Cachexia Phenotyping Through Morphofunctional Assessment and Mitocondrial Biomarkers (GDF-15 and PGC-1α) in Idiopathic Pulmonary Fibrosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Morphofunctional Assessment
2.3. Diagnostic Criteria for Cachexia
2.4. Mitocondrial Biomarkers
2.5. Statistical Analysis
3. Results
3.1. Morphofunctional and Mitocondrial Biomarkers Characteristics Between Cachectic and Non-Cachectic According to Different Cachexia Criteria
3.2. Correlation Between Biomarker, Morphofunctional Parameters and Cachexia Criteria
3.3. Cut-Off Points for Parameters of Cachexia Syndrome
3.4. Survival Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASMI | Appendicular Skeletal Muscle Index |
ATS/ERS/JRS/ALAT | American Thoracic Society/European Respiratory Society/Japanese Respiratory Society/Latin American Thoracic Association |
AUC | Area Under the Curve |
BC | Body Composition |
BCM | Body Cell Mass |
BIVA | Bioelectrical Impedance Vector Analysis |
BMI | Body Mass Index |
CI | Confidence Interval |
COPD | Chronic Obstructive Pulmonary Disease |
CRP | C-Reactive Protein |
CT | Computed Tomography |
DLCO | Diffusion Capacity of the lung for Carbon Monoxide |
EWGSOP2 | European Working Group on Sarcopenia in Older People 2 |
FFM | Fat-Free Mass |
FM | Fat Mass |
FVC | Forced Vital Capacity |
GDF-15 | Growth Differentiation Factor 15 |
HGS | Hand Grip Strength |
HR | Hazard Ratio |
HU | Hounsfield Units |
IMAT | Intramuscular Adipose Tissue |
IPF | Idiopathic Pulmonary Fibrosis |
MFA | Morphofunctional Assessment |
NU | Nutritional Ultrasound |
NAK | Normalized Amplitude of K |
OR | Odds Ratio |
Pha | Phase Angle |
PGC-1α | Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-Alpha |
RF_CSA | Rectus Femoris Cross-Sectional Area |
RF-Y-Axis | Y-Axis of the Rectus Femoris |
ROC | Receiver Operating Characteristic |
SAT | Subcutaneous Adipose Tissue |
SD | Standard Deviation |
SMI | Skeletal Muscle Index |
SMI_T12CT | Skeletal Muscle Index at T12 |
SPha | Standardized Phase Angle |
T12CT | Computed Tomography at T12 vertebral level |
TBW | Total Body Water |
TUG | Timed Up and Go test |
VAT | Visceral Adipose Tissue |
VPN | Negative Predictive Value |
References
- Lederer, D.J.; Martinez, F.J. Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2018, 378, 1811–1823. [Google Scholar] [CrossRef]
- Raghu, G.; Collard, H.R.; Egan, J.J.; Martinez, F.J.; Behr, J.; Brown, K.K.; Colby, T.V.; Cordier, J.-F.; Flaherty, K.R.; Lasky, J.A.; et al. An Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management. Am. J. Respir. Crit. Care Med. 2011, 183, 788–824. [Google Scholar] [CrossRef]
- Zheng, Q.; Cox, I.A.; Campbell, J.A.; Xia, Q.; Otahal, P.; De Graaff, B.; Corte, T.J.; Teoh, A.K.Y.; Walters, E.H.; Palmer, A.J. Mortality and survival in idiopathic pulmonary fibrosis: A systematic review and meta-analysis. ERJ Open Res. 2022, 8, 00591–02021. [Google Scholar] [CrossRef] [PubMed]
- Petnak, T.; Lertjitbanjong, P.; Thongprayoon, C.; Moua, T. Impact of Antifibrotic Therapy on Mortality and Acute Exacerbation in Idiopathic Pulmonary Fibrosis. Chest 2021, 160, 1751–1763. [Google Scholar] [CrossRef]
- Huh, J.-Y.; Lee, J.H.; Song, J.W. Efficacy and safety of combination therapy with pirfenidone and nintedanib in patients with idiopathic pulmonary fibrosis. Front. Pharmacol. 2023, 14, 1301923. [Google Scholar] [CrossRef] [PubMed]
- Ozaltin, B.; Chapman, R.; Arfeen, M.Q.U.; Fitzpatick, N.; Hemingway, H.; Direk, K.; Jacob, J. Delineating excess comorbidities in idiopathic pulmonary fibrosis: An observational study. Respir. Res. 2024, 25, 249. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhou, D.; Wang, J.; Yang, Y.; Chen, D.; He, F.; Li, Y. A Causal Atlas on Comorbidities in Idiopathic Pulmonary Fibrosis. CHEST 2023, 164, 429–440. [Google Scholar] [CrossRef]
- Kreuter, M.; Ehlers-Tenenbaum, S.; Palmowski, K.; Bruhwyler, J.; Oltmanns, U.; Muley, T.; Heussel, C.P.; Warth, A.; Kolb, M.; Herth, F.J.F. Impact of Comorbidities on Mortality in Patients with Idiopathic Pulmonary Fibrosis. PLoS ONE 2016, 11, e0151425. [Google Scholar] [CrossRef]
- Waxman, A.B.; Elia, D.; Adir, Y.; Humbert, M.; Harari, S. Recent advances in the management of pulmonary hypertension with interstitial lung disease. Eur. Respir. Rev. 2022, 31, 210220. [Google Scholar] [CrossRef]
- Ruaro, B.; Pozzan, R.; Confalonieri, P.; Tavano, S.; Hughes, M.; Matucci Cerinic, M.; Baratella, E.; Zanatta, E.; Lerda, S.; Geri, P.; et al. Gastroesophageal Reflux Disease in Idiopathic Pulmonary Fibrosis: Viewer or Actor? To Treat or Not to Treat? Pharmaceuticals 2022, 15, 1033. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, H.J.; Kim, S.; Kim, Y.-J.; Kim, H.C. Epidemiology and comorbidities in idiopathic pulmonary fibrosis: A nationwide cohort study. BMC Pulm. Med. 2023, 23, 54. [Google Scholar] [CrossRef]
- Jouneau, S.; Rousseau, C.; Lederlin, M.; Lescoat, A.; Kerjouan, M.; Chauvin, P.; Luque-Paz, D.; Guillot, S.; Oger, E.; Vernhet, L.; et al. Malnutrition and decreased food intake at diagnosis are associated with hospitalization and mortality of idiopathic pulmonary fibrosis patients. Clin. Nutr. 2022, 41, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Çinkooğlu, A.; Bayraktaroğlu, S.; Ufuk, F.; Unat, Ö.S.; Köse, T.; Savaş, R.; Bishop, N.M. Reduced CT-derived erector spinae muscle area: A poor prognostic factor for short- and long-term outcomes in idiopathic pulmonary fibrosis patients. Clin. Radiol. 2023, 78, 904–911. [Google Scholar] [CrossRef]
- Sridhar, M.; Bodduluri, S.; O’Hare, L.; Blumhoff, S.; Acosta Lara, M.D.P.; De Andrade, J.A.; Kim, Y.-I.; Luckhardt, T.; McDonald, M.; Kulkarni, T. Association of musculoskeletal involvement with lung function and mortality in patients with idiopathic pulmonary fibrosis. Respir. Res. 2024, 25, 81. [Google Scholar] [CrossRef]
- Mochizuka, Y.; Suzuki, Y.; Kono, M.; Hasegawa, H.; Hashimoto, D.; Yokomura, K.; Inoue, Y.; Yasui, H.; Hozumi, H.; Karayama, M.; et al. Geriatric Nutritional Risk Index is a predictor of tolerability of antifibrotic therapy and mortality risk in patients with idiopathic pulmonary fibrosis. Respirology 2023, 28, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Zhou, S.; Song, M.; Ouyang, X.; Tan, Y.; Peng, Y.; Zhou, Z.; Peng, H. Prevalence and prognostic value of malnutrition in patients with IPF using three scoring systems. Respir. Med. 2024, 233, 107774. [Google Scholar] [CrossRef]
- Faverio, P.; Bocchino, M.; Caminati, A.; Fumagalli, A.; Gasbarra, M.; Iovino, P.; Petruzzi, A.; Scalfi, L.; Sebastiani, A.; Stanziola, A.A.; et al. Nutrition in Patients with Idiopathic Pulmonary Fibrosis: Critical Issues Analysis and Future Research Directions. Nutrients 2020, 12, 1131. [Google Scholar] [CrossRef] [PubMed]
- Faverio, P.; Fumagalli, A.; Conti, S.; Madotto, F.; Bini, F.; Harari, S.; Mondoni, M.; Oggionni, T.; Barisione, E.; Ceruti, P.; et al. Sarcopenia in idiopathic pulmonary fibrosis: A prospective study exploring prevalence, associated factors and diagnostic approach. Respir. Res. 2022, 23, 228. [Google Scholar] [CrossRef]
- Anker, S.D.; John, M.; Pedersen, P.U.; Raguso, C.; Cicoira, M.; Dardai, E.; Laviano, A.; Ponikowski, P.; Schols, A.M.W.J.; German Society for Nutritional Medicine; et al. ESPEN Guidelines on Enteral Nutrition: Cardiology and Pulmonology. Clin. Nutr. 2006, 25, 311–318. [Google Scholar] [CrossRef]
- Sgalla, G.; Iovene, B.; Calvello, M.; Ori, M.; Varone, F.; Richeldi, L. Idiopathic pulmonary fibrosis: Pathogenesis and management. Respir. Res. 2018, 19, 32. [Google Scholar] [CrossRef]
- Ferrer, M.; Anthony, T.G.; Ayres, J.S.; Biffi, G.; Brown, J.C.; Caan, B.J.; Cespedes Feliciano, E.M.; Coll, A.P.; Dunne, R.F.; Goncalves, M.D.; et al. Cachexia: A systemic consequence of progressive, unresolved disease. Cell 2023, 186, 1824–1845. [Google Scholar] [CrossRef]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Farkas, J.; von Haehling, S.; Kalantar-Zadeh, K.; Morley, J.E.; Anker, S.D.; Lainscak, M. Cachexia as a major public health problem: Frequent, costly, and deadly. J. Cachexia Sarcopenia Muscle 2013, 4, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Schols, A.M.W.J. Pulmonary cachexia. Int. J. Cardiol. 2002, 85, 101–110. [Google Scholar] [CrossRef]
- Wagner, P.D. Possible mechanisms underlying the development of cachexia in COPD. Eur. Respir. J. 2008, 31, 492–501. [Google Scholar] [CrossRef]
- De Brandt, J.; Beijers, R.J.; Chiles, J.; Maddocks, M.; McDonald, M.-L.N.; Schols, A.M.; Nyberg, A. Update on the Etiology, Assessment, and Management of COPD Cachexia: Considerations for the Clinician. Int. J. Chron. Obstruct. Pulmon. Dis. 2022, 17, 2957–2976. [Google Scholar] [CrossRef]
- Lainscak, M.; Zupanic, T.; Omersa, D.; Erzen, I.; Farkas, J. Prevalence of Cachexia and Outcomes in Patients With Chronic Diseases: A National Database Analysis of 5 484 103 Hospitalisations. J. Cachexia Sarcopenia Muscle 2025, 16, e13688. [Google Scholar] [CrossRef]
- Sanders, K.J.C.; Kneppers, A.E.M.; Van De Bool, C.; Langen, R.C.J.; Schols, A.M.W.J. Cachexia in chronic obstructive pulmonary disease: New insights and therapeutic perspective: Cachexia in COPD. J. Cachexia Sarcopenia Muscle 2016, 7, 5–22. [Google Scholar] [CrossRef]
- Alahmad, M.A.M.; Gibson, C.A. The impact of pulmonary cachexia on inpatient outcomes: A national study. Ann. Thorac. Med. 2023, 18, 156–161. [Google Scholar] [CrossRef]
- Kwan, H.Y.; Maddocks, M.; Nolan, C.M.; Jones, S.E.; Patel, S.; Barker, R.E.; Kon, S.S.C.; Polkey, M.I.; Cullinan, P.; Man, W.D.-C. The prognostic significance of weight loss in chronic obstructive pulmonary disease-related cachexia: A prospective cohort study. J. Cachexia Sarcopenia Muscle 2019, 10, 1330–1338. [Google Scholar] [CrossRef] [PubMed]
- Schakman, O.; Dehoux, M.; Bouchuari, S.; Delaere, S.; Lause, P.; Decroly, N.; Shoelson, S.E.; Thissen, J.-P. Role of IGF-I and the TNFα/NF-κB pathway in the induction of muscle atrogenes by acute inflammation. Am. J. Physiol.-Endocrinol. Metab. 2012, 303, E729–E739. [Google Scholar] [CrossRef]
- Petruzzelli, M.; Schweiger, M.; Schreiber, R.; Campos-Olivas, R.; Tsoli, M.; Allen, J.; Swarbrick, M.; Rose-John, S.; Rincon, M.; Robertson, G.; et al. A Switch from White to Brown Fat Increases Energy Expenditure in Cancer-Associated Cachexia. Cell Metab. 2014, 20, 433–447. [Google Scholar] [CrossRef]
- Burfeind, K.G.; Zhu, X.; Norgard, M.A.; Levasseur, P.R.; Huisman, C.; Buenafe, A.C.; Olson, B.; Michaelis, K.A.; Torres, E.R.; Jeng, S.; et al. Circulating myeloid cells invade the central nervous system to mediate cachexia during pancreatic cancer. eLife 2020, 9, e54095. [Google Scholar] [CrossRef] [PubMed]
- Mosialou, I.; Shikhel, S.; Liu, J.-M.; Maurizi, A.; Luo, N.; He, Z.; Huang, Y.; Zong, H.; Friedman, R.A.; Barasch, J.; et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature 2017, 543, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Shalhoub, J.; Falck-Hansen, M.A.; Davies, A.H.; Monaco, C. Innate immunity and monocyte-macrophage activation in atherosclerosis. J. Inflamm. 2011, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Abu Shelbayeh, O.; Arroum, T.; Morris, S.; Busch, K.B. PGC-1α Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response. Antioxidants 2023, 12, 1075. [Google Scholar] [CrossRef]
- Tsoli, M.; Schweiger, M.; Vanniasinghe, A.S.; Painter, A.; Zechner, R.; Clarke, S.; Robertson, G. Depletion of White Adipose Tissue in Cancer Cachexia Syndrome Is Associated with Inflammatory Signaling and Disrupted Circadian Regulation. PLoS ONE 2014, 9, e92966. [Google Scholar] [CrossRef]
- Winter, A.; MacAdams, J.; Chevalier, S. Normal protein anabolic response to hyperaminoacidemia in insulin-resistant patients with lung cancer cachexia. Clin. Nutr. 2012, 31, 765–773. [Google Scholar] [CrossRef]
- Verhamme, F.M.; Freeman, C.M.; Brusselle, G.G.; Bracke, K.R.; Curtis, J.L. GDF-15 in Pulmonary and Critical Care Medicine. Am. J. Respir. Cell Mol. Biol. 2019, 60, 621–628. [Google Scholar] [CrossRef]
- Kleinertz, H.; Hepner-Schefczyk, M.; Ehnert, S.; Claus, M.; Halbgebauer, R.; Boller, L.; Huber-Lang, M.; Cinelli, P.; Kirschning, C.; Flohé, S.; et al. Circulating growth/differentiation factor 15 is associated with human CD56bright natural killer cell dysfunction and nosocomial infection in severe systemic inflammation. EBioMedicine 2019, 43, 380–391. [Google Scholar] [CrossRef]
- Hysa, E.; Gotelli, E.; Campitiello, R.; Paolino, S.; Pizzorni, C.; Casabella, A.; Sulli, A.; Smith, V.; Cutolo, M. Vitamin D and Muscle Status in Inflammatory and Autoimmune Rheumatic Diseases: An Update. Nutrients 2024, 16, 2329. [Google Scholar] [CrossRef]
- Evans, W.J.; Morley, J.E.; Argilés, J.; Bales, C.; Baracos, V.; Guttridge, D.; Jatoi, A.; Kalantar-Zadeh, K.; Lochs, H.; Mantovani, G.; et al. Cachexia: A new definition. Clin. Nutr. 2008, 27, 793–799. [Google Scholar] [CrossRef]
- Martin, L.; Birdsell, L.; MacDonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer Cachexia in the Age of Obesity: Skeletal Muscle Depletion Is a Powerful Prognostic Factor, Independent of Body Mass Index. J. Clin. Oncol. 2013, 31, 1539–1547. [Google Scholar] [CrossRef]
- García Almeida, J.M.; García García, C.; Vegas Aguilar, I.M.; Bellido Castañeda, V.; Bellido Guerrero, D. Morphofunctional assessment of patient nutritional status: A global approach. Nutr. Hosp. 2021, 38, 592–600. Available online: https://www.nutricionhospitalaria.org/articles/03378/show (accessed on 20 June 2025).
- García-Almeida, J.M.; García-García, C.; Ballesteros-Pomar, M.D.; Olveira, G.; Lopez-Gomez, J.J.; Bellido, V.; Bretón Lesmes, I.; Burgos, R.; Sanz-Paris, A.; Matia-Martin, P.; et al. Expert Consensus on Morphofunctional Assessment in Disease-Related Malnutrition. Grade Review and Delphi Study. Nutrients 2023, 15, 612. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, A.; Nigrelli, S.; Caberlotto, A.; Bottazzo, S.; Rossi, B.; Pillon, L.; Maggiore, Q. Bivariate normal values of the bioelectrical impedance vector in adult and elderly populations. Am. J. Clin. Nutr. 1995, 61, 269–270. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, A.; Rossi, B.; Pillon, L.; Bucciante, G. A new method for monitoring body fluid variation by bioimpedance analysis: The RXc graph. Kidney Int. 1994, 46, 534–539. [Google Scholar] [CrossRef] [PubMed]
- García-Almeida, J.M.; García-García, C.; Vegas-Aguilar, I.M.; Ballesteros Pomar, M.D.; Cornejo-Pareja, I.M.; Fernández Medina, B.; De Luis Román, D.A.; Bellido Guerrero, D.; Bretón Lesmes, I.; Tinahones Madueño, F.J. Nutritional ultrasound®: Conceptualisation, technical considerations and standardisation. Endocrinol. Diabetes Nutr. 2023, 70, 74–84. [Google Scholar] [CrossRef]
- Fernández-Jiménez, R.; Sanmartín-Sánchez, A.; Cabrera-César, E.; Espíldora-Hernández, F.; Vegas-Aguilar, I.; Amaya-Campos, M.D.M.; Palmas-Candia, F.X.; Claro-Brandner, M.; Olivares-Alcolea, J.; Simón-Frapolli, V.J.; et al. IA-Body Composition CT at T12 in Idiopathic Pulmonary Fibrosis: Diagnosing Sarcopenia and Correlating with Other Morphofunctional Assessment Techniques. Nutrients 2024, 16, 2885. [Google Scholar] [CrossRef]
- Herault, A.; Lévêque, E.; Draye-Carbonnier, S.; Decazes, P.; Zduniak, A.; Modzelewski, R.; Libraire, J.; Achamrah, N.; Ménard, A.-L.; Lenain, P.; et al. High prevalence of pre-existing sarcopenia in critically ill patients with hematologic malignancies admitted to the intensive care unit for sepsis or septic shock. Clin. Nutr. ESPEN 2023, 55, 373–383. [Google Scholar] [CrossRef]
- Brath, M.S.G.; Sahakyan, M.; Mark, E.B.; Frøkjær, J.B.; Rasmussen, H.H.; Østergaard, L.R.; Weinreich, U.M. Association between thoracic and third lumbar CT-derived muscle mass and density in Caucasian patients without chronic disease: A proof-of-concept study. Eur. Radiol. Exp. 2023, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Molwitz, I.; Ozga, A.K.; Gerdes, L.; Ungerer, A.; Köhler, D.; Ristow, I.; Leiderer, M.; Adam, G.; Yamamura, J. Prediction of abdominal CT body composition parameters by thoracic measurements as a new approach to detect sarcopenia in a COVID-19 cohort. Sci. Rep. 2022, 12, 6443. [Google Scholar] [CrossRef] [PubMed]
- Salhöfer, L.; Bonella, F.; Meetschen, M.; Umutlu, L.; Forsting, M.; Schaarschmidt, B.M.; Opitz, M.K.; Kleesiek, J.; Hosch, R.; Koitka, S.; et al. Automated 3D-Body Composition Analysis as a Predictor of Survival in Patients With Idiopathic Pulmonary Fibrosis. J. Thorac. Imaging 2024, 40, e0803. Available online: https://journals.lww.com/10.1097/RTI.0000000000000803 (accessed on 20 June 2025).
- Hong, J.H.; Hong, H.; Choi, Y.R.; Kim, D.H.; Kim, J.Y.; Yoon, J.-H.; Yoon, S.H. CT analysis of thoracolumbar body composition for estimating whole-body composition. Insights Imaging 2023, 14, 69. [Google Scholar] [CrossRef]
- Nemec, U.; Heidinger, B.; Sokas, C.; Chu, L.; Eisenberg, R.L. Diagnosing Sarcopenia on Thoracic Computed Tomography. Acad. Radiol. 2017, 24, 1154–1161. [Google Scholar] [CrossRef] [PubMed]
- Sanmartín-Sánchez, A.; Fernández-Jiménez, R.; Cabrera-César, E.; Espíldora-Hernández, F.; Vegas-Aguilar, I.; Amaya-Campos, M.D.M.; Palmas-Candia, F.X.; Olivares-Alcolea, J.; Simón-Frapolli, V.J.; Cornejo-Pareja, I.; et al. The Nutritional Phenotyping of Idiopathic Pulmonary Fibrosis Through Morphofunctional Assessment: A Bicentric Cross-Sectional Case–Control Study. Life 2025, 15, 516. [Google Scholar] [CrossRef]
- Palmas, F.; Ciudin, A.; Guerra, R.; Eiroa, D.; Espinet, C.; Roson, N.; Burgos, R.; Simó, R. Comparison of computed tomography and dual-energy X-ray absorptiometry in the evaluation of body composition in patients with obesity. Front. Endocrinol. 2023, 14, 1161116. [Google Scholar] [CrossRef]
- Soria-Utrilla, V.; Sánchez-Torralvo, F.J.; Palmas-Candia, F.X.; Fernández-Jiménez, R.; Mucarzel-Suarez-Arana, F.; Guirado-Peláez, P.; Olveira, G.; García-Almeida, J.M.; Burgos-Peláez, R. AI-Assisted Body Composition Assessment Using CT Imaging in Colorectal Cancer Patients: Predictive Capacity for Sarcopenia and Malnutrition Diagnosis. Nutrients 2024, 16, 1869. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Kear, B.M.; Guck, T.P.; McGaha, A.L. Timed Up and Go (TUG) Test: Normative Reference Values for Ages 20 to 59 Years and Relationships With Physical and Mental Health Risk Factors. J. Prim. Care Community Health 2017, 8, 9–13. [Google Scholar] [CrossRef]
- Kalininskiy, A.; Rackow, A.R.; Nagel, D.; Croft, D.; McGrane-Minton, H.; Kottmann, R.M. Association between weight loss and mortality in idiopathic pulmonary fibrosis. Respir. Res. 2022, 23, 377. [Google Scholar] [CrossRef]
- Faverio, P.; Fumagalli, A.; Conti, S.; Madotto, F.; Bini, F.; Harari, S.; Mondoni, M.; Oggionni, T.; Barisione, E.; Ceruti, P.; et al. Nutritional assessment in idiopathic pulmonary fibrosis: A prospective multicentre study. ERJ Open Res. 2022, 8, 00443-2021. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Yoshimura, K.; Enomoto, Y.; Yasui, H.; Hozumi, H.; Karayama, M.; Furuhashi, K.; Enomoto, N.; Fujisawa, T.; Nakamura, Y.; et al. Distinct profile and prognostic impact of body composition changes in idiopathic pulmonary fibrosis and idiopathic pleuroparenchymal fibroelastosis. Sci. Rep. 2018, 8, 14074. [Google Scholar] [CrossRef]
- De Benedetto, F.; Marinari, S.; De Blasio, F. Phase angle in assessment and monitoring treatment of individuals with respiratory disease. Rev. Endocr. Metab. Disord. 2023, 24, 491–502. [Google Scholar] [CrossRef]
- Tanimura, K.; Sato, S.; Fuseya, Y.; Hasegawa, K.; Uemasu, K.; Sato, A.; Oguma, T.; Hirai, T.; Mishima, M.; Muro, S. Quantitative Assessment of Erector Spinae Muscles in Patients with Chronic Obstructive Pulmonary Disease. Novel Chest Computed Tomography–derived Index for Prognosis. Ann. Am. Thorac. Soc. 2016, 13, 334–341. [Google Scholar] [CrossRef]
- Von Haehling, S.; Anker, S.D. Cachexia as a major underestimated and unmet medical need: Facts and numbers. J. Cachexia Sarcopenia Muscle 2010, 1, 1–5. [Google Scholar] [CrossRef]
- Dewys, W.D.; Begg, C.; Lavin, P.T.; Band, P.R.; Bennett, J.M.; Bertino, J.R.; Cohen, M.H.; Douglass, H.O.; Engstrom, P.F.; Ezdinli, E.Z.; et al. Prognostic effect of weight loss prior tochemotherapy in cancer patients. Am. J. Med. 1980, 69, 491–497. [Google Scholar] [CrossRef]
- Von Haehling, S.; Anker, M.S.; Anker, S.D. Prevalence and clinical impact of cachexia in chronic illness in Europe, USA, and Japan: Facts and numbers update 2016. J. Cachexia Sarcopenia Muscle 2016, 7, 507–509. [Google Scholar] [CrossRef]
- Ko, S.J.; Choi, S.M.; Han, K.-D.; Lee, C.-H.; Lee, J. All-cause mortality of patients with idiopathic pulmonary fibrosis: A nationwide population-based cohort study in Korea. Sci. Rep. 2021, 11, 15145. [Google Scholar] [CrossRef]
- Khor, Y.H.; Ng, Y.; Barnes, H.; Goh, N.S.L.; McDonald, C.F.; Holland, A.E. Prognosis of idiopathic pulmonary fibrosis without anti-fibrotic therapy: A systematic review. Eur. Respir. Rev. 2020, 29, 190158. [Google Scholar] [CrossRef] [PubMed]
- Kiddle, S.J.; Whittaker, H.R.; Seaman, S.R.; Quint, J.K. Prediction of five-year mortality after COPD diagnosis using primary care records. PLoS ONE 2020, 15, e0236011. [Google Scholar] [CrossRef]
- Miniati, M.; Monti, S.; Pavlickova, I.; Bottai, M. Survival in COPD: Impact of Lung Dysfunction and Comorbidities. Medicine 2014, 93, e76. [Google Scholar] [CrossRef]
- Lindberg, A.; Larsson, L.-G.; Muellerova, H.; Rönmark, E.; Lundbäck, B. Up-to-date on mortality in COPD-report from the OLIN COPD study. BMC Pulm. Med. 2012, 12, 1. [Google Scholar] [CrossRef]
- Celli, B.R.; Cote, C.G.; Marin, J.M.; Casanova, C.; Montes De Oca, M.; Mendez, R.A.; Pinto Plata, V.; Cabral, H.J. The Body-Mass Index, Airflow Obstruction, Dyspnea, and Exercise Capacity Index in Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2004, 350, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Vancheri, C. Common pathways in idiopathic pulmonary fibrosis and cancer. Eur. Respir. Rev. 2013, 22, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Vancheri, C.; Failla, M.; Crimi, N.; Raghu, G. Idiopathic pulmonary fibrosis: A disease with similarities and links to cancer biology. Eur. Respir. J. 2010, 35, 496–504. [Google Scholar] [CrossRef]
- Tzouvelekis, A.; Gomatou, G.; Bouros, E.; Trigidou, R.; Tzilas, V.; Bouros, D. Common Pathogenic Mechanisms Between Idiopathic Pulmonary Fibrosis and Lung Cancer. Chest 2019, 156, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Koehler, F.; Doehner, W.; Hoernig, S.; Witt, C.; Anker, S.D.; John, M. Anorexia in chronic obstructive pulmonary disease—Association to cachexia and hormonal derangement. Int. J. Cardiol. 2007, 119, 83–89. [Google Scholar] [CrossRef]
- Mourtzakis, M.; Prado, C.M.M.; Lieffers, J.R.; Reiman, T.; McCargar, L.J.; Baracos, V.E. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl. Physiol. Nutr. Metab. 2008, 33, 997–1006. [Google Scholar] [CrossRef]
- Cho, Y.H.; Do, K.-H.; Chae, E.J.; Choi, S.H.; Jo, K.-W.; Lee, S.-O.; Hong, S.-B. Association of Chest CT-Based Quantitative Measures of Muscle and Fat with Post-Lung Transplant Survival and Morbidity: A Single Institutional Retrospective Cohort Study in Korean Population. Korean J. Radiol. 2019, 20, 522. [Google Scholar] [CrossRef]
- Oh, J.K.; Ahn, M.I.; Kim, H.L.; Park, S.H.; Shin, E. Retrodiaphragmatic portion of the lung: How deep is the posterior costophrenic sulcus on posteroanterior chest radiography? Clin. Radiol. 2009, 64, 786–791. [Google Scholar] [CrossRef]
- Cheng, X.; Jiang, S.; Pan, B.; Xie, W.; Meng, J. Ectopic and visceral fat deposition in aging, obesity, and idiopathic pulmonary fibrosis: An interconnected role. Lipids Health Dis. 2023, 22, 201. [Google Scholar] [CrossRef]
- Yi, X.; Liu, H.; Zhu, L.; Wang, D.; Xie, F.; Shi, L.; Mei, J.; Jiang, X.; Zeng, Q.; Hu, P.; et al. Myosteatosis predicting risk of transition to severe COVID-19 infection. Clin. Nutr. 2022, 41, 3007–3015. [Google Scholar] [CrossRef]
- Aro, R.; Mäkäräinen-Uhlbäck, E.; Ämmälä, N.; Rautio, T.; Ohtonen, P.; Saarnio, J.; Meriläinen, S. The impact of sarcopenia and myosteatosis on postoperative outcomes and 5-year survival in curatively operated colorectal cancer patients—A retrospective register study. Eur. J. Surg. Oncol. 2020, 46, 1656–1662. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.G.; Villalba, J.A.; Liang, X.; Xiong, K.; Tsoyi, K.; Ith, B.; Ayaub, E.A.; Tatituri, R.V.; Byers, D.E.; Hsu, F.-F.; et al. Palmitic Acid–Rich High-Fat Diet Exacerbates Experimental Pulmonary Fibrosis by Modulating Endoplasmic Reticulum Stress. Am. J. Respir. Cell Mol. Biol. 2019, 61, 737–746. [Google Scholar] [CrossRef]
- Brandao-Rangel, M.A.R.; Moraes-Ferreira, R.; Oliveira-Junior, M.C.; Santos-Dias, A.; Bachi, A.L.L.; Gabriela-Pereira, G.; De Oliveira Freitas, S.; Araújo-Rosa, A.C.; Oliveira, L.V.F.; Frison, C.R.; et al. Pulmonary function changes in older adults with and without metabolic syndrome. Sci. Rep. 2021, 11, 17337. [Google Scholar] [CrossRef] [PubMed]
- Lumeng, C.N.; Liu, J.; Geletka, L.; Delaney, C.; Delproposto, J.; Desai, A.; Oatmen, K.; Martinez-Santibanez, G.; Julius, A.; Garg, S.; et al. Aging Is Associated with an Increase in T Cells and Inflammatory Macrophages in Visceral Adipose Tissue. J. Immunol. 2011, 187, 6208–6216. [Google Scholar] [CrossRef]
- Park, Y.H.; Oh, E.Y.; Han, H.; Yang, M.; Park, H.J.; Park, K.H.; Lee, J.-H.; Park, J.-W. Insulin resistance mediates high-fat diet-induced pulmonary fibrosis and airway hyperresponsiveness through the TGF-β1 pathway. Exp. Mol. Med. 2019, 51, 1–12. [Google Scholar] [CrossRef]
- Anderson, M.R.; Kim, J.S.; Allison, M.; Giles, J.T.; Hoffman, E.A.; Ding, J.; Barr, R.G.; Podolanczuk, A. Adiposity and Interstitial Lung Abnormalities in Community-Dwelling Adults. Chest 2021, 160, 582–594. [Google Scholar] [CrossRef]
- Li, C.; Xiao, Y.; Hu, J.; Hu, Z.; Yan, J.; Zhou, Z.; Mei, Z. Associations Between Diabetes and Idiopathic Pulmonary Fibrosis: A Study-level Pooled Analysis of 26 Million People. J. Clin. Endocrinol. Metab. 2021, 106, 3367–3380. [Google Scholar] [CrossRef] [PubMed]
- Hyldgaard, C.; Hilberg, O.; Bendstrup, E. How does comorbidity influence survival in idiopathic pulmonary fibrosis? Respir. Med. 2014, 108, 647–653. [Google Scholar] [CrossRef]
- Amado, C.A.; Martín-Audera, P.; Agüero, J.; Ferrer-Pargada, D.; Josa Laorden, B.; Boucle, D.; Berja, A.; Lavín, B.A.; Guerra, A.R.; Ghadban, C.; et al. Alterations in circulating mitochondrial signals at hospital admission for COPD exacerbation. Chron Respir Dis. 2023, 20, 14799731231220058. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
BC Technique | Variables | Cachexia Evans Criteria No (n = 64) | Cachexia Evans Criteria Yes (n = 21) | p-Value |
---|---|---|---|---|
Weight | 80.714 ± 12.992 | 74.029 ± 9.557 | 0.033 | |
Height | 169.797 ± 7.927 | 166.381 ± 7.997 | 0.091 | |
BMI | 27.900 ± 3.383 | 26.819 ± 3.683 | 0.217 | |
HGS | 36.297 ± 8.544 | 22.552 ± 5.972 | <0.001 | |
TUG | 7.445 ± 2.141 | 8.491 ± 1.957 | 0.014 | |
GDF15 | 4156.029 ± 2800.271 | 3943.801 ± 2035.283 | 0.782 | |
PGC-1α | 4.434 ± 2.592 | 3.788 ± 1.777 | 0.360 | |
BIVA | Rz | 515.358 ± 56.870 | 550.671 ± 72.981 | 0.024 |
Xc | 43.542 ± 6.849 | 45.776 ± 10.454 | 0.262 | |
FFM | 56.295 ± 7.425 | 51.005 ± 6.429 | 0.004 | |
BCM | 26.587 ± 5.026 | 23.700 ± 4.880 | 0.024 | |
TBW | 42.041 ± 6.051 | 38.124 ± 4.985 | 0.009 | |
FM | 24.419 ± 8.273 | 23.024 ± 7.561 | 0.496 | |
Pha | 4.847 ± 0.713 | 4.762 ± 0.919 | 0.661 | |
NAK | 1.166 ± 0.178 | 1.175 ± 0.217 | 0.847 | |
Hydration | 74.598 ± 2.339 | 74.800 ± 2.617 | 0.745 | |
Nutrition | 775.880 ± 166.136 | 715.381 ± 143.528 | 0.139 | |
Spha | −0.956 ± 0.859 | −0.967 ± 1.211 | 0.964 | |
NU | RF_CSA | 3.453 ± 1.062 | 3.024 ± 0.686 | 0.155 |
RF-Y-Axis | 1.146 ± 0.289 | 1.022 ± 0.218 | 0.076 | |
L-SAT | 0.789 ± 0.490 | 0.784 ± 0.635 | 0.973 | |
T-SAT | 1.557 ± 0.682 | 2.049 ± 0.732 | 0.007 | |
S-SAT | 0.689 ± 0.282 | 0.862 ± 0.312 | 0.014 | |
VAT | 0.639 ± 0.312 | 0.691 ± 0.282 | 0.496 | |
T12CT | SMI_T12CT | 27.003 ± 6.903 | 24.093 ± 6.659 | 0.142 |
Muscle_HU_T12CT | 38.359 ± 7.606 | 40.750 ± 5.986 | 0.250 | |
VAT_area_T12CT | 187.789 ± 87.540 | 149.270 ± 56.834 | 0.099 |
BC Technique | Variables | Cachexia Martin Criteria No (n = 43) | Cachexia Martin Criteria Yes (n = 18) | p-Value |
---|---|---|---|---|
Weight | 80.43 ± 12.60 | 76.46 ± 15.42 | 0.298 | |
Height | 169.37 ± 6.40 | 167.56 ± 10.49 | 0.410 | |
BMI | 27.97 ± 3.64 | 27.09 ± 3.96 | 0.406 | |
HGS | 34.77 ± 10.34 | 29.22 ± 9.13 | 0.053 | |
TUG | 7.35 ± 1.81 | 7.63 ± 2.27 | 0.154 | |
GDF15 | 3552.46 ± 1380.68 | 5013.55 ± 3021.27 | 0.027 | |
PGC-1α | 4.79 ± 2.50 | 3.35 ± 2.37 | 0.097 | |
BIVA | Rz | 502.86 ± 49.06 | 558.47 ± 52.81 | 0.001 |
Xc | 44.87 ± 7.07 | 42.39 ± 6.23 | 0.202 | |
FFM | 57.12 ± 6.86 | 51.09 ± 6.72 | 0.003 | |
BCM | 27.89 ± 4.89 | 22.38 ± 3.57 | 0.001 | |
TBW | 42.45 ± 5.38 | 38.27 ± 5.21 | 0.007 | |
FM | 23.30 ± 7.94 | 25.37 ± 10.65 | 0.408 | |
Pha | 5.11 ± 0.72 | 4.34 ± 0.58 | 0.001 | |
NAK | 1.14 ± 0.17 | 1.22 ± 0.17 | 0.085 | |
Hydration | 74.28 ± 1.84 | 74.96 ± 2.41 | 0.143 | |
Nutrition | 809.16 ± 180.84 | 673.82 ± 99.95 | 0.001 | |
Spha | −0.81 ± 0.96 | −1.27 ± 0.85 | 0.059 | |
NU | RF_CSA | 3.57 ± 1.04 | 2.75 ± 0.63 | 0.003 |
RF-Y-Axis | 1.19 ± 0.32 | 1.01 ± 0.18 | 0.018 | |
L-SAT | 0.74 ± 0.48 | 0.92 ± 0.68 | 0.186 | |
T-SAT | 1.71 ± 0.76 | 1.80 ± 0.77 | 0.704 | |
S-SAT | 0.72 ± 0.28 | 0.81 ± 0.35 | 0.429 | |
VAT | 0.64 ± 0.28 | 0.64 ± 0.20 | 0.682 | |
T12CT | SMI_T12CT | 28.42 ± 6.59 | 20.86 ± 4.28 | 0.001 |
Muscle_HU_T12CT | 40.62 ± 7.06 | 35.22 ± 6.28 | 0.007 | |
VAT_area_T12CT | 183.84 ± 92.24 | 160.85 ± 45.61 | 0.591 |
BC Technique | Variables | IPF Cachexia Syndrome No (n = 49) | IPF Cachexia Syndrome Yes (n = 36) | p-Value |
---|---|---|---|---|
Weight | 79.563 ± 11.715 | 78.381 ± 13.680 | 0.670 | |
Height | 169.959 ± 7.121 | 167.583 ± 9.057 | 0.179 | |
BMI | 27.496 ± 3.284 | 27.819 ± 3.745 | 0.674 | |
HGS | 33.645 ± 10.324 | 31.889 ± 9.441 | 0.424 | |
TUG | 7.663 ± 2.095 | 7.734 ± 2.216 | 0.390 | |
GDF15 | 4046.193 ± 2805.247 | 4187.154 ± 2344.455 | 0.472 | |
PGC-1α | 4.585 ± 2.568 | 3.790 ± 2.121 | 0.163 | |
BIVA | Rz | 514.933 ± 64.246 | 536.536 ± 59.085 | 0.117 |
Xc | 44.363 ± 8.113 | 43.728 ± 7.657 | 0.716 | |
FFM | 56.233 ± 7.477 | 53.294 ± 7.329 | 0.075 | |
BCM | 26.869 ± 5.407 | 24.519 ± 4.413 | 0.036 | |
TBW | 42.080 ± 6.061 | 39.703 ± 5.771 | 0.072 | |
FM | 23.331 ± 7.062 | 25.086 ± 9.301 | 0.325 | |
Pha | 4.945 ± 0.823 | 4.664 ± 0.653 | 0.094 | |
NAK | 1.168 ± 0.213 | 1.167 ± 0.146 | 0.081 | |
Hydration | 74.771 ± 2.638 | 74.471 ± 2.026 | 0.656 | |
Nutrition | 799.884 ± 150.073 | 707.917 ± 164.940 | 0.009 | |
Spha | −0.861 ± 1.002 | −1.092 ± 0.870 | 0.390 | |
NU | RF_CSA | 3.580 ± 1.023 | 3.030 ± 0.875 | 0.013 |
RF-Y-Axis | 1.165 ± 0.300 | 1.049 ± 0.230 | 0.056 | |
L-SAT | 0.701 ± 0.352 | 0.903 ± 0.683 | 0.495 | |
T-SAT | 1.696 ± 0.690 | 1.655 ± 0.773 | 0.676 | |
S-SAT | 0.730 ± 0.284 | 0.737 ± 0.321 | 0.946 | |
VAT | 0.660 ± 0.344 | 0.640 ± 0.240 | 0.875 | |
T12CT | SMI_T12CT | 28.774 ± 7.689 | 23.852 ± 5.200 | 0.005 |
Muscle_HU_T12CT | 44.252 ± 5.624 | 34.288 ± 4.870 | <0.001 | |
VAT_area_T12CT | 176.204 ± 78.810 | 177.825 ± 85.279 | 0.891 |
Nutritional Phenotype | Criteria | Counts (n) | % of Total |
---|---|---|---|
Cachexia, Evans’ criteria | 21 | 24.7% | |
Lost weight > 5% or BMI < 20 kg/m2 | 47 | 55.3% | |
Low-Intake | 47 | 55.3% | |
Inflammation (CRP > 5 mg/dL) | 35 | 41.2% | |
Low FFMI (<17 kg/m2 for men or <15 kg/m2 for women) | 8 | 9.4 | |
Low muscle strength (<27 kg for men or <16 kg for women) | 19 | 22.4 | |
Cachexia, Martin’s criteria | 18 | 29.5% | |
Lost weight > 5% | 47 | 55.3% | |
Myosteatosis (IMAT > 15.25%) | 34 | 55.7% | |
Low muscle mass by T12CT (SMI ≤ 28.8 cm2/m2) | 44 | 72.1% | |
IPF Cachexia Syndrome criteria | 36 | 42.4% | |
Lost weight > 5% | 47 | 55.3% | |
Inflammation (CRP > 5 mg/dL) | 35 | 41.2% | |
Low muscle mass by T12TC (SMI ≤ 24.5 cm2/m2) Low muscle mass by ASMI from BIVA (<7 kg/m2 for men or <5.5 kg/m2 for women) | 33 55 | 54.1% 64.7% | |
Myoesteatosis HU muscle (<36.46 UH) | 25 | 41.0% |
Variable | Cut-Off | Sensibility | Especificity | PPV | NPV | AUC (IC 95%) | p-Value |
---|---|---|---|---|---|---|---|
Pha | 4.8 | 75.0% | 64.3% | 60.0% | 78.3% | 0.69 (0.538–0.843) | <0.001 |
SPhA | −1.56 | 37.9% | 89.5% | 75.0% | 48.6% | 0.587 (0.424–0.75) | <0.001 |
RF_CSA | 3.0 | 55.2% | 78.9% | 80.0% | 53.6% | 0.652 (0.481–0.822) | <0.001 |
TUG | 8.0 | 50.0% | 78.6% | 62.5% | 62.5% | 0.646 (0.481–0.812) | <0.001 |
GDF15 | 4412.0 | 44.8% | 94.7% | 92.9% | 52.9% | 0.632 (0.473–0.79) | <0.001 |
Dependent: Mortality | 0 | 1 | OR (Univariable) | OR (Multivariable) | |
---|---|---|---|---|---|
GDF15_CachexiaSyndrome | 0 | 37 (88.1) | 5 (11.9) | - | - |
1 | 12 (60.0) | 8 (40.0) | 4.93 (1.39–19.22, p = 0.016) | 4.62 (1.10–22.72, p = 0.043) | |
TUG_CachexiaSyndrome | 0 | 37 (88.1) | 5 (11.9) | - | - |
1 | 12 (60.0) | 8 (40.0) | 4.93 (1.39–19.22, p = 0.016) | 7.85 (1.53–50.79, p = 0.019) | |
Sexo | 0 | 9 (90.0) | 1 (10.0) | - | - |
1 | 40 (76.9) | 12 (23.1) | 2.70 (0.44–52.35, p = 0.368) | 4.13 (0.45–100.45, p = 0.269) | |
Age | Mean (SD) | 70.9 (7.5) | 74.5 (4.2) | 1.09 (0.99–1.22, p = 0.103) | 1.03 (0.91–1.20, p = 0.624) |
BMI | Mean (SD) | 27.9 (3.7) | 27.2 (3.2) | 0.95 (0.79–1.13, p = 0.563) | 0.90 (0.70–1.12, p = 0.372) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanmartín-Sánchez, A.; Fernández-Jiménez, R.; Olivares-Alcolea, J.; Cabrera-César, E.; Espíldora-Hernández, F.; Vegas-Aguilar, I.; Amaya-Campos, M.d.M.; Simón-Frapolli, V.J.; Villaplana-García, M.; Cornejo-Pareja, I.; et al. Cachexia Phenotyping Through Morphofunctional Assessment and Mitocondrial Biomarkers (GDF-15 and PGC-1α) in Idiopathic Pulmonary Fibrosis. Nutrients 2025, 17, 2739. https://doi.org/10.3390/nu17172739
Sanmartín-Sánchez A, Fernández-Jiménez R, Olivares-Alcolea J, Cabrera-César E, Espíldora-Hernández F, Vegas-Aguilar I, Amaya-Campos MdM, Simón-Frapolli VJ, Villaplana-García M, Cornejo-Pareja I, et al. Cachexia Phenotyping Through Morphofunctional Assessment and Mitocondrial Biomarkers (GDF-15 and PGC-1α) in Idiopathic Pulmonary Fibrosis. Nutrients. 2025; 17(17):2739. https://doi.org/10.3390/nu17172739
Chicago/Turabian StyleSanmartín-Sánchez, Alicia, Rocío Fernández-Jiménez, Josefina Olivares-Alcolea, Eva Cabrera-César, Francisco Espíldora-Hernández, Isabel Vegas-Aguilar, María del Mar Amaya-Campos, Víctor José Simón-Frapolli, María Villaplana-García, Isabel Cornejo-Pareja, and et al. 2025. "Cachexia Phenotyping Through Morphofunctional Assessment and Mitocondrial Biomarkers (GDF-15 and PGC-1α) in Idiopathic Pulmonary Fibrosis" Nutrients 17, no. 17: 2739. https://doi.org/10.3390/nu17172739
APA StyleSanmartín-Sánchez, A., Fernández-Jiménez, R., Olivares-Alcolea, J., Cabrera-César, E., Espíldora-Hernández, F., Vegas-Aguilar, I., Amaya-Campos, M. d. M., Simón-Frapolli, V. J., Villaplana-García, M., Cornejo-Pareja, I., Sánchez-García, A., Murri, M., Guirado-Peláez, P., Vidal-Suárez, Á., Garrido-Sánchez, L., Tinahones, F. J., Velasco-Garrido, J. L., & García-Almeida, J. M. (2025). Cachexia Phenotyping Through Morphofunctional Assessment and Mitocondrial Biomarkers (GDF-15 and PGC-1α) in Idiopathic Pulmonary Fibrosis. Nutrients, 17(17), 2739. https://doi.org/10.3390/nu17172739