 | 0.391 | 0.23 | 36.9 ± 7.2 | 36.5 ± 6.3 | 0.453 | 0.01 |
VCO2 (L·min−1) | 3.48 ± 0.44 | 3.48 ± 0.50 | 0.984 | 0.00 | 2.36 ± 0.37 | 2.57 ± 0.36 | 0.018 | 0.58 |
VE (L·min−1) | 107.5 ± 12.5 | 102.8 ± 15.8 | 0.412 | 0.33 | 80.2 ± 16.7 | 79.5 ± 13.9 | 0.680 | 0.05 |
RR (breath/min) | 49.7 ± 17.3 | 46.8 ± 11.7 | 0.446 | 0.20 | 41.6 ± 7.24 | 41.3 ± 6.21 | 0.740 | 0.04 |
VT (L) | 2.51 ± 0.47 | 2.43 ± 0.44 | 0.455 | 0.18 | 1.99 ± 0.34 | 1.91 ± 0.31 | 0.142 | 0.25 |
HR (b·min−1) | 181.9 ± 8.1 | 180.1 ± 8.8 | 0.196 | 0.21 | 160.9 ± 11.8 | 157.5 ± 12.7 | 0.117 | 0.28 |
RPE-O | 6.4 ± 1.4 | 6.2 ± 1.2 | 0.167 | 0.15 | 5.9 ± 1.4 | 6.0 ± 1.3 | 0.704 | 0.07 |
Affect | 0.2 ± 1.8 | 0.4 ± 2.1 | 0.606 | 0.10 | 0.8 ± 1.1 | 1.1 ± 1.3 | 0.329 | 0.25 |
Session RPE | 7.3 ± 1.4 | 7.3 ± 1.5 | 0.806 | 0.00 | 7.87 ± 1.8 | 7.87 ± 1.3 | 1.000 | 0.00 |
Session Affect | −0.5 ± 1.8 | 0.0 ± 2.5 | 0.477 | 0.23 | 1.0 ± 1.2 | 0.0 ± 2.3 | 0.264 | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buga, A.; Buxton, J.D.; Plank, E.; Minor, J.D.; Sterrett, M.T.; Brooks, C.A.; Niemann, T.R.; Troxel, M.P.; Bryarly, A.; Furry, Z.; et al. Substrate Oxidation Does Not Influence Middle Distance Running Performance: A Randomized Controlled Crossover Trial. Nutrients 2025, 17, 2771. https://doi.org/10.3390/nu17172771
Buga A, Buxton JD, Plank E, Minor JD, Sterrett MT, Brooks CA, Niemann TR, Troxel MP, Bryarly A, Furry Z, et al. Substrate Oxidation Does Not Influence Middle Distance Running Performance: A Randomized Controlled Crossover Trial. Nutrients. 2025; 17(17):2771. https://doi.org/10.3390/nu17172771
Chicago/Turabian StyleBuga, Alex, Jeffrey D. Buxton, Emma Plank, James D. Minor, Micah T. Sterrett, Christopher A. Brooks, Tanner R. Niemann, Margaret P. Troxel, Anthony Bryarly, Zachary Furry, and et al. 2025. "Substrate Oxidation Does Not Influence Middle Distance Running Performance: A Randomized Controlled Crossover Trial" Nutrients 17, no. 17: 2771. https://doi.org/10.3390/nu17172771
APA StyleBuga, A., Buxton, J. D., Plank, E., Minor, J. D., Sterrett, M. T., Brooks, C. A., Niemann, T. R., Troxel, M. P., Bryarly, A., Furry, Z., Hannon, C., Muench, J., Stone, D., D’Agostino, D. P., Volek, J. S., Koutnik, A. P., & Prins, P. J. (2025). Substrate Oxidation Does Not Influence Middle Distance Running Performance: A Randomized Controlled Crossover Trial. Nutrients, 17(17), 2771. https://doi.org/10.3390/nu17172771