Mineral Intake and Depression: A Cross-Sectional Comparative Study Based on National Health and Nutrition Examination Surveys in Korea and the United States
Abstract
1. Introduction
2. Materials and Methods
2.1. Datasets and Study Population
2.2. Dietary Habits for Minerals
2.3. Definition of Depression
2.4. Covariates
2.5. Statistical Analysis
2.6. Ethical Considerations
3. Results
3.1. Baseline Characteristics of Study Population
3.2. Association Between Minerals and Depression
3.3. Subgroup Analysis
4. Discussion
4.1. Sodium
4.2. Potassium
4.3. Phosphorus
4.4. Iron
4.5. Zinc
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mathers, C.D.; Loncar, D.; Samet, J. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef]
- Korea Disease Control and Prevention Agency. The 6th Korea National Health and Nutrition Examination Survey. In 2022 National Health Statistics Reports; Korea Disease Control and Prevention Agency: Seoul, Republic of Korea, 2023. [Google Scholar]
- Anxiety & Depression Association of America. What Is Depression? Anxiety & Depression Association of America: Silver Spring, MD, USA, 2024; Available online: https://adaa.org/understanding-anxiety/depression#Types%20of%20Depresion (accessed on 30 May 2025).
- Park, S.; Cho, M.J.; Bae, J.N.; Chang, S.M.; Jeon, H.J.; Hahm, B.-J.; Son, J.-W.; Kim, S.G.; Bae, A.; Hong, J.P. Comparison of treated and untreated major depressive disorder in a nationwide sample of korean adults. Community Ment. Health J. 2012, 48, 363–371. [Google Scholar] [CrossRef]
- Olfson, M.; Blanco, C.; Marcus, S.C. Treatment of Adult Depression in the United States. JAMA Intern. Med. 2016, 176, 1482–1491. [Google Scholar] [CrossRef]
- Ramana, R.; Paykel, E.S.; Cooper, Z.; Hayhurst, H.; Saxty, M.; Surtees, P.G. Remission and relapse in major depression: A two-year prospective follow-up study. Psychol. Med. 1995, 25, 1161–1170. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, E.; Taniguchi, T.; Nakamura-Taira, N.; Ishiguro, S.; Matsumura, H. Factors associated with unwillingness to seek professional help for depression: A web-based survey. BMC Res. Notes 2017, 10, 673. [Google Scholar] [CrossRef] [PubMed]
- Harbottle, L.; Schonfelder, N. Nutrition and depression: A review of the evidence. J. Ment. Health 2008, 17, 576–587. [Google Scholar] [CrossRef]
- Janka, Z. [Tracing trace elements in mental functions]. Ideggyogy. Szle. 2019, 72, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, A.E.; Sarlo, G.L.; Holton, K.F. The Role of Magnesium in Neurological Disorders. Nutrients 2018, 10, 730. [Google Scholar] [CrossRef]
- Lo, K.; Liu, Q.; Madsen, T.; Rapp, S.; Chen, J.-C.; Neuhouser, M.; Shadyab, A.; Pal, L.; Lin, X.; Shumaker, S.; et al. Relations of magnesium intake to cognitive impairment and dementia among participants in the Women’s Health Initiative Memory Study: A prospective cohort study. BMJ Open 2019, 9, e030052. [Google Scholar] [CrossRef]
- Tao, M.; Liu, J.; Cervantes, D. Association between magnesium intake and cognition in US older adults: National Health and Nutrition Examination Survey (NHANES) 2011 to 2014. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2022, 8, e12250. [Google Scholar] [CrossRef]
- Kweon, S.; Kim, Y.; Jang, M.-J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.-H.; Oh, K. Data Resource Profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [PubMed]
- National Health and Nutrition Examination Survey. About NHANES. 2024. Available online: https://www.cdc.gov/nchs/nhanes/about/index.html (accessed on 30 May 2025).
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines Approved by the Guidelines Review Committee. In Global Recommen-Dations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.-M.; Sundararajan, V. Updating and validating the Charlson Comorbidity Index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef]
- Grippo, A.J.; Moffitt, J.A.; Beltz, T.G.; Johnson, A.K. Reduced hedonic behavior and altered cardiovascular function induced by mild sodium depletion in rats. Behav. Neurosci. 2006, 120, 1133–1143. [Google Scholar] [CrossRef]
- Sawant, N.S.; Parkar, S.R.; Rupani, K.; Bansal, H.; Singh, S. Hyponatremia misdiagnosed as depression. Ann. Indian Psychiatry 2019, 3, 168. [Google Scholar] [CrossRef]
- Murck, H.; Schüssler, P.; Steiger, A. Renin-angiotensin-aldosterone system: The forgotten stress hormone system: Relationship to depression and sleep. Pharmacopsychiatry 2012, 45, 83–95. [Google Scholar] [CrossRef]
- Huang, A.A.; Huang, S.Y. Exploring Depression and nutritional covariates amongst US adults using Shapely additive explanations. Health Sci. Rep. 2023, 6, e1635. [Google Scholar] [CrossRef]
- Cui, Y.; Yang, Y.; Ni, Z.; Dong, Y.; Cai, G.; Foncelle, A.; Ma, S.; Sang, K.; Tang, S.; Li, Y.; et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 2018, 554, 323–327. [Google Scholar] [CrossRef]
- Maddock, R.J.; Moses, J.A.; Roth, W.T.; King, R.; Murchison, A.; Berger, P.A. Serum phosphate and anxiety in major depression. Psychiatry Res. 1987, 22, 29–36. [Google Scholar] [CrossRef]
- Pérez-Costillas, L.; Montes, M.R.; Martínez-Ortega, J.M.; Carretero, M.D.; Gutiérrez-Rojas, L.; Gurpegui, M. Phosphate levels as a possible state marker in panic disorder: Preliminary study of a feasible laboratory measure for routine clinical practice. J. Psychiatr. Res. 2013, 47, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- Pesta, D.H.; Tsirigotis, D.N.; Befroy, D.E.; Caballero, D.; Jurczak, M.J.; Rahimi, Y.; Cline, G.W.; Dufour, S.; Birkenfeld, A.L.; Rothman, D.L.; et al. Hypophosphatemia promotes lower rates of muscle ATP synthesis. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2016, 30, 3378–3387. [Google Scholar] [CrossRef]
- Wang, K.; Huang, S.; Fu, D.; Yang, X.; Ma, L.; Zhang, T.; Zhao, W.; Deng, D.; Ding, Y.; Zhang, Y.; et al. The neurobiological mechanisms and therapeutic prospect of extracellular ATP in depression. CNS Neurosci. Ther. 2024, 30, e14536. [Google Scholar] [CrossRef]
- Ward, K.L.; Tkac, I.; Jing, Y.; Felt, B.; Beard, J.; Connor, J.; Schallert, T.; Georgieff, M.K.; Rao, R. Gestational and lactational iron deficiency alters the developing striatal metabolome and associated behaviors in young rats. J. Nutr. 2007, 137, 1043–1049. [Google Scholar] [CrossRef]
- Godfrey, K.E.; Gardner, A.C.; Kwon, S.; Chea, W.; Muthukumaraswamy, S.D. Differences in excitatory and inhibitory neurotransmitter levels between depressed patients and healthy controls: A systematic review and meta-analysis. J. Psychiatr. Res. 2018, 105, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, K.; Morselli, P.; Depoortere, H.; Fournier, V.; Zivkovic, B.; Scatton, B.; Broekkamp, C.; Worms, P.; Bartholini, G. The potential use of GABA agonists in psychiatric disorders: Evidence from studies with progabide in animal models and clinical trials. Pharmacol. Biochem. Behav. 1983, 18, 957–966. [Google Scholar] [CrossRef]
- Takeda, A. Zinc Signaling in the hippocampus and its relation to pathogenesis of depression. Mol. Neurobiol. 2011, 44, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, B.; Kubera, M.; Nowak, G. The role of zinc in neurodegenerative inflammatory pathways in depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Takeda, A.; Sakurada, N.; Ando, M.; Kanno, S.; Oku, N. Facilitation of zinc influx via AMPA/kainate receptor activation in the hippocampus. Neurochem. Int. 2009, 55, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Sheline, Y.I.; Wang, P.W.; Gado, M.H.; Csernansky, J.G.; Vannier, M.W. Hippocampal atrophy in recurrent major depression. Proc. Natl. Acad. Sci. USA 1996, 93, 3908–3913. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Wang, X.; Zhang, J.; Ming, Z.; Zhang, C.; Ma, P.; Liu, Q.; Xu, Y.; Cheng, L.; Pang, X.; et al. National trends in nine key minerals intake (quantity and source) among U.S. adults, 1999 to March 2020. Nutr. J. 2024, 23, 52. [Google Scholar] [CrossRef]
- Yon, M.; Lee, Y.; Kim, D.; Lee, J.; Koh, E.; Nam, E.; Shin, H.; Kang, B.-W.; Kim, J.W.; Heo, S.; et al. Major Sources of Sodium Intake of the Korean Population at Prepared Dish Level: Based on the Korea National Health and Nutrition Examination Survey 2008–2009. Korean J. Community Nutr. 2011, 16, 473–487. [Google Scholar] [CrossRef]
- Hooda, J.; Shah, A.; Zhang, L. Heme, an Essential Nutrient from Dietary Proteins, Critically Impacts Diverse Physiological and Pathological Processes. Nutrients 2014, 6, 1080–1102. [Google Scholar] [CrossRef]
- Choi, H.-J.; Lee, H.-J.; Jang, H.B.; Park, J.Y.; Kang, J.-H.; Park, K.-H.; Song, J. Effects of Maternal Education on Diet, Anemia, and Iron Deficiency in Korean School-Aged Children. BMC Public Health 2011, 11, 870. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B.; Hurrell, R.F. Nutritional iron deficiency. Lancet 2007, 370, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.S.; Perlas, L.; Hotz, C. Improving the Bioavailability of Nutrients in Plant Foods at the Household Level. Proc. Nutr. Soc. 2006, 65, 160–168. [Google Scholar] [CrossRef]
- Li, Y.; Lv, M.-R.; Wei, Y.-J.; Sun, L.; Zhang, J.-X.; Zhang, H.-G.; Li, B. Dietary patterns and depression risk: A meta-analysis. Psychiatry Res. 2017, 253, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Marx, W.; Lane, M.; Hockey, M.; Aslam, H.; Berk, M.; Walder, K.; Borsini, A.; Firth, J.; Pariante, C.M.; Berding, K.; et al. Diet and depression: Exploring the biological mechanisms of action. Mol. Psychiatry 2021, 26, 134–150. [Google Scholar] [CrossRef]
Depression | |||
---|---|---|---|
Variables | Without (n = 12,459) | With (n = 537) | p-Value |
Demographic | |||
Sex (%) | <0.001 | ||
Male | 51.8 (0.5) | 39.3 (2.6) | |
Female | 48.2 (0.5) | 60.7 (2.6) | |
Age (years) | 46.94 (0.25) | 45.97 (0.95) | 0.30 |
Income level (%) | <0.001 | ||
1 (low) | 23.1 (0.7) | 35.7 (2.6) | |
2 | 24.5 (0.6) | 27.7 (2.1) | |
3 | 25.7 (0.6) | 20.3 (2.0) | |
4 (high) | 26.7 (0.9) | 16.3 (2.0) | |
Education (%) | 0.002 | ||
Under college | 45.2 (0.7) | 53.2 (2.6) | |
Above college | 54.8 (0.9) | 46.8 (2.6) | |
Marriage status (%) | <0.001 | ||
Married | 66.2 (0.7) | 47.0 (2.7) | |
Separated | 0.6 (0.1) | 1.0 (0.4) | |
Widowed | 5.3 (0.2) | 9.8 (1.2) | |
Divorced | 3.5 (0.2) | 9.2 (1.3) | |
Never | 24.4 (0.7) | 33.0 (2.7) | |
Health screening | |||
PHQ-9 | 1.77(0.03) | 13.43 (0.19) | <0.001 |
Body mass index (cm/m2) | 24.05 (0.04) | 24.52 (0.23) | 0.04 |
Waist size (cm) | 83.1 (0.12) | 84.23 (0.61) | 0.07 |
Systolic blood pressure (mmHg) | 117.6 (0.21) | 117.65 (1.0) | 0.96 |
Diastolic blood pressure (mmHg) | 76.20 (0.12) | 75.28 (0.57) | 0.11 |
Total cholesterol (mg/dL) | 191.81 (0.43) | 190.47 (1.98) | 0.51 |
HbA1c (%) | 5.67 (0.01) | 5.78 (0.06) | 0.05 |
Smoking status (%) | <0.001 | ||
Non-smoker | 59.9 (0.5) | 52.9 (2.6) | |
Ex-smoker | 20.5 (0.4) | 15.6 (1.8) | |
Smoker | 19.6 (0.5) | 31.5 (2.5) | |
Alcohol drinking (%) | 77.2 (0.5) | 73.0 (2.1) | 0.04 |
Regular exercise (%) | 47.1 (0.6) | 44.0 (2.7) | 0.27 |
Comorbidities | |||
Hypertension (%) | 27.2 (0.5) | 29.4 (2.4) | 0.18 |
Diabetes (%) | 10.5 (0.3) | 18.6 (1.9) | <0.001 |
Dyslipidemia (%) | 19.9 (0.4) | 22.8 (2.1) | 0.16 |
Charlson comorbidity index (%) | <0.001 | ||
0 | 87.8 (0.3) | 79.4 (1.9) | |
1 | 7.0 (0.3) | 11.8 (1.4) | |
2 | 4.6 (0.2) | 6.1 (1.0) | |
3 | 0.7 (0.1) | 2.6 (0.7) |
All Subjects | Odds Ratio (95% Confidence Intervals) | |||
---|---|---|---|---|
Crude | p-Value | Adjusted * | p-Value | |
KNHANES | ||||
Sodium (per 1000 mg) | 0.87 (0.82, 0.93) | <0.001 | 0.89 (0.82, 0.96) | 0.004 |
Potassium (per 1000 mg) | 0.82 (0.74, 0.91) | <0.001 | 0.87 (0.77, 0.99) | 0.04 |
Calcium (per 1000 mg) | 0.56 (0.37, 0.85) | 0.007 | 0.79 (0.51, 1.25) | 0.31 |
Magnesium (per 1000 mg) | 0.22 (0.09, 0.56) | 0.002 | 0.53 (0.17, 1.69) | 0.28 |
Phosphorus (per 1000 mg) | 0.61 (0.46, 0.80) | <0.001 | 0.64 (0.41, 1.00) | 0.05 |
Iron (per 10 mg) | 0.74 (0.59, 0.92) | 0.006 | 0.90 (0.71, 1.15) | 0.40 |
Zinc (per 10 mg) | 0.65 (0.49, 0.86) | 0.003 | 0.77 (0.51, 1.16) | 0.21 |
NHANES | ||||
Sodium (per 1000 mg) | 0.92 (0.84, 1.00) | 0.05 | 0.98 (0.89, 1.08) | 0.69 |
Potassium (per 1000 mg) | 0.74 (0.64, 0.85) | <0.001 | 0.76 (0.64, 0.91) | 0.003 |
Calcium (per 1000 mg) | 0.81 (0.63, 1.05) | 0.11 | 0.98 (0.75, 1.29) | 0.88 |
Magnesium (per 1000 mg) | 0.18 (0.07, 0.46) | 0.001 | 0.51 (0.21, 1.21) | 0.12 |
Phosphorus (per 1000 mg) | 0.68 (0.52, 0.89) | 0.006 | 0.71 (0.49, 1.04) | 0.08 |
Iron (per 10 mg) | 0.82 (0.72, 0.94) | 0.006 | 0.89 (0.79, 1.00) | 0.05 |
Zinc (per 10 mg) | 0.73 (0.61, 0.88) | 0.001 | 0.83 (0.70, 0.99) | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Kim, I.; Lee, J.; Jeon, K.; Kang, J.; Lee, D.; Choi, S.; Kim, H.; Son, M. Mineral Intake and Depression: A Cross-Sectional Comparative Study Based on National Health and Nutrition Examination Surveys in Korea and the United States. Nutrients 2025, 17, 2593. https://doi.org/10.3390/nu17162593
Kim J, Kim I, Lee J, Jeon K, Kang J, Lee D, Choi S, Kim H, Son M. Mineral Intake and Depression: A Cross-Sectional Comparative Study Based on National Health and Nutrition Examination Surveys in Korea and the United States. Nutrients. 2025; 17(16):2593. https://doi.org/10.3390/nu17162593
Chicago/Turabian StyleKim, Jiwoo, Inho Kim, Junhui Lee, Kyungwhan Jeon, Juseong Kang, Dongchan Lee, Sera Choi, HyunSoo Kim, and Minkook Son. 2025. "Mineral Intake and Depression: A Cross-Sectional Comparative Study Based on National Health and Nutrition Examination Surveys in Korea and the United States" Nutrients 17, no. 16: 2593. https://doi.org/10.3390/nu17162593
APA StyleKim, J., Kim, I., Lee, J., Jeon, K., Kang, J., Lee, D., Choi, S., Kim, H., & Son, M. (2025). Mineral Intake and Depression: A Cross-Sectional Comparative Study Based on National Health and Nutrition Examination Surveys in Korea and the United States. Nutrients, 17(16), 2593. https://doi.org/10.3390/nu17162593