Chemical Profiling and UPLC-qTOF-MS/MS-Based Metabolomics of Three Different Parts of Edgeworthia chrysantha and Identification of Glucose Uptake-Enhancing Compounds
Abstract
1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Plant Material
2.3. Isolation of Chemical Constituents from the Root Part of Edgeworthia chrysantha
2.4. Sugar Analysis
2.5. Assessment of In Vitro Cytotoxic Effects in 3T3-L1 Adipocytes
2.6. Assessment of 2-NBDG Uptake in 3T3-L1 Adipocytes
2.7. Metabolomics Analysis Using UPLC qTOF MS/MS Spectrometry
2.8. Data Processing and Statistical Analysis
2.9. Molecular Docking Analysis
3. Results
3.1. Isolation of Bioactive Compounds and Structure Determination of New Compound 1 from the Roots of Edgeworthia chrysantha
Spectroscopic and Physical Characteristics of New Compound 1
3.2. Metabolomics and MS/MS-Based Chemical Profiling of Three Different Parts of Edgeworthia chrysantha
3.3. Bioassay and Molecular Docking Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMPK | AMP-activated protein kinase |
HMBC | Heteronuclear multi-bond correlation |
HPLC | High performance liquid chromatography |
HRESIMS | High-resolution electrospray ionization mass spectrometry |
HSQC | Heteronuclear single quantum coherence |
HMG | 3-hydroxyl-e-methyl glutaroyl moiety |
LC-MS | Liquid chromatography-mass spectrometry |
NMR | Nuclear magnetic resonance |
TLC | Thin layer chromatography |
References
- Ceriello, A.; Colagiuri, S. IDF global clinical practice recommendations for managing type 2 diabetes–2025. Diabetes Res. Clin. Pract. 2025, 222, 112152. [Google Scholar] [CrossRef]
- Mo, Z.; Li, L.; Yu, H.; Wu, Y.; Li, H. Coumarins ameliorate diabetogenic action of dexamethasone via Akt activation and AMPK signaling in skeletal muscle. J. Pharmacol. Sci. 2019, 139, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Lin, R.J.; Lin, S.Y.; Chen, Y.C.; Lin, H.M.; Liang, Y.C. Osthole enhances glucose uptake through activation of AMP-activated protein kinase in skeletal muscle cells. J. Agric. Food Chem. 2011, 59, 12874–12881. [Google Scholar] [CrossRef] [PubMed]
- Taha, M.; Shah, S.A.A.; Afifi, M.; Imran, S.; Sultan, S.; Rahim, F.; Khan, K.M. Synthesis, α-glucosidase inhibition and molecular docking study of coumarin based derivatives. Bioorg. Chem. 2018, 77, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.C.; Cheng, M.J.; Peng, C.F.; Huang, H.Y.; Chen, I.S. A novel dimeric coumarin analog and antimycobacterial constituents from Fatoua pilosa. Chem. Biodivers. 2010, 7, 1728–1736. [Google Scholar] [CrossRef]
- Gontijo, V.S.; Dos Santos, M.H.; Viegas, C., Jr. Biological and chemical aspects of natural biflavonoids from plants: A brief review. Mini Rev. Med. Chem. 2017, 17, 834–862. [Google Scholar] [CrossRef]
- Gao, Q.; Qiao, L.; Hou, Y.; Ran, H.; Zhang, F.; Liu, C.; Kuang, J.; Deng, S.; Jiang, Y.; Wang, G.; et al. Antidiabetic and antigout properties of the ultrasound-assisted extraction of total biflavonoids from Selaginella doederleinii revealed by in vitro and In Silico Studies. Antioxidants 2024, 13, 1184. [Google Scholar] [CrossRef]
- Lima, C.A.D.; Maquedano, L.K.; Jaalouk, L.S.; Santos, D.C.D.; Longato, G.B. Biflavonoids: Preliminary reports on their role in prostate and breast cancer therapy. Pharmaceuticals 2024, 17, 874. [Google Scholar] [CrossRef]
- Otsuki, K.; Kobayashi, T.; Nakamura, K.; Kikuchi, T.; Huang, L.; Chen, C.H.; Koike, K.; Li, W. LC-MS identification, isolation, and structural elucidation of anti-HIV macrocyclic daphnane orthoesters from Edgeworthia chrysantha. Fitoterapia 2024, 172, 105731. [Google Scholar] [CrossRef]
- Tanaka, T.; Nakashima, T.; Ueda, T.; Tomii, K.; Kouno, I. Facile discrimination of aldose enantiomers by reversed-phase HPLC. Chem. Pharm. Bull. 2007, 55, 899–901. [Google Scholar] [CrossRef]
- Ewald, J.D.; Zhou, G.; Lu, Y.; Kolic, J.; Ellis, C.; Johnson, J.D.; Macdonald, P.E.; Xia, J. Web-based multi-omics integration using the Analyst software suite. Nat. Protoc. 2024, 19, 1467–1497. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Peng, J.; Li, P.; Du, H.; Li, Y.; Liu, X.; Zhang, L.; Wang, L.L.; Zuo, Z. Identification of potential AMPK activator by pharmacophore modeling, molecular docking and QSAR study. Comput. Biol. Chem. 2019, 79, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, F.; Anis, I.; Ali, S.; Choudhary, M.I.; Shah, M.R. New dimeric and trimeric coumarin glucosides from Daphne retusa Hemsl. Fitoterapia 2013, 88, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.J.; Jin, H.; Zhang, W.; Yan, S.; Xu, W.; Liu, R.H.; Shen, Y.; Zhang, W.D. Chemical constituents of Edgeworthia chrysantha. Chem Nat. Compd. 2009, 45, 126–128. [Google Scholar] [CrossRef]
- Baba, K.; Taniguti, M.; Yoneda, Y.; Kozawa, M. Coumarin glycosides from Edgeworthia chrysantha. Phytochemistry 1990, 29, 247–249. [Google Scholar] [CrossRef]
- Baba, K.; Tabata, Y.; Taniguti, M.; Kozawa, M. Coumarins from Edgeworthia chrysantha. Phytochemistry 1989, 28, 221–225. [Google Scholar] [CrossRef]
- Taniguchi, M.; Baba, K. Three biflavonoids from Daphne odora. Phytochemistry 1996, 42, 1447–1453. [Google Scholar] [CrossRef]
- Baba, K.; Taniguti, M.; Kozawa, M. Three biflavonoids from Wikstroemia sikokiana. Phytochemistry 1994, 37, 879–883. [Google Scholar] [CrossRef]
- Majumder, P.L.; Sengupta, G.C.; Dinda, B.N.; Chatterjee, A. Edgeworthin, a new bis-coumarin from Edgeworthia gardneri. Phytochemistry 1974, 13, 1929–1931. [Google Scholar] [CrossRef]
- Hattori, Y.; Horikawa, K.H.; Makabe, H.; Hirai, N.; Hirota, M.; Kamo, T. A refined method for determining the absolute configuration of the 3-hydroxy-3-methylglutaryl group. Tetrahedron Asymmetry 2007, 18, 1183–1186. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Wang, Y.; Dan, L.; Tang, J.; Yin, Z.; Fang, X.; Zhang, D.; Song, X.; Wang, W.; et al. Phytochemistry, pharmacology and clinical applications of cortex daphnes: A Review. Rec. Nat. Prod. 2024, 18, 550–596. [Google Scholar] [CrossRef]
- Li, L.; Dai, Q.; Zou, B.; Zhang, Y.; Zhang, X.; Liu, L. Identification of α-Glucosidase-Inhibitors in Edgeworthia gardneri (Wall.) Meisn. Using UPLC-Q-TOF-MS/MS Analysis. Plant Foods Hum. Nutr. 2024, 79, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Wong, E.; Latch, G.C.M. Effect of fungal diseases on phenolic contents of white clover. N. Z. J. Agric. Res. 1971, 14, 633–638. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, Y.; Shao, L.; Li, Z.; Sarwar, R.; Wei, Q.; Liu, B.; Huang, K.; Liang, Y.; Tan, X. The glycosylation status of small molecules impacts different aspects of plant immunity. Physiol. Plant. 2025, 177, e70292. [Google Scholar] [CrossRef] [PubMed]
- Duan, B.; Wu, Y.; Xie, S.; Hong, T.; Yang, Y.; Zheng, M.; Jiang, Z.; Zhu, Y.; Li, Q.; Ni, H.; et al. Antifungal mechanism and application to phytopathogenic fungi after anaerobic fermentation of Gracilaria agar wastewater. Bioresour. Technol. 2025, 416, 131818. [Google Scholar] [CrossRef]
- Lee, B.; Kim, K.H.; Jung, H.J.; Kwon, H.J. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species. Biochem. Biophys. Res. Commun. 2012, 421, 76–80. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Zhuang, L.H.; Zhou, J.J.; Song, S.W.; Li, J.; Huang, H.Z.; Chi, B.J.; Zhong, Y.H.; Liu, J.W.; Zheng, H.L.; et al. Combined metabolome and transcriptome analysis reveals a critical role of lignin biosynthesis and lignification in stem-like pneumatophore development of the mangrove Avicennia marina. Planta 2024, 259, 12. [Google Scholar] [CrossRef]
- Tattini, M.; Gravano, E.; Pinelli, P.; Mulinacci, N.; Romani, A. Flavonoids accumulate in leaves and glandular trichomes of Phillyrea latifolia exposed to excess solar radiation. New Phytol. 2000, 148, 69–77. [Google Scholar] [CrossRef]
- Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef]
- Siwinska, J.; Siatkowska, K.; Olry, A.; Grosjean, J.; Hehn, A.; Bourgaud, F.; Meharg, A.A.; Carey, M.; Lojkowska, E.; Ihnatowicz, A. Scopoletin 8-hydroxylase: A novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis. J. Exp. Bot. 2018, 69, 1735–1748. [Google Scholar] [CrossRef]
- Tsai, H.H.; Schmidt, W. Mobilization of iron by plant-borne coumarins. Trends Plant Sci. 2017, 22, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Aledavood, E.; Moraes, G.; Lameira, J.; Castro, A.; Luque, F.J.; Estarellas, C. Understanding the mechanism of direct activation of AMP-kinase: Toward a fine allosteric tuning of the kinase activity. J. Chem. Inf. Model. 2019, 59, 2859–2870. [Google Scholar] [CrossRef] [PubMed]
- Bultot, L.; Jensen, T.E.; Lai, Y.C.; Madsen, A.L.; Collodet, C.; Kviklyte, S.; Deak, M.; Yavari, A.; Foretz, M.; Ghaffari, S.; et al. Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle. Am. J. Physiol.-Endocrinol. Metab. 2016, 311, E706–E719. [Google Scholar] [CrossRef] [PubMed]
Position | 1 b | |
---|---|---|
δH (J in Hz) | δC | |
2 | - | 156.9 |
3 | - | 135.8 |
4 | 7.88 (1H, s) | 131.0 |
5 | 7.34 (1H, s) | 114.2 |
6 | - | 142.9 |
7 | - | 148.5 |
8 | 6.91 (1H, s) | 103.2 |
9 | - | 150.7 |
10 | - | 110.4 |
2′ | - | 160.0 |
3′ | 6.37 (1H, d, 9.4) | 113.8 |
4′ | 8.03 (1H, d, 9.6) | 144.0 |
5′ | 7.70 (1H, d, 8.7) | 129.9 |
6′ | 7.11 (1H, dd, 8.7, 2.4) | 113.3 |
7′ | - | 159.7 |
8′ | 7.19 (1H, d, 2.5) | 103.9 |
9′ | - | 155.0 |
10′ | - | 114.4 |
Glc | ||
1″ | 4.83 (1H, d, 7.4) | 101.8 |
2″ | 3.36–3.28 (1H, m) | 75.7 |
3″ | 3.36–3.28 (1H, m) | 73.1 |
4″ | 3.22 (1H, m) | 69.7 |
5″ | 3.59 (1H, dd, 9.1, 6.3) | 74.0 |
6″ | 4.37 (1H, dd, 11.9, 2.0) | 63.1 |
4.05 (1H, dd, 11.9, 6.3) | ||
HMG | ||
1‴ | - | 170.4 |
2‴ | 2.58 (1H, d, 14.2) | 45.1 |
2.54 (1H, d, 14.2) | ||
3‴ | - | 68.7 |
4‴ | 2.47 (1H, d, 15.0) 2.40 (1H, d, 15.0) | 45.3 |
5‴ | - | 172.5 |
6‴ | 1.16 (3H, s) | 27.5 |
no | rt | m/z | Theoretical Mass a | Chemical Formula | Error [ppm] | Name b | Fragment | Detected Part c | Mode |
---|---|---|---|---|---|---|---|---|---|
1 | 1.14 | 365.1054 | 365.1059 | C12H22O11 | −1.36 | Saccharose | 204.0543, 203.0522, 185.0420 | L, S, R | [M + Na]+ |
2 | 1.16 | 268.1042 | 268.1045 | C10H13N5O4 | −0.89 | Adenosine | 137.0635, 136.0616, 120.0376, 119.0351 | L, S, R | [M + H]+ |
3 | 1.22 | 203.0809 | 203.0820 | C11H10N2O2 | −5.41 | 2-(5-phenyl-1H-imidazol-yl)acetic acid | 157.0755, 130.0650, 128.0495, 103.0542 | L, S, R | [M + H]+ |
4 | 1.27 | 384.1152 | 384.1155 | C14H17N5O8 | −0.88 | S-N6-succinyladenosine | 192.0510, 188.0551, 162.0766, 136.0620 | L, S, R | [M + H]+ |
5 | 1.45 | 166.0861 | 166.0868 | C9H11NO2 | −3.61 | Phenylalanine | 121.0837, 113.0245 103.0535 | L, S, R | [M + H]+ |
6 | 1.75 | 355.1025 | 355.1029 | C16H19O9 | −1.12 | Chlorogenic acid | 163.0388, 145.0282, 135.0439, 117.0334 | L, S, R | [M + H]+ |
7 | 1.78 | 298.0969 | 298.0973 | C11H15N5O3S | −1.63 | 5′-Methylthioadenosine | 137.0633, 136.0616, 120.0392, 119.0352 | L, S, R | [M + H]+ |
8 | 1.98 | 437.1459 | 437.1447 | C21H24O10 | 2.57 | CHEBI:182269 | 149.0594, 145.0647, 139.0388, 107.0487 | L, S, R | [M + H]+ |
9 | 2.01 | 453.1392 | 453.1396 | C21H24O11 | −0.88 | NCGC00385785 | 163.0387, 147.0440, 139.0388, 123.0440 | L, S, R | [M + H]+ |
10 | 2.03 | 341.0869 | 341.0872 | C15H16O9 | −1.05 | Esculin | 179.0336, 151.0381, 133.0281, 123.0438 | L, S, R | [M + H]+ |
11 | 2.06 | 205.0968 | 205.0977 | C11H12N2O2 | −0.01 | Tryptophan | 143.0725, 118.0649, 117.0577, 115.0541 | L, S, R | [M + H]+ |
12 | 2.15 | 341.0868 | 341.0872 | C15H16O9 | −0.17 | Daphnetin-8-O-glucoside | 179.0337, 133.0283, 123.0440, 105.0335 | L, S, R | [M + H]+ |
13 | 2.17 | 453.1394 | 453.1396 | C21H24O11 | −0.63 | NCGC00385785-01 | 163.0385, 147.0444, 139.0385, 123.0442 | S, R | [M + H]+ |
14 | 2.19 | 457.1344 | 457.1346 | C20H24O12 | −0.43 | NCGC00380504-01 | 164.0420, 163.0388, 119.0489, 107.0490 | L, S, R | [M + H]+ |
15 | 2.26 | 325.0921 | 325.0923 | C15H16O8 | −0.61 | NCGC00384579-01 | 107.0490, 119.0490, 163.0387, 164.0422 | L, S, R | [M + H]+ |
16 | 2.41 | 773.2151 | 773.2140 | C33H40O21 | 1.37 | Quercetin-3-O-glc-1-3-rham-1-6-glucoside | 303.0503, 157.0134, 121.0142 | L, S, R | [M + H]+ |
17 | 2.45 | 471.1497 | 471.1502 | C21H26O12 | −1.17 | NCGC00380091 | 163.0388, 113.0422 | L, S, R | [M + Na]+ |
18 | 2.48 | 627.1534 | 627.1561 | C27H30O17 | −4.35 | Luteolin-3-O-glc-(1-6)-glucopyranoside | 287.0543, 221.0435, 213.0135 | L, S | [M + H]+ |
19 | 2.83 | 177.0544 | 177.0551 | C10H10O4 | −4.34 | trans-Ferulic acid | 134.0357, 117.0332, 105.0332 | L, S, R | [M + H]+ |
20 | 2.92 | 521.2022 | 521.2022 | C26H34O12 | −0.17 | NCGC00381098 | 163.0751, 131.0490, 103.0541 | L, S, R | [M + H]+ |
21 | 2.94 | 757.2204 | 757.2191 | C33H40O20 | 1.68 | Cyanidin 3-O-rutinoside | 287.0553, 225.0584, 189.0601 | L, S, R | [M + H]+ |
no | rt | m/z | Theoretical Mass a | Chemical Formula | Error [ppm] | Name b | Fragment | Detected Part c | Mode |
22 | 2.98 | 363.1805 | 363.1807 | C20H26O6 | −0.72 | NCGC00380686-01 | 147.0439, 123.0440, 119.0491, 105.0698 | L, S, R | [M + H]+ |
23 | 3.16 | 773.2145 | 773.2140 | C33H40O21 | 0.59 | Quercetin 3-O-rutinoside-7-O-glucoside | 303.0503, 157.0354, 113.0684 | L, S, R | [M + H]+ |
24 | 3.17 | 289.0715 | 289.0712 | C15H12O6 | 0.98 | Dihydrokaempferol | 215.0704, 149.0230, 123.0451, 121.0293 | L, S, R | [M + H]+ |
25 | 3.42 | 385.1133 | 385.1134 | C17H20O10 | −0.25 | NCGC00168890-02 | 223.0598, 208.0362, 189.0257, 161.0309 | L, S, R | [M + H]+ |
26 | 3.44 | 191.07 | 191.0708 | C11H10O3 | −4.18 | 7-methoxy-4-methylcoumarin | 133.0281, 118.0413, 115.0541, 103.0539 | L, S, R | [M + H]+ |
27 | 3.47 | 193.0855 | 193.0864 | C11H14O4 | −4.6 | Sinapyl alcohol | 118.0415, 115.0549, 105.0692, 103.0537 | L, S, R | [M + Na]+ |
28 | 3.53 | 345.1696 | 345.1702 | C20H26O6 | −1.73 | 2,3-bis[(4-hydroxy-3-methoxyphenyl)methyl]butane 1,4-diol | 137.0595, 131.0489, 122.0360, 103.0541 | L, S, R | [M + Na]+ |
29 | 3.53 | 327.1593 | 327.1596 | C20H22O4 | −1.02 | Isolicarin A | 137.0595, 131.0489, 122.0361, 103.0541 | L, S, R | [M + H]+ |
30 | 3.59 | 339.1090 | 339.1079 | C16H18O8 | 3.24 | Coumaroyl quinic acid | 221.1541, 123.0541 | L, S, R | [M + H]+ |
31 | 3.61 | 611.1616 | 611.1612 | C27H30O16 | 0.65 | Rutin | 303.0413, 151.1542, 111.0265 | L, S, R | [M + H]+ |
32 | 3.70 | 303.0504 | 303.0504 | C15H10O7 | −0.26 | Quercetin | 229.0494, 201.0543, 137.0232 | L, S, R | [M + H]+ |
33 | 3.73 | 465.1031 | 465.1033 | C21H20O12 | −0.44 | Spiraeoside | 303.0503, 229.0495, 153.0181 | L, S, R | [M + H]+ |
34 | 3.79 | 577.1331 | 577.1346 | C30H24O12 | −2.60 | Procyanidin A2 | 299.0526, 287.0556, 123.0436 | L, S, R | [M + H]+ |
35 | 3.81 | 487.1445 | 487.1451 | C21H26O13 | −1.23 | Hemexelsin | 212.1354, 175.0424, 135.0347 | L, S | [M + H]+ |
36 | 3.85 | 314.1392 | 314.1392 | C18H19NO4 | −0.10 | Feruloyltyramine | 145.0283, 121.0643, 117.0331, 103.0548 | R | [M + H]+ |
37 | 3.95 | 595.1665 | 595.1663 | C27H30O15 | 0.33 | Kaempferol-7-neohesperidoside | 287.0552, 213.0485, 189.0605 | L, S, R | [M + H]+ |
38 | 3.95 | 287.0551 | 287.0555 | C15H10O6 | −1.61 | Kaempferol | 213.0540, 165.0173, 153.0178, 121.0278 | L, S, R | [M + H]+ |
39 | 3.96 | 249.1483 | 249.1490 | C15H20O3 | −3.09 | Pterosin A | 165.0700, 141.0695, 115.0543 | L, S, R | [M + H]+ |
40 | 3.97 | 469.1133 | 469.1134 | C24H20O10 | −0.21 | Edgeworoside C | 323.0554, 249.0547, 221.0593 | L, S, R | [M + H]+ |
41 | 4.01 | 245.1167 | 245.1177 | C15H16O3 | −4.36 | (1R)-3,8-Dimethyl-5,14-dioxatricyclo [10.2.1.0~2,6~]pentadeca-2(6),3,8,12(15)-tetraen-13-one | 141.0701, 129.0689, 115.0539 | L, S, R | [M + H]+ |
no | rt | m/z | Theoretical Mass a | Chemical Formula | Error [ppm] | Name b | Fragment | Detected Part c | Mode |
42 | 4.05 | 449.108 | 449.1083 | C21H20O11 | −0.86 | NCGC00386047-01 | 287.0553, 165.0180, 153.0179 | L, S, R | [M + Na]+ |
43 | 4.18 | 499.1235 | 499.1240 | C25H24O12 | −1.08 | Isochlorogenic acid A | 163.0387, 145.0283, 135.0437, 117.0331 | L, S, R | [M + H]+ |
44 | 4.38 | 499.0882 | 499.0876 | C24H20O12 | 1.20 | Daphneretusin A | 337.0352, 281.0456, 192.0060 | L, S, R | [M + H]+ |
45 | 4.47 | 643.1289 | 643.1298 | C30H28O16 | −1.39 | 7-O-desmethylrutarensin | 337.0349, 281.1045, 215.1426, 192.0057 | L, S, R | [M − H]- |
46 | 4.47 | 541.1135 | 541.1134 | C30H22O10 | 0.18 | Wikstrol A | 431.1145, 289.1040, 295.0617, 151.0037 | S, R | [M + H]+ |
47 | 4.47 | 541.1135 | 541.1134 | C30H22O10 | 0.18 | Wikstrol B | 431.1143, 289.1045, 295.0622, 151.0042 | S, R | [M + H]+ |
48 | 4.50 | 543.1290 | 543.1291 | C30H22O10 | −0.18 | Daphnodorin I | 281.0443, 225.0544, 153.0179 | S, R | [M + H]+ |
49 | 4.55 | 545.1421 | 545.1447 | C30H24O10 | −4.7 | NCGC00380415-01 | 137.0625, 136.0617, 119.0353 | S, R | [M + H]+ |
50 | 4.57 | 543.1292 | 543.1291 | C30H22O10 | 0.13 | NCGC00380474-01 | 311.0555, 281.0448, 225.0546, 153.0182, | L, S, R | [M + H]+ |
51 | 4.60 | 1065.2229 | 1065.2242 | C60H42O19 | −1.22 | Edgechrin B | 431.1178, 261.1126, 217.1228 | S, R | [M + H]+ |
52 | 4.65 | 343.0816 | 343.0817 | C18H14O7 | −0.29 | Edgeworic acid | 163.0387, 135.0439, 119.0489, 107.0470, | L, S, R | [M + H]+ |
53 | 4.74 | 643.1289 | 643.1299 | C30H28O16 | −1.55 | Compound 1 | 603.2067, 543.1282, 455.1913 | R,S | [M − H]- |
54 | 4.98 | 659.1629 | 659.1612 | C31H30O16 | 2.55 | Rutarensin | 353.0659, 338.0425, 179.0339, 127.0389 | L, S, R | [M + H]+ |
55 | 5.00 | 595.1468 | 595.1451 | C30H26O13 | 2.73 | Tiliroside | 119.0491, 147.0439, 287.0554 | L, S, R | [M + H]+ |
56 | 5.16 | 613.0982 | 613.0980 | C32H22O13 | 0.32 | Edgeworoside B | 437.0663, 393.0763, 161.0239 | L, S, R | [M − H]- |
57 | 5.27 | 643.1081 | 643.1085 | C33H24O14 | −0.62 | 7″-O-glc-triumbelletin | 421.0597, 353.0153, 277.9570 | L, S, R | [M − H]- |
58 | 5.43 | 543.1281 | 543.1291 | C30H22O10 | −1.88 | Chamaejasmin | 231.0687, 153.0178, 121.0278, 107.0491 | S, R | [M + H]+ |
59 | 5.60 | 1051.2457 | 1051.2461 | C60H42O18 | −0.38 | Edgechrin C | 479.6830, 398.1020, 347.2273 | S, R | [M + H]+ |
60 | 5.81 | 359.1487 | 359.1494 | C20H22O6 | −1.94 | Matairesinol | 137.0594, 131.0486, 103.0544 | S, R | [M + H]+ |
61 | 5.91 | 351.0542 | 351.0529 | C19H12O7 | 3.70 | Daphnoretin | 311.0477, 179.0339, 163.0035 | L, S, R | [M − H]- |
62 | 5.92 | 1051.2457 | 1051.2461 | C60H42O18 | −0.38 | Edgechrin D | 479.6830, 398.1020, 347.2273 | S, R | [M + H]+ |
63 | 6.05 | 321.0406 | 321.0399 | C18H10O6 | 2.13 | Edgeworin | 252.1228, 165.0034, 135.0085 | L, S, R | [M − H]- |
64 | 7.85 | 329.1387 | 329.1389 | C19H20O5 | −0.36 | NCGC00179820-03 | 229.0858, 213.0546, 185.0595 | L, S, R | [M + H]+ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, J.-P.; Han, S.; Mai, V.-H.; Ponce-Zea, J.-E.; Seong, G.H.; Ha, T.-K.-Q.; Oh, W.K. Chemical Profiling and UPLC-qTOF-MS/MS-Based Metabolomics of Three Different Parts of Edgeworthia chrysantha and Identification of Glucose Uptake-Enhancing Compounds. Nutrients 2025, 17, 2684. https://doi.org/10.3390/nu17162684
An J-P, Han S, Mai V-H, Ponce-Zea J-E, Seong GH, Ha T-K-Q, Oh WK. Chemical Profiling and UPLC-qTOF-MS/MS-Based Metabolomics of Three Different Parts of Edgeworthia chrysantha and Identification of Glucose Uptake-Enhancing Compounds. Nutrients. 2025; 17(16):2684. https://doi.org/10.3390/nu17162684
Chicago/Turabian StyleAn, Jin-Pyo, Sohee Han, Van-Hieu Mai, Jorge-Eduardo Ponce-Zea, Gi Hyeon Seong, Thi-Kim-Quy Ha, and Won Keun Oh. 2025. "Chemical Profiling and UPLC-qTOF-MS/MS-Based Metabolomics of Three Different Parts of Edgeworthia chrysantha and Identification of Glucose Uptake-Enhancing Compounds" Nutrients 17, no. 16: 2684. https://doi.org/10.3390/nu17162684
APA StyleAn, J.-P., Han, S., Mai, V.-H., Ponce-Zea, J.-E., Seong, G. H., Ha, T.-K.-Q., & Oh, W. K. (2025). Chemical Profiling and UPLC-qTOF-MS/MS-Based Metabolomics of Three Different Parts of Edgeworthia chrysantha and Identification of Glucose Uptake-Enhancing Compounds. Nutrients, 17(16), 2684. https://doi.org/10.3390/nu17162684