Nutrition Facts in the Over-Eighty Population: A Narrative Review
Abstract
1. Introduction
1.1. Aging: A Natural Phase of Life
1.2. The Challenge of Global Population Aging
2. The Gastrointestinal System in Old Age
3. Immune Aging
4. Gut Microbiota in Aging and Its Influence on Immune Response
5. Mitochondrial Dysfunction and Cellular Senescence
6. Deficiency of Mineral Salts in the Elderly
- Calcium, Phosphorus, and Magnesium: These minerals are vital for bone strength, neuromuscular conduction, enzyme activity, and blood coagulation. With advancing age, osteopenia and osteoporosis are common; inadequate calcium and magnesium support can accelerate bone demineralization and raise fracture risk [60].
- Potassium and Sodium are essential for fluid balance, cardiac and neuromuscular excitability, and blood pressure regulation. People aged 80 and over are most sensitive to increased sodium and may benefit from lower-salt and higher-potassium diets to prevent hypertension, and cardiovascular and renal disease [61].
- Zinc is crucial for DNA synthesis, immune competence, wound healing, and enzymatic reactions. Old people often do not meet recommended zinc intake. Lower levels of zinc exacerbate vulnerability to infections [62].
- Selenium and Copper support antioxidant defense, erythropoiesis, and collagen synthesis. Insufficiency of selenium, zinc, iodine, and copper has been observed among older adults [63].
- Iron maintains hemoglobin levels and physical performance; deficiency in the elderly impairs functional capacity [64].
- Selenium and Magnesium have been linked to reduced sarcopenia. Selenium, together with Calcium intake, is significantly associated with muscle mass, whereas together with Magnesium intake, it is significantly associated with physical performance [65].
Clinical and Nutritional Considerations
- ○
- A varied diet based on DASH (Dietary Approaches to Stop Hypertension) recommendations [61] or on a Mediterranean diet with preferential use of extra-virgin olive oil generally provides adequate mineral intake. However, intestinal malabsorption may still impair mineral status.
- ○
- Given the risk of deficiencies in old age, both periodic screening and, when necessary, supplementation under clinical supervision are recommended.
7. Sarcopenia in the Elderly: Prevention and Management
Exercise and Physical Activity
8. Hormonal Therapy
- Thyroid Hormone Replacement (Hypothyroidism); Growth Hormone (GH) Therapy; Insulin-like Growth Factor 1 (IGF-1)
9. Urinary Tract Infection and Hydration
9.1. Lower Urinary Tract Infection
9.2. Hydration Status
10. General Nutritional Strategies, Intermittent Fasting, and Supplementation in the Elderly
10.1. Intermittent Fasting
10.2. Supplementation
- (1)
- Essential amino acids, to support protein synthesis;
- (2)
- Complex carbohydrates such as inulin, for prebiotic effects;
- (3)
- Probiotics, to maintain microbiota balance [100];
- (4)
- Butyrate, to preserve or restore intestinal barrier integrity.
11. Conclusions
Actions to Be Taken
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Winter, G. Aging as disease. Med. Health Care Philos. 2015, 18, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Khaltourina, D.; Matveyev, Y.; Alekseev, A.; Cortese, F.; Ioviţă, A. Aging Fits the Disease Criteria of the International Classification of Diseases. Mech. Ageing Dev. 2020, 189, 111230. [Google Scholar] [CrossRef] [PubMed]
- Rattan, S.I.S. Molecular and cellular basis of aging. In Molecular Basis of Nutrition and Aging; Malavolta, M., Mocchegiani, E., Eds.; Academic Press: London, UK, 2016; pp. 3–9. [Google Scholar]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef] [PubMed]
- Hayflick, L. Biological aging is no longer an unsolved problem. Ann. N.Y. Acad. Sci. 2007, 1100, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Rattan, S.I.S. Biogerontology: Research status, challenges and opportunities. Acta Biomed. 2018, 89, 291–301. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- SilverEco. (n.d.). The Ageing Population: Numbers and Statistics. SilverEco.org. Available online: https://www.silvereco.org/en/statistics/ (accessed on 12 August 2025).
- World Health Organization. Ageing and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 12 August 2025).
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2022. 2022. Available online: https://population.un.org/wpp/ (accessed on 12 August 2025).
- European Commission. On 1 January 2023, Across EU Members, the Median Age Ranged Between 38.4 Years in Cyprus and 48.4 Years in Italy. Eurostat News Release [Internet]. 15 February 2024. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20240215-1 (accessed on 12 August 2025).
- European Union. Demographic Crisis: Aging EU Population Relies on Immigration, with Italy Leading the Decline. EU News [Internet]. 20 May 2025. Available online: https://www.eunews.it/en/2025/05/20/demographic-crisis-aging-eu-population-relies-on-immigration-with-italy-leading-the-decline/ (accessed on 12 August 2025).
- Watanabe, E.; Maeno, M.; Kayashita, J.; Miyamoto, K.I.; Kogirima, M. Cooking methods for a soft diet using chicken based on food texture analysis. J. Nutr. Sci. Vitaminol. 2017, 63, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Lamster, I.B.; Asadourian, L.; Del Carmen, T.; Friedman, P.K. The aging mouth: Differentiating normal aging from disease. Periodontol 2000 2016, 72, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Sessle, B.J. Can you be too old for oral implants? An update on ageing and plasticity in the oro-facial sensorimotor system. J. Oral Rehabil. 2019, 46, 936–951. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Laguna, L.; Sarkar, A. Aging-related changes in quantity and quality of saliva: Where do we stand in our understanding? J. Texture Stud. 2019, 50, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Feldman, M.; Cryer, B.; McArthur, K.E.; Huet, B.A.; Lee, E. Effects of aging and gastritis on gastric acid and pepsin secretion in humans: A prospective study. Gastroenterology 1996, 110, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Szymaszkiewicz, A.; Szymaszkiewicz, K.; Fichna, J.; Zielińska, M. Age-related alterations in the enteric nervous system and their impact on peristalsis. Postepy Biochem. 2021, 67, 34–43. [Google Scholar] [CrossRef] [PubMed]
- O’Donovan, D.; Hausken, T.; Lei, Y.; Russo, A.; Keogh, J.; Horowitz, M.; Jones, K.L. Effect of aging on transpyloric flow, gastric emptying, and intragastric distribution in healthy humans--impact on glycemia. Dig. Dis. Sci. 2005, 50, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Badal, V.D.; Vaccariello, E.D.; Murray, E.R.; Yu, K.E.; Knight, R.; Jeste, D.V.; Nguyen, T.T. The gut microbiome, aging, and longevity: A systematic review. Nutrients 2020, 12, 3759. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arganini, C.; Sinesio, F. Chemosensory impairment does not diminish eating pleasure and appetite in independently living older adults. Maturitas 2015, 82, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Mazza, E.; Ferro, Y.; Pujia, R.; Mare, R.; Maurotti, S.; Montalcini, T.; Pujia, A. Mediterranean Diet In Healthy Aging. J. Nutr. Health Aging. 2021, 25, 1076–1083. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Florian, M.C.; Klose, M.; Sacma, M.; Jablanovic, J.; Knudson, L.; Nattamai, K.J.; Marka, G.; Vollmer, A.; Soller, K.; Sakk, V.; et al. Aging alters the epigenetic asymmetry of HSC division. PLoS Biol. 2018, 16, e2003389. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mittelbrunn, M.; Kroemer, G. Hallmarks of T cell aging. Nat. Immunol. 2021, 22, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liang, Q.; Ren, Y.; Guo, C.; Ge, X.; Wang, L.; Cheng, Q.; Luo, P.; Zhang, Y.; Han, X. Immunosenescence: Molecular mechanisms and diseases. Signal Transduct. Target Ther. 2023, 8, 200. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ajoolabady, A.; Pratico, D.; Tang, D.; Zhou, S.; Franceschi, C.; Ren, J. Immunosenescence and inflammaging: Mechanisms and role in diseases. Ageing Res. Rev. 2024, 101, 102540. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, D.; Añé-Kourí, A.L.; Barzilai, N.; Caruso, C.; Cho, K.H.; Fontana, L.; Franceschi, C.; Frasca, D.; Ledón, N.; Niedernhofer, L.J.; et al. Aging and chronic inflammation: Highlights from a multidisciplinary workshop. Immun. Ageing 2023, 20, 25. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sato, Y. Immune Aging and its Implication for Age-Related Disease Progression. Physiology 2025, 40, 363–373. [Google Scholar] [CrossRef]
- Lagnado, A.; Leslie, J.; Ruchaud-Sparagano, M.H.; Victorelli, S.; Hirsova, P.; Ogrodnik, M.; Collins, A.L.; Vizioli, M.G.; Habiballa, L.; Saretzki, G.; et al. Neutrophils induce paracrine telomere dysfunction and senescence in ROS-dependent manner. EMBO J. 2021, 40, e106048. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Basu, S.; Ulbricht, Y.; Rosol, M. Healthy and Premature Aging of Monocytes and Macrophages. Front. Immunol. 2025, 16, 1506165. [Google Scholar] [CrossRef] [PubMed]
- Malik, J.A.; Zafar, M.A.; Lamba, T.; Nanda, S.; Khan, M.A.; Agrewala, J.N. The impact of aging-induced gut microbiome dysbiosis on dendritic cells and lung diseases. Gut Microbes 2023, 15, 2290643. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vallejo, A.N. CD28 extinction in human T cells: Altered functions and the program of T-cell senescence. Immunol. Rev. 2005, 205, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Frasca, D.; Diaz, A.; Romero, M.; Garcia, D.; Blomberg, B.B. B cell immunosenescence. Annu. Rev. Cell Dev. Biol. 2020, 36, 551–574. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hazeldine, J.; Hampson, P.; Lord, J.M. Reduced release and binding of perforin at the immunological synapse underlies the age-related decline in natural killer cell cytotoxicity. Aging Cell 2012, 11, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, G.; Gupta, S. Natural killing and antibody-dependent cytotoxicity by lymphocyte subpopulations in young and aging humans. J. Clin. Immunol. 1981, 1, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Sender, R.; Fuchs, S.; Milo, R. Revised estimates for the number of human and bacterial cells in the body. PLoS Biol. 2016, 14, e1002533. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Riccio, P.; Rossano, R. The human gut microbiota is neither an organ nor a commensal. FEBS Lett. 2020, 594, 3262–3271. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jazwinski, S.M. The Gut Microbiota and Healthy Aging: A Mini-Review. Gerontology 2018, 64, 513–520. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arike, L.; Hansson, G.C. The densely O-glycosylated MUC2 mucin protects the intestine and provides food for the commensal bacteria. J. Mol. Biol. 2016, 428, 3221–3229. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Magrone, T.; Jirillo, E. The interplay between the gut immune system and microbiota in health and disease: Nutraceutical intervention for restoring intestinal homeostasis. Curr. Pharm. Des. 2013, 19, 1329–1342. [Google Scholar] [CrossRef] [PubMed]
- Odamaki, T.; Kato, K.; Sugahara, H.; Hashikura, N.; Takahashi, S.; Xiao, J.Z.; Abe, F.; Osawa, R. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol. 2016, 16, 90. [Google Scholar] [CrossRef] [PubMed]
- Rampelli, S.; Candela, M.; Turroni, S.; Biagi, E.; Collino, S.; Franceschi, C.; O’Toole, P.W.; Brigidi, P. Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging 2013, 5, 902–912. [Google Scholar] [CrossRef]
- Biagi, E.; Franceschi, C.; Rampelli, S.; Severgnini, M.; Ostan, R.; Turroni, S.; Consolandi, C.; Quercia, S.; Scurti, M.; Monti, D.; et al. Gut microbiota and extreme longevity. Curr. Biol. 2016, 26, 1480–1485. [Google Scholar] [CrossRef] [PubMed]
- Magrone, T.; Jirillo, E. The interaction between gut microbiota and age-related changes in immune function and inflammation. Immun. Ageing 2013, 10, 31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shin, N.R.; Whon, T.W.; Bae, J.W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Garagnani, P.; Vitale, G.; Capri, M.; Salvioli, S. Inflammaging and ‘Garb-aging’. Trends Endocrinol. Metab. 2017, 28, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, A.; Lam, L.; Rajendram, M.; Tamburini, F.; Honeycutt, J.; Pham, T.; Van Treuren, W.; Pruss, K.; Stabler, S.R.; Lugo, K.; et al. A gut commensal-produced metabolite mediates colonization resistance to Salmonella infection. Cell Host Microbe 2018, 24, 296–307.e7. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Litvak, Y.; Mon, K.K.Z.; Nguyen, H.; Chanthavixay, G.; Liou, M.; Velazquez, E.M.; Kutter, L.; Alcantara, M.A.; Byndloss, M.X.; Tiffany, C.R.; et al. Commensal Enterobacteriaceae protect against Salmonella via oxygen competition. Cell Host Microbe 2019, 25, 128–139.e5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schluter, J.; Peled, J.U.; Taylor, B.P.; Markey, K.A.; Smith, M.; Taur, Y.; Niehus, R.; Staffas, A.; Dai, A.; Fontana, E.; et al. Gut microbiota is associated with immune cell dynamics in humans. Nature 2020, 588, 303–307. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martens, E.C.; Neumann, M.; Desai, M.S. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat. Rev. Microbiol. 2018, 16, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K.; Lutgendorff, F.; Phan, V.; Söderholm, J.D.; Sherman, P.M.; McKay, D.M. Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflamm. Bowel Dis. 2010, 16, 1138–1148. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon, N.; Muller, A.; et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 2016, 167, 1339–1353.e21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, N.; Youle, R.J.; Finkel, T. The mitochondrial basis of aging. Mol. Cell 2016, 61, 654–666. [Google Scholar] [CrossRef]
- Wai, T.; Langer, T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 2016, 27, 105–117. [Google Scholar] [CrossRef]
- Palikaras, K.; Lionaki, E.; Tavernarakis, N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol. 2018, 20, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- López-Otín, C.; Galluzzi, L.; Freije, J.M.P.; Madeo, F.; Kroemer, G. Metabolic control of longevity. Cell 2016, 166, 802–821. [Google Scholar] [CrossRef]
- Ryu, D.; Mouchiroud, L.; Andreux, P.A.; Katsyuba, E.; Moullan, N.; Nicolet-Dit-Félix, A.A.; Williams, E.G.; Jha, P.; Lo Sasso, G.; Huzard, D.; et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 2016, 22, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.A.J.; Murphy, M.P. Mitochondria-targeted antioxidants as therapies. Discov. Med. 2011, 11, 106–114. [Google Scholar]
- Andreux, P.A.; van Diemen, M.P.J.; Heezen, M.R.; Auwerx, J.; Rinsch, C.; Groeneveld, G.J.; Singh, A. Mitochondrial function is impaired in the skeletal muscle of pre-frail elderly. Sci. Rep. 2018, 8, 8548. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miwa, S.; Kashyap, S.; Chini, E.; von Zglinicki, T. Mitochondrial dysfunction in cell senescence and aging. J. Clin. Investig. 2022, 132, e158447. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barbagallo, M.; Dominguez, L.J. Magnesium and aging. Curr. Pharm. Des. 2010, 16, 832–839. [Google Scholar] [CrossRef]
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R.; Simons-Morton, D.G.; et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Zinc deficiency. BMJ 2003, 326, 409–410. [Google Scholar] [CrossRef]
- Uriu-Adams, J.Y.; Keen, C.L. Copper, oxidative stress, and human health. Mol. Asp. Med. 2005, 26, 268–298. [Google Scholar] [CrossRef]
- Murata, S.; Ebeling, M.; Meyer, A.C.; Schmidt-Mende, K.; Hammar, N.; Modig, K. Blood biomarker profiles and exceptional longevity: Comparison of centenarians and non-centenarians in a 35-year follow-up of the Swedish AMORIS cohort. Geroscience 2024, 46, 1693–1702, Erratum in: Geroscience 2024, 46, 2793–2794. https://doi.org/10.1007/s11357-023-00996-y. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Dronkelaar, C.; van Velzen, A.; Abdelrazek, M.; van der Steen, A.; Weijs, P.J.M.; Tieland, M. Minerals and Sarcopenia; The Role of Cal-cium, Iron, Magnesium, Phosphorus, Potassium, Selenium, Sodium, and Zinc on Muscle Mass, Muscle Strength, and Physical Per-formance in Older Adults: A Systematic Review. J. Am. Med. Dir. Assoc. 2018, 19, 6–11.e3. [Google Scholar] [CrossRef] [PubMed]
- Tomasiewicz, A.; Polański, J.; Tański, W. Advancing the Understanding of Malnutrition in the Elderly Population: Current Insights and Future Directions. Nutrients 2024, 16, 2502. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sieber, C.C. Malnutrition and sarcopenia. Aging Clin. Exp. Res. 2019, 31, 793–798. [Google Scholar] [CrossRef]
- Verlaan, S.; Aspray, T.J.; Bauer, J.M.; Cederholm, T.; Hemsworth, J.; Hill, T.R.; McPhee, J.S.; Piasecki, M.; Seal, C.; Sieber, C.C.; et al. Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: A case-control study. Clin. Nutr. 2017, 36, 267–274. [Google Scholar] [CrossRef]
- Cochet, C.; Belloni, G.; Buondonno, I.; Chiara, F.; D’Amelio, P. The Role of Nutrition in the Treatment of Sarcopenia in Old Patients: From Restoration of Mitochondrial Activity to Improvement of Muscle Performance, a Systematic Review. Nutrients 2023, 15, 3703. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Horiuchi, M.; Okita, K. Blood flow restricted exercise and vascular function. Int. J. Vasc. Med. 2012, 2012, 543218. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, C.Y.; Mayer, P.K.; Wu, M.Y.; Liu, D.H.; Wu, P.C.; Yen, H.R. The effect of Tai Chi in elderly individuals with sarcopenia and frailty: A systematic review and meta-analysis of randomized controlled trials. Ageing Res. Rev. 2022, 82, 101747. [Google Scholar] [CrossRef] [PubMed]
- Lamberts, S.W.; van den Beld, A.W.; van der Lely, A.J. The endocrinology of aging. Science 1997, 278, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Arlt, W.; Hewison, M. Hormones and immune function: Implications of aging. Aging Cell 2004, 3, 209–216. [Google Scholar] [CrossRef]
- Villareal, D.T.; Morley, J.E. Trophic factors in aging. Should older people receive hormonal replacement therapy? Drugs Aging 1994, 4, 492–509. [Google Scholar] [CrossRef] [PubMed]
- Zitzmann, M. Testosteron –„Benzin” für den alten Mann? [Testosterone-“Fuel” for old men?]. Inn. Med. 2025, 66, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Nawata, H.; Yanase, T.; Goto, K.; Okabe, T.; Ashida, K. Mechanism of action of anti-aging DHEA-S and the replacement of DHEA-S. Mech. Ageing Dev. 2002, 123, 1101–1106. [Google Scholar] [CrossRef]
- Vanitallie, T.B. Frailty in the elderly: Contributions of sarcopenia and visceral protein depletion. Metabolism 2003, 52 (Suppl. S2), 22–26. [Google Scholar] [CrossRef] [PubMed]
- Toth, L.; Czigler, A.; Hegedus, E.; Komaromy, H.; Amrein, K.; Czeiter, E.; Yabluchanskiy, A.; Koller, A.; Orsi, G.; Perlaki, G.; et al. Age-related decline in circulating IGF-1 associates with impaired neurovascular coupling responses in older adults. Geroscience 2022, 44, 2771–2783. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stepanova, N. How advanced is our understanding of the role of intestinal barrier dysfunction in the pathogenesis of recurrent urinary tract infections. Front. Pharmacol. 2022, 13, 780122. [Google Scholar] [CrossRef] [PubMed]
- Brigida, M.; Saviano, A.; Petruzziello, C.; Manetti, L.L.; Migneco, A.; Ojetti, V. Gut microbiome implication and modulation in the management of recurrent urinary tract infection. Pathogens 2024, 13, 1028. [Google Scholar] [CrossRef]
- Sturov, N.V.; Popov, S.V.; Zhukov, V.A.; Lyapunova, T.V.; Rusanova, E.I.; Kobylyanu, G.N. Intestinal microbiota correction in the treatment and prevention of urinary tract infection. Turk. J. Urol. 2022, 48, 406–414. [Google Scholar] [CrossRef]
- Jeney, S.E.S.; Lane, F.; Oliver, A.; Whiteson, K.; Dutta, S. Fecal microbiota transplantation for the treatment of refractory recurrent urinary tract infection. Obstet. Gynecol. 2020, 136, 771–773. [Google Scholar] [CrossRef]
- Virgili, F.; D’Amicis, A.; Ferro-Luzzi, A. Body composition and body hydration in old age estimated by means of skinfold thickness and deuterium dilution. Ann. Hum. Biol. 1992, 19, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, I.; Serra-Prat, M.; Yébenes, J.C. The Role of Water Homeostasis in Muscle Function and Frailty: A Review. Nutrients 2019, 11, 1857. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.; Bunn, D.K.; Downing, A.; Jimoh, F.O.; Groves, J.; Free, C.; Cowap, V.; Potter, J.F.; Hunter, P.R.; Shepstone, L. Which frail older people are dehydrated? The UK DRIE study. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1341–1347. [Google Scholar] [CrossRef]
- Whitfield, T.; Barnhofer, T.; Acabchuk, R.; Cohen, A.; Lee, M.; Schlosser, M.; Arenaza-Urquijo, E.M.; Böttcher, A.; Britton, W.; Coll-Padros, N.; et al. The effect of mindfulness-based programs on cognitive function in adults: A systematic review and meta-analysis. Neuropsychol. Rev. 2022, 32, 677–702. [Google Scholar] [CrossRef]
- Riccio, P.; Rossano, R. Undigested food and gut microbiota may cooperate in the pathogenesis of neuroinflammatory diseases: A matter of barriers and a proposal on the origin of organ specificity. Nutrients 2019, 11, 2714. [Google Scholar] [CrossRef]
- Choi, I.Y.; Piccio, L.; Childress, P.; Bollman, B.; Ghosh, A.; Brandhorst, S.; Suarez, J.; Michalsen, A.; Cross, A.H.; Morgan, T.E.; et al. A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms. Cell Rep. 2016, 15, 2136–2146. [Google Scholar] [CrossRef] [PubMed]
- Paoli, A.; Tinsley, G.; Bianco, A.; Moro, T. The influence of meal frequency and timing on health in humans: The role of fasting. Nutrients 2019, 11, 719. [Google Scholar] [CrossRef]
- Cignarella, F.; Cantoni, C.; Ghezzi, L.; Salter, A.; Dorsett, Y.; Chen, L.; Phillips, D.; Weinstock, G.M.; Fontana, L.; Cross, A.H.; et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab. 2018, 27, 1222–1235.e6. [Google Scholar] [CrossRef]
- Rangan, P.; Choi, I.; Wei, M.; Navarrete, G.; Guen, E.; Brandhorst, S.; Enyati, N.; Pasia, G.; Maesincee, D.; Ocon, V.; et al. Fasting-Mimicking Diet Modulates Microbiota and Promotes Intestinal Regeneration to Reduce Inflammatory Bowel Disease Pathology. Cell Rep. 2019, 26, 2704–2719.e6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Catterson, J.H.; Khericha, M.; Dyson, M.C.; Vincent, A.J.; Callard, R.; Haveron, S.M.; Rajasingam, A.; Ahmad, M.; Partridge, L. Short-term, intermittent fasting induces long-lasting gut health and TOR-independent lifespan extension. Curr. Biol. 2018, 28, 1714–1724.e4. [Google Scholar] [CrossRef]
- Surugiu, R.; Iancu, M.A.; Vintilescu, Ș.B.; Stepan, M.D.; Burdusel, D.; Genunche-Dumitrescu, A.V.; Dogaru, C.-A.; Dumitra, G.G. Molecular mechanisms of healthy aging: The role of caloric restriction, intermittent fasting, Mediterranean diet, and ketogenic diet—A scoping review. Nutrients 2024, 16, 2878. [Google Scholar] [CrossRef]
- Riccio, P. Vitamin D, the sunshine molecule that makes us strong: What does its current global deficiency imply? Nutrients 2024, 16, 2015. [Google Scholar] [CrossRef]
- Riccio, P.; Rossano, R. Diet, gut microbiota, and vitamins D + A in multiple sclerosis. Neurotherapeutics 2018, 15, 75–91. [Google Scholar] [CrossRef] [PubMed]
- Minich, D.M.; Henning, M.; Darley, C.; Fahoum, M.; Schuler, C.B.; Frame, J. Is melatonin the “next vitamin D”?: A review of emerging science, clinical uses, safety, and dietary supplements. Nutrients 2022, 14, 3934. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.B.; Ali, A.; Bilal, M.; Rashid, S.M.; Wani, A.B.; Bhat, R.R.; Rehman, M.U. Melatonin and health: Insights of melatonin action, biological functions, and associated disorders. Cell. Mol. Neurobiol. 2023, 43, 2437–2458. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gallagher, J.C. Vitamin D and aging. Endocrinol. Metab. Clin. N. Am. 2013, 42, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Grivas, T.B.; Savvidou, O.D. Melatonin the “light of night” in human biology and adolescent idiopathic scoliosis. Scoliosis 2007, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Magrone, T.; Jirillo, E. Prebiotics and probiotics in aging population: Effects on the immune-gut microbiota axis. In Molecular Basis of Nutrition and Aging; Malavolta, M., Mocchegiani, E., Eds.; Academic Press: London, UK, 2016; pp. 693–705. [Google Scholar]
- Amara, F.; Berbenni, M.; Fragni, M.; Leoni, G.; Viggiani, S.; Ippolito, V.M.; Larocca, M.; Rossano, R.; Alberghina, L.; Riccio, P.; et al. Neuroprotection by Cocktails of Dietary Antioxidants under Conditions of Nerve Growth Factor Deprivation. Oxidative Med. Cell. Longevity. 2015, 2015, 217258. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Gasparri, C.; Barrile, G.C.; Battaglia, S.; Cavioni, A.; Giusti, R.; Mansueto, F.; Moroni, A.; Nannipieri, F.; Patelli, Z.; et al. Effectiveness of a novel food composed of leucine, omega-3 fatty acids and probiotic Lactobacillus paracasei PS23 for the treatment of sarcopenia in elderly subjects: A 2-month randomized double-blind placebo-controlled trial. Nutrients 2022, 14, 4566. [Google Scholar] [CrossRef]
Cause/Principle | Description |
---|---|
Cellular and Molecular Damage | Accumulation of oxidative stress, DNA mutations, telomere shortening, and protein misfolding, leading to functional decline and aging. |
Molecular Mechanistic Principle | Frequency of damage and failure of 100% maintenance/repair. |
Genetic Programming | No fixed genetic “clock” for the lifespan. Apoptosis and aging-related genes exist but do not “cause” aging directly. Aging is not genetically programmed. |
Species and Tissue Differences | Aging varies among species, individuals, tissues, and cell types. Different aging rates within and across organisms. Aging is heterogeneous at every biological level. |
Entropy/Thermodynamic Limits | Biological systems tend toward disorder, and this makes long-term homeostasis unsustainable. |
Country/Region | Median Age (years) | Population 80+ (%) |
---|---|---|
European Union (average) | 44.4 | 6.1 |
Italy | 48.4 | 7.6 |
Mexico | 29.2 | 0.9 |
Israel | 30.4 | 2.0 |
Philippines | 25.7 | 0.47 |
India | 28.2 | 0.75 |
Japan | 48.6 | 10.0 |
China | 39.0 | 2.4 |
United States | 38.5 | 3.8 |
Brazil | 34.2 | 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riccio, P.; Jirillo, E. Nutrition Facts in the Over-Eighty Population: A Narrative Review. Nutrients 2025, 17, 2740. https://doi.org/10.3390/nu17172740
Riccio P, Jirillo E. Nutrition Facts in the Over-Eighty Population: A Narrative Review. Nutrients. 2025; 17(17):2740. https://doi.org/10.3390/nu17172740
Chicago/Turabian StyleRiccio, Paolo, and Emilio Jirillo. 2025. "Nutrition Facts in the Over-Eighty Population: A Narrative Review" Nutrients 17, no. 17: 2740. https://doi.org/10.3390/nu17172740
APA StyleRiccio, P., & Jirillo, E. (2025). Nutrition Facts in the Over-Eighty Population: A Narrative Review. Nutrients, 17(17), 2740. https://doi.org/10.3390/nu17172740