Whey Protein Supplementation Combined with Exercise on Muscle Protein Synthesis and the AKT/mTOR Pathway in Healthy Adults: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.1.1. Inclusion and Exclusion Criteria
2.1.2. Literature Search Strategy and Screening
2.2. Data Extraction
2.3. Assessment of Risk of Bias
2.4. Meta-Analysis
3. Results
3.1. Search Results
3.2. Study Characteristics
3.3. Qualitative Synthesis
3.4. Meta-Analysis Results
3.4.1. Myofibrillar FSR
3.4.2. Protein Phosphorylation Level of AKT/mTOR Pathway
AKT
mTOR
E-BP1
p70S6K
rpS6
3.4.3. Sensitivity Analysis
3.5. Risk of Bias
4. Discussion
4.1. The Effects of Whey Protein Supplementation on MPS
4.2. The Role of the AKT/mTOR Pathway in the Regulation of MPS
4.3. Exercise Interventions on Whey Protein Supplementation Efficacy
4.4. The Impact of Whey Protein Supplementation on Muscle Function and Athletic Performance
4.5. Study Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schoenfeld, B.J.; Aragon, A.A. Is There a Postworkout Anabolic Window of Opportunity for Nutrient Consumption? Clearing up Controversies. J. Orthop. Sports Phys. Ther. 2018, 48, 911–914. [Google Scholar] [CrossRef]
- Aragon, A.A.; Schoenfeld, B.J. Nutrient timing revisited: Is there a post-exercise anabolic window? J. Int. Soc. Sports Nutr. 2013, 10, 5. [Google Scholar] [CrossRef]
- Witard, O.; Bannock, L.; Tipton, K. Making Sense of Muscle Protein Synthesis: A Focus on Muscle Growth During Resistance Training. Int. J. Sport Nutr. Exerc. Metab. 2021, 32, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Pasiakos, S.M.; McLellan, T.M.; Lieberman, H.R. The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults: A systematic review. Sports Med. 2015, 45, 111–131. [Google Scholar] [CrossRef]
- West, D.W.D.; Abou Sawan, S.; Mazzulla, M.; Williamson, E.; Moore, D.R. Whey Protein Supplementation Enhances Whole Body Protein Metabolism and Performance Recovery after Resistance Exercise: A Double-Blind Crossover Study. Nutrients 2017, 9, 735. [Google Scholar] [CrossRef] [PubMed]
- Lam, F.C.; Khan, T.M.; Faidah, H.; Haseeb, A.; Khan, A.H. Effectiveness of whey protein supplements on the serum levels of amino acid, creatinine kinase and myoglobin of athletes: A systematic review and meta-analysis. Syst. Rev. 2019, 8, 130. [Google Scholar] [CrossRef] [PubMed]
- Naclerio, F.; Larumbe-Zabala, E. Effects of Whey Protein Alone or as Part of a Multi-ingredient Formulation on Strength, Fat-Free Mass, or Lean Body Mass in Resistance-Trained Individuals: A Meta-analysis. Sports Med. 2016, 46, 125–137. [Google Scholar] [CrossRef]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018, 52, 376–384. [Google Scholar] [CrossRef]
- Burke, L.M.; Winter, J.A.; Cameron-Smith, D.; Enslen, M.; Farnfield, M.; Decombaz, J. Effect of intake of different dietary protein sources on plasma amino acid profiles at rest and after exercise. Int. J. Sport. Nutr. Exerc. Metab. 2012, 22, 452–462. [Google Scholar] [CrossRef]
- Norton, L.E.; Layman, D.K. Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J. Nutr. 2006, 136, 533S–537S. [Google Scholar] [CrossRef]
- Hara, K.; Yonezawa, K.; Kozlowski, M.T.; Sugimoto, T.; Andrabi, K.; Weng, Q.P.; Kasuga, M.; Nishimoto, I.; Avruch, J. Regulation of eIF-4E BP1 phosphorylation by mTOR. J. Biol. Chem. 1997, 272, 26457–26463. [Google Scholar] [CrossRef]
- Trommelen, J.; van Lieshout, G.A.A.; Pabla, P.; Nyakayiru, J.; Hendriks, F.K.; Senden, J.M.; Goessens, J.P.B.; van Kranenburg, J.M.X.; Gijsen, A.P.; Verdijk, L.B.; et al. Pre-sleep Protein Ingestion Increases Mitochondrial Protein Synthesis Rates During Overnight Recovery from Endurance Exercise: A Randomized Controlled Trial. Sports Med. 2023, 53, 1445–1455. [Google Scholar] [CrossRef]
- Nederveen, J.P.; Betz, M.W.; Snijders, T.; Parise, G. The Importance of Muscle Capillarization for Optimizing Satellite Cell Plasticity. Exerc. Sport. Sci. Rev. 2021, 49, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, F.K.; de Brito Magalhães, C.L.; Neves, L.X.; dos Santos, R.C.; Pedrosa, M.L.; Silva, M.E. Whey protein modifies gene expression related to protein metabolism affecting muscle weight in resistance-exercised rats. Nutrition 2014, 30, 876–881. [Google Scholar] [CrossRef]
- Kimball, S.R. Integration of signals generated by nutrients, hormones, and exercise in skeletal muscle. Am. J. Clin. Nutr. 2014, 99, 237S–242S. [Google Scholar] [CrossRef]
- Pearson, J.R.; Moodie, N.; Stout, K.W.; Hawkins, W.C.; Matuszek, M.; Graham, Z.A.; Siedlik, J.A.; Vardiman, J.P.; Gallagher, P.M. Similar Responses in the Akt/Protein Kinase B Signaling Pathway Following Different Lower-Body Exercise Volumes in Recreationally Active Men. J. Strength. Cond. Res. 2023, 37, 1034–1041. [Google Scholar] [CrossRef]
- Breen, L.; Philp, A.; Witard, O.C.; Jackman, S.R.; Selby, A.; Smith, K.; Baar, K.; Tipton, K.D. The influence of carbohydrate-protein co-ingestion following endurance exercise on myofibrillar and mitochondrial protein synthesis. J. Physiol. 2011, 589, 4011–4025. [Google Scholar] [CrossRef]
- Burke, L.M.; Hawley, J.A.; Ross, M.L.; Moore, D.R.; Phillips, S.M.; Slater, G.R.; Stellingwerff, T.; Tipton, K.D.; Garnham, A.P.; Coffey, V.G. Preexercise aminoacidemia and muscle protein synthesis after resistance exercise. Med. Sci. Sports Exerc. 2012, 44, 1968–1977. [Google Scholar] [CrossRef] [PubMed]
- Camera, D.M.; West, D.W.; Burd, N.A.; Phillips, S.M.; Garnham, A.P.; Hawley, J.A.; Coffey, V.G. Low muscle glycogen concentration does not suppress the anabolic response to resistance exercise. J. Appl. Physiol. 2012, 113, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Camera, D.M.; West, D.W.; Phillips, S.M.; Rerecich, T.; Stellingwerff, T.; Hawley, J.A.; Coffey, V.G. Protein ingestion increases myofibrillar protein synthesis after concurrent exercise. Med. Sci. Sports Exerc. 2015, 47, 82–91. [Google Scholar] [CrossRef]
- Coffey, V.G.; Moore, D.R.; Burd, N.A.; Rerecich, T.; Stellingwerff, T.; Garnham, A.P.; Phillips, S.M.; Hawley, J.A. Nutrient provision increases signalling and protein synthesis in human skeletal muscle after repeated sprints. Eur. J. Appl. Physiol. 2011, 111, 1473–1483. [Google Scholar] [CrossRef] [PubMed]
- Davies, R.W.; Bass, J.J.; Carson, B.P.; Norton, C.; Kozior, M.; Amigo-Benavent, M.; Wilkinson, D.J.; Brook, M.S.; Atherton, P.J.; Smith, K.; et al. Differential Stimulation of Post-Exercise Myofibrillar Protein Synthesis in Humans Following Isonitrogenous, Isocaloric Pre-Exercise Feeding. Nutrients 2019, 11, 1657. [Google Scholar] [CrossRef]
- Farnfield, M.M.; Carey, K.A.; Gran, P.; Trenerry, M.K.; Cameron-Smith, D. Whey protein ingestion activates mTOR-dependent signalling after resistance exercise in young men: A double-blinded randomized controlled trial. Nutrients 2009, 1, 263–275. [Google Scholar] [CrossRef]
- Hulmi, J.J.; Tannerstedt, J.; Selänne, H.; Kainulainen, H.; Kovanen, V.; Mero, A.A. Resistance exercise with whey protein ingestion affects mTOR signaling pathway and myostatin in men. J. Appl. Physiol. 2009, 106, 1720–1729. [Google Scholar] [CrossRef]
- Kakigi, R.; Yoshihara, T.; Ozaki, H.; Ogura, Y.; Ichinoseki-Sekine, N.; Kobayashi, H.; Naito, H. Whey protein intake after resistance exercise activates mTOR signaling in a dose-dependent manner in human skeletal muscle. Eur. J. Appl. Physiol. 2014, 114, 735–742. [Google Scholar] [CrossRef]
- Lane, M.T.; Herda, T.J.; Fry, A.C.; Cooper, M.A.; Andre, M.J.; Gallagher, P.M. Endocrine responses and acute mTOR pathway phosphorylation to resistance exercise with leucine and whey. Biol. Sport. 2017, 34, 197–203. [Google Scholar] [CrossRef]
- Rahbek, S.K.; Farup, J.; Møller, A.B.; Vendelbo, M.H.; Holm, L.; Jessen, N.; Vissing, K. Effects of divergent resistance exercise contraction mode and dietary supplementation type on anabolic signalling, muscle protein synthesis and muscle hypertrophy. Amino Acids 2014, 46, 2377–2392. [Google Scholar] [CrossRef] [PubMed]
- Reitelseder, S.; Agergaard, J.; Doessing, S.; Helmark, I.C.; Lund, P.; Kristensen, N.B.; Frystyk, J.; Flyvbjerg, A.; Schjerling, P.; van Hall, G.; et al. Whey and casein labeled with L-[1-13C]leucine and muscle protein synthesis: Effect of resistance exercise and protein ingestion. Am. J. Physiol. Endocrinol. Metab. 2011, 300, E231–E242. [Google Scholar] [CrossRef]
- Tang, J.E.; Manolakos, J.J.; Kujbida, G.W.; Lysecki, P.J.; Moore, D.R.; Phillips, S.M. Minimal whey protein with carbohydrate stimulates muscle protein synthesis following resistance exercise in trained young men. Appl. Physiol. Nutr. Metab. 2007, 32, 1132–1138. [Google Scholar] [CrossRef]
- Townsend, J.R.; Morimune, J.E.; Jones, M.D.; Beuning, C.N.; Haase, A.A.; Boot, C.M.; Heffington, S.H.; Littlefield, L.A.; Henry, R.N.; Marshall, A.C.; et al. The Effect of ProHydrolase® on the Amino Acid and Intramuscular Anabolic Signaling Response to Resistance Exercise in Trained Males. Sports 2020, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Witard, O.C.; Jackman, S.R.; Breen, L.; Smith, K.; Selby, A.; Tipton, K.D. Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. Am. J. Clin. Nutr. 2014, 99, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Churchward-Venne, T.A.; Pinckaers, P.J.M.; Smeets, J.S.J.; Peeters, W.M.; Zorenc, A.H.; Schierbeek, H.; Rollo, I.; Verdijk, L.B.; van Loon, L.J.C. Myofibrillar and Mitochondrial Protein Synthesis Rates Do Not Differ in Young Men Following the Ingestion of Carbohydrate with Whey, Soy, or Leucine-Enriched Soy Protein after Concurrent Resistance- and Endurance-Type Exercise. J. Nutr. 2019, 149, 210–220. [Google Scholar] [CrossRef]
- Hamarsland, H.; Nordengen, A.L.; Nyvik Aas, S.; Holte, K.; Garthe, I.; Paulsen, G.; Cotter, M.; Børsheim, E.; Benestad, H.B.; Raastad, T. Native whey protein with high levels of leucine results in similar post-exercise muscular anabolic responses as regular whey protein: A randomized controlled trial. J. Int. Soc. Sports Nutr. 2017, 14, 43. [Google Scholar] [CrossRef]
- Macnaughton, L.S.; Wardle, S.L.; Witard, O.C.; McGlory, C.; Hamilton, D.L.; Jeromson, S.; Lawrence, C.E.; Wallis, G.A.; Tipton, K.D. The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein. Physiol. Rep. 2016, 4, e12893. [Google Scholar] [CrossRef]
- Mallinson, J.E.; Wardle, S.L.; O’Leary, T.J.; Greeves, J.P.; Cegielski, J.; Bass, J.; Brook, M.S.; Wilkinson, D.J.; Smith, K.; Atherton, P.J.; et al. Protein dose requirements to maximize skeletal muscle protein synthesis after repeated bouts of resistance exercise in young trained women. Scand. J. Med. Sci. Sports 2023, 33, 2470–2481. [Google Scholar] [CrossRef]
- Reidy, P.T.; Walker, D.K.; Dickinson, J.M.; Gundermann, D.M.; Drummond, M.J.; Timmerman, K.L.; Fry, C.S.; Borack, M.S.; Cope, M.B.; Mukherjea, R.; et al. Protein blend ingestion following resistance exercise promotes human muscle protein synthesis. J. Nutr. 2013, 143, 410–416. [Google Scholar] [CrossRef]
- Tang, J.E.; Moore, D.R.; Kujbida, G.W.; Tarnopolsky, M.A.; Phillips, S.M. Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J. Appl. Physiol. 2009, 107, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017, 14, 20. [Google Scholar] [CrossRef]
- Boirie, Y.; Dangin, M.; Gachon, P.; Vasson, M.P.; Maubois, J.L.; Beaufrère, B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. USA 1997, 94, 14930–14935. [Google Scholar] [CrossRef] [PubMed]
- Arent, S.M.; Cintineo, H.P.; McFadden, B.A.; Chandler, A.J.; Arent, M.A. Nutrient Timing: A Garage Door of Opportunity? Nutrients 2020, 12, 1948. [Google Scholar] [CrossRef]
- Anthony, J.C.; Anthony, T.G.; Kimball, S.R.; Jefferson, L.S. Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. J. Nutr. 2001, 131, 856S–860S. [Google Scholar] [CrossRef]
- Garlick, P.J. The role of leucine in the regulation of protein metabolism. J. Nutr. 2005, 135, 1553S–1556S. [Google Scholar] [CrossRef]
- Tokunaga, C.; Yoshino, K.; Yonezawa, K. mTOR integrates amino acid- and energy-sensing pathways. Biochem. Biophys. Res. Commun. 2004, 313, 443–446. [Google Scholar] [CrossRef]
- Renguet, E.; Ginion, A.; Gélinas, R.; Bultot, L.; Auquier, J.; Robillard Frayne, I.; Daneault, C.; Vanoverschelde, J.L.; Des Rosiers, C.; Hue, L.; et al. Metabolism and acetylation contribute to leucine-mediated inhibition of cardiac glucose uptake. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H432–H445. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Peterson, T.R.; Sabatini, D.M. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol. Cell 2010, 40, 310–322. [Google Scholar] [CrossRef]
- Ebner, M.; Sinkovics, B.; Szczygieł, M.; Ribeiro, D.W.; Yudushkin, I. Localization of mTORC2 activity inside cells. J. Cell Biol. 2017, 216, 343–353. [Google Scholar] [CrossRef]
- Vadlakonda, L.; Dash, A.; Pasupuleti, M.; Anil Kumar, K.; Reddanna, P. The Paradox of Akt-mTOR Interactions. Front. Oncol. 2013, 3, 165. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Wang, Z.; Tao, L.; Wang, Y. ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy. Autophagy 2010, 6, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Bodine, S.C.; Stitt, T.N.; Gonzalez, M.; Kline, W.O.; Stover, G.L.; Bauerlein, R.; Zlotchenko, E.; Scrimgeour, A.; Lawrence, J.C.; Glass, D.J.; et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol. 2001, 3, 1014–1019. [Google Scholar] [CrossRef]
- Fu, S.; Yin, L.; Lin, X.; Lu, J.; Wang, X. Effects of Cyclic Mechanical Stretch on the Proliferation of L6 Myoblasts and Its Mechanisms: PI3K/Akt and MAPK Signal Pathways Regulated by IGF-1 Receptor. Int. J. Mol. Sci. 2018, 19, 1649. [Google Scholar] [CrossRef]
- Wolfson, R.L.; Chantranupong, L.; Saxton, R.A.; Shen, K.; Scaria, S.M.; Cantor, J.R.; Sabatini, D.M. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 2016, 351, 43–48. [Google Scholar] [CrossRef]
- Edman, S.; Söderlund, K.; Moberg, M.; Apró, W.; Blomstrand, E. mTORC1 Signaling in Individual Human Muscle Fibers Following Resistance Exercise in Combination With Intake of Essential Amino Acids. Front. Nutr. 2019, 6, 96. [Google Scholar] [CrossRef]
- Ghomlaghi, M.; Hart, A.; Hoang, N.; Shin, S.; Nguyen, L.K. Feedback, Crosstalk and Competition: Ingredients for Emergent Non-Linear Behaviour in the PI3K/mTOR Signalling Network. Int. J. Mol. Sci. 2021, 22, 6944. [Google Scholar] [CrossRef]
- Yang, D.Q.; Kastan, M.B. Participation of ATM in insulin signalling through phosphorylation of eIF-4E-binding protein 1. Nat. Cell Biol. 2000, 2, 893–898. [Google Scholar] [CrossRef]
- Batool, A.; Majeed, S.T.; Aashaq, S.; Majeed, R.; Andrabi, K.I. Eukaryotic Initiation Factor 4E phosphorylation acts a switch for its binding to 4E-BP1 and mRNA cap assembly. Biochem. Biophys. Res. Commun. 2020, 527, 489–495. [Google Scholar] [CrossRef]
- Kawasome, H.; Papst, P.; Webb, S.; Keller, G.M.; Johnson, G.L.; Gelfand, E.W.; Terada, N. Targeted disruption of p70(s6k) defines its role in protein synthesis and rapamycin sensitivity. Proc. Natl. Acad. Sci. USA 1998, 95, 5033–5038. [Google Scholar] [CrossRef]
- Chauvin, C.; Koka, V.; Nouschi, A.; Mieulet, V.; Hoareau-Aveilla, C.; Dreazen, A.; Cagnard, N.; Carpentier, W.; Kiss, T.; Meyuhas, O.; et al. Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene 2014, 33, 474–483. [Google Scholar] [CrossRef]
- Tréfier, A.; Musnier, A.; Landomiel, F.; Bourquard, T.; Boulo, T.; Ayoub, M.A.; León, K.; Bruneau, G.; Chevalier, M.; Durand, G.; et al. G protein-dependent signaling triggers a β-arrestin-scaffolded p70S6K/ rpS6 module that controls 5′TOP mRNA translation. FASEB J. 2018, 32, 1154–1169. [Google Scholar] [CrossRef]
- Centner, C.; Jerger, S.; Mallard, A.; Herrmann, A.; Varfolomeeva, E.; Gollhofer, S.; Oesser, S.; Sticht, C.; Gretz, N.; Aagaard, P.; et al. Supplementation of Specific Collagen Peptides Following High-Load Resistance Exercise Upregulates Gene Expression in Pathways Involved in Skeletal Muscle Signal Transduction. Front. Physiol. 2022, 13, 838004. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, S.; Li, J.; Mateus, A.; Williams, C.; Gilthorpe, J.; Backman, L.J. Mechanical Loading Modulates AMPK and mTOR Signaling in Muscle Cells. J. Proteome Res. 2024, 23, 4286–4295. [Google Scholar] [CrossRef]
- Parker, L.; Trewin, A.; Levinger, I.; Shaw, C.S.; Stepto, N.K. The effect of exercise-intensity on skeletal muscle stress kinase and insulin protein signaling. PLoS ONE 2017, 12, e0171613. [Google Scholar] [CrossRef]
- Hodson, N.; Mazzulla, M.; Holowaty, M.N.H.; Kumbhare, D.; Moore, D.R. RPS6 phosphorylation occurs to a greater extent in the periphery of human skeletal muscle fibers, near focal adhesions, after anabolic stimuli. Am. J. Physiol. Cell Physiol. 2022, 322, C94–C110. [Google Scholar] [CrossRef]
- Areta, J.L.; Burke, L.M.; Ross, M.L.; Camera, D.M.; West, D.W.; Broad, E.M.; Jeacocke, N.A.; Moore, D.R.; Stellingwerff, T.; Phillips, S.M.; et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J. Physiol. 2013, 591, 2319–2331. [Google Scholar] [CrossRef]
- Baumert, P.; Mäntyselkä, S.; Schönfelder, M.; Heiber, M.; Jacobs, M.J.; Swaminathan, A.; Minderis, P.; Dirmontas, M.; Kleigrewe, K.; Meng, C.; et al. Skeletal muscle hypertrophy rewires glucose metabolism: An experimental investigation and systematic review. J. Cachexia Sarcopenia Muscle 2024, 15, 989–1002. [Google Scholar] [CrossRef]
- Zhou, H.H.; Liao, Y.; Zhou, X.; Peng, Z.; Xu, S.; Shi, S.; Liu, L.; Hao, L.; Yang, W. Effects of Timing and Types of Protein Supplementation on Improving Muscle Mass, Strength, and Physical Performance in Adults Undergoing Resistance Training: A Network Meta-Analysis. Int. J. Sport. Nutr. Exerc. Metab. 2024, 34, 54–64. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, Y.; Guo, H.; Meng, K.; Qiu, J.; Benardot, D. Muscle-Related Effect of Whey Protein and Vitamin D(3) Supplementation Provided before or after Bedtime in Males Undergoing Resistance Training. Nutrients 2022, 14, 2289. [Google Scholar] [CrossRef]
- Ahmadi, M.; Hoorang, N.; Imanian, B.; Hemmatinafar, M.; Rezaei, R.; Nemati, J.; Eftekhari, F.; Alkasasbeh, W.J. Boosting Recovery: Omega-3 and Whey Protein Enhance Strength and Ease Muscle Soreness in Female Futsal Players. Nutrients 2024, 16, 4263. [Google Scholar] [CrossRef]
- Kim, C.B.; Park, J.H.; Park, H.S.; Kim, H.J.; Park, J.J. Effects of Whey Protein Supplement on 4-Week Resistance Exercise-Induced Improvements in Muscle Mass and Isokinetic Muscular Function under Dietary Control. Nutrients 2023, 15, 1003. [Google Scholar] [CrossRef]
- Sjøberg, K.A.; Frøsig, C.; Kjøbsted, R.; Sylow, L.; Kleinert, M.; Betik, A.C.; Shaw, C.S.; Kiens, B.; Wojtaszewski, J.F.P.; Rattigan, S.; et al. Exercise Increases Human Skeletal Muscle Insulin Sensitivity via Coordinated Increases in Microvascular Perfusion and Molecular Signaling. Diabetes 2017, 66, 1501–1510. [Google Scholar] [CrossRef]
- Kimball, S.R.; Jefferson, L.S. New functions for amino acids: Effects on gene transcription and translation. Am. J. Clin. Nutr. 2006, 83, 500S–507S. [Google Scholar] [CrossRef]
- Pataky, M.W.; Dasari, S.; Michie, K.L.; Sevits, K.J.; Kumar, A.A.; Klaus, K.A.; Heppelmann, C.J.; Robinson, M.M.; Carter, R.E.; Lanza, I.R.; et al. Impact of biological sex and sex hormones on molecular signatures of skeletal muscle at rest and in response to distinct exercise training modes. Cell Metab. 2023, 35, 1996–2010.E6. [Google Scholar] [CrossRef] [PubMed]
- White, J.P.; Gao, S.; Puppa, M.J.; Sato, S.; Welle, S.L.; Carson, J.A. Testosterone regulation of Akt/mTORC1/FoxO3a signaling in skeletal muscle. Mol. Cell Endocrinol. 2013, 365, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Abellan van Kan, G. Epidemiology and consequences of sarcopenia. J. Nutr. Health Aging 2009, 13, 708–712. [Google Scholar] [CrossRef] [PubMed]
- Cherin, P.; Voronska, E.; Fraoucene, N.; de Jaeger, C. Prevalence of sarcopenia among healthy ambulatory subjects: The sarcopenia begins from 45 years. Aging Clin. Exp. Res. 2014, 26, 137–146. [Google Scholar] [CrossRef]
Category | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Population | Healthy adults (18–50 years) from non-sedentary populations. | Sedentary individuals, the elderly, and people with chronic diseases. |
Intervention | Whey protein supplements (hydrolyzed, concentrated, or isolated) are used in combination with acute single-bout exercise intervention. | Long-term exercise intervention combined with non-whey protein supplementation. |
Comparator | The control groups receive various alternatives, including artificially sweetened water, noncaloric placebo drinks, carbohydrate-based drinks, soy protein, milk, and blend protein. | — |
Outcome | Outcome measures include myofibrillar FSR or phosphorylation levels of signaling pathway proteins related to MPS. | Fails to assess MPS or lacks quantifiable phosphorylation data of signaling pathway proteins related to MPS. |
Study design | The study protocol is RCT with a parallel or crossover design. | Observational studies and review articles. |
Study | Study Type | Subject (Sample Size, Gender, Age, Training Experience) | Exercise Protocol | Supplementary Protocol | Supplement Timing | Outcomes | |
---|---|---|---|---|---|---|---|
FSR (Fold Changes) | Post-Exercise Phosphorylation Levels of AKT/mTOR Pathway (Ex vs. Con) | ||||||
Breen et al. 2011 [17] | RCT (crossover) | 10, male, 29.0 ± 6.0 years, >2 times/week for 7.5 ± 3.0 years | 90 min cycling exercise at 75% Wmax | Ex: Carbohydrate (25.4 g) × 2 + whey protein (10.2 g) × 2; Con: Carbohydrate (25.2 g) × 2 | Immediately and 30 min post-exercise | 1.6 (Ex vs. Con) | 4–5 h: AKT↑, mTOR↑, 4E-BP1↑, p70S6k↑ |
Burke et al. 2012 [18] | RCT (crossover) | 12, male, 27.0 ± 1.3 years, 2 times/week for >2 years | 10 sets, 8–10 repetitions of leg extension at 80% 1RM | Ex: Whey protein (25 g) + leucine (5 g); Con: Artificially sweetened water | 45 min pre-exercise | 2.5 (Ex vs. Con) | 1–2 h: AKT↑, mTOR↓, p70S6K↑, rpS6↑ 4–5 h: AKT↑, mTOR↑, p70S6k↓, rpS6↓ |
Camera et al. 2012 [19] | RCT (parallel) | 16, male, 22.9 ± 2.6 years, 3 times/week for >1 year | 8 sets, 5 repetitions of leg press at 80% 1RM | Ex: Whey protein (20 g) ×2 + maltodextrin (40 g) × 2; Con: Artificially sweetened water × 2 | Immediately and 2 h post-exercise | 1.4 (Ex vs. Con) | — |
Camera et al. 2015 [20] | RCT (crossover) | 8, male, 19.1 ± 1.4 years, 3 times/week for >1 year | 8 sets, 5 repetitions of leg extension at 80% 1RM | Ex: Whey protein (25 g); Con: Artificially sweetened water | Immediately post-exercise | 1.4 (Ex vs. Con) | 1–2 h: AKT↑, mTOR↑, p70S6K↑ 4–5 h: AKT↑, mTOR↓, p70S6k↓ |
Coffey et al. 2011 [21] | RCT (crossover) | 8, male, 21.4 ± 2.6 years, 4–6 times/week | 10 sets, 6 s cycling sprints at 0.75 N·m/kg | Ex: Whey protein (24 g) + additional leucine (4.8 g) + maltodextrin (50 g); Con: Artificially sweetened water | 30 min pre-exercise | 1.3 (Ex vs. Con) | 1–2 h: AKT↑, mTOR↑, 4E-BP1↑, p70S6K↑, rpS6↑ 4–5 h: AKT↑, mTOR↑, 4E-BP1↓, p70S6k↓, rpS6↑ |
Davies et al. 2019 [22] | RCT (parallel) | 22, male, 23.0 ± 4.3 years, >3 h/week for >6 months | 10 repetitions of barbell back squats at 70% 1RM until failure to complete a full set | Ex: Whey protein (0.33 g/kg); Con: Nonessential amino acids | 30 min pre-exercise | 1.1 (Ex vs. Con) | — |
Farnfield et al. 2009 [23] | RCT (parallel) | 14, male, 22.5 ± 1.0 years, no training experience | 3 sets, 12 repetitions of maximal single-leg knee extension | Ex: Whey protein isolated (26.6 g); Con: Placebo drink | Immediately post-exercise | — | 1–2 h: AKT↑, mTOR↑, 4E-BP1↑, p70S6K↑, rpS6↑ 4–5 h: AKT↓, mTOR↓, 4E-BP1↓, p70S6k↓, rpS6↓ |
Hulmi et al. 2009 [24] | RCT (parallel) | 18, male, 24.9 ± 3.8 years, no training experience | 5 sets, 10 repetitions of leg press at 75% 1RM | Ex: Whey protein (15 g) × 2; Con: Nonenergetic placebo drink × 2 | Immediately pre- and post-exercise | — | 1–2 h: AKT↑, mTOR↑, 4E-BP1↑, p70S6K↑, rpS6↑ |
Kakigi et al. 2014 [25] | RCT (parallel) | 15, male, 22.3 ± 0.3 years, no training experience | 4 sets, 6 repetitions of maximal knee extension | Ex: Whey protein (10/20 g); Con: Water | Immediately post-exercise | — | 1–2 h: AKT↑, mTOR↑, 4E-BP1↑, p70S6K↑ |
Lane et al. 2017 [26] | RCT (crossover) | 20, male, 27.8 ± 2.8 years, 2–10 h/week | 5 sets, 10 repetitions of leg press and leg extension at 10RM | Ex: Whey protein (10 g) + leucine (10 g); Con: Carbohydrates (4 g) | Immediately post-exercise | — | 1–2 h: AKT↑, mTOR↓, 4E-BP1↑, p70S6K↑, rpS6↑ |
Rahbek et al. 2014 [27] | RCT (parallel) | 22, male, 23.9 ± 0.8 years, ≥1 time/2 week for >6 months | 6 sets, 10 repetitions of maximal knee extension | Ex: Whey protein hydrolysate (0.3 g/kg) + carbohydrate (0.3 g/kg); Con: Carbohydrate (0.60 g/kg) | Immediately post-exercise | 1 (Ex vs. Con) | 1–2 h: AKT↓, mTOR↑, 4E-BP1↑, p70S6K↑, rpS6↑ 4–5 h: AKT↓, mTOR, 4E-BP1↓, p70S6k↓, rpS6↓ |
Reitelseder et al. 2011 [28] | RCT (parallel) | 17, male, 27.1 ± 2.2 years, no training experience | 10 sets, 8 repetitions of leg extension at 80% 1RM | Ex: Whey protein (0.3 g/kg); Con: Noncaloric control drink | Immediately post-exercise | 1.4 (Ex vs. Con) | — |
Tang et al. 2007 [29] | RCT (crossover) | 8, male, 21.0 ± 1.0 years, ≥3 times/week | 4 sets, 8–10 repetitions of leg extension and leg press at 80% 1RM | Ex: Whey protein isolated (10 g) + fructose (21 g); Con: Fructose (21 g) + maltodextrin (10 g) | Immediately post-exercise | 1.3 (Ex vs. Con) | — |
Townsend et al. 2020 [30] | RCT (crossover) | 10, male, 24.4 ± 4.1 years for >1 years | 4 sets, 8–10 repetitions of leg press and leg extension at 75% 1RM | Ex: Whey protein (26 g); Con: Noncaloric control drink | Immediately post-exercise | — | 1–2 h: AKT↑, mTOR↓, p70S6K↑ |
Witard et al. 2014 [31] | RCT (parallel) | 24, male, 22.0 ± 3.0 years, ≥6 months | 8 sets, 10 repetitions of leg extension at 80% 1RM | Ex: Whey protein (10 g/20 g/40 g) Con: Noncaloric control drink | Immediately post-exercise | 1.2 (10 g vs. Con), 1.4 (20 g vs. Con), 1.5 (40 g vs. Con) | — |
Churchward-Venne et al. 2019 [32] | RCT (parallel) | 36, male, 23.0 ± 0.4 years, 3 times/week | 4 sets, 8 repetitions of leg press at 80% 1RM + 30 min cycling exercise at 60% Wmax | Whey protein (20 g), Soy protein(20 g), Soy protein + leucine(20 g) | Immediately post-exercise | 1 (Whey protein vs. Soy protein), 1 (Whey protein vs. Soy protein + leucine) | — |
Hamarsland et al. 2017 [33] | RCT (parallel) | 13, male, 9, female, 25.0 ± 3.8 years, >1 time/week for >6 months | 4 sets, 8 repetitions of leg press and knee extension at 8RM | Whey protein (20 g) × 2, Milk (20 g) × 2, WPC-80 (20 g) × 2 | Immediately and 2 h post-exercise | Compared with baseline: 0.9 (Milk), 2.3 (Whey protein), 2.4 (WPC-80) | — |
Macnaughton et al. 2016 [34] | RCT (parallel) | 30, male, 22.3 ± 3.0 years, ≥2 times/week for >6 months | 3 sets, 10 repetitions of chest press, lat pulldown, leg curl, leg press and leg extension at 75% 1RM | Whey protein (20 g/40 g) | Immediately post-exercise | 1.2 (40g vs. 20g) | — |
Mallinson et al. 2023 [35] | RCT (parallel) | 24, female, 26.6 ± 0.8 years, ≥2 times/week for >6 months | 3 sets, 8 repetitions of lat pulldown, single-leg press on both legs and chest press at 75% 1RM | Whey protein (15 g/30 g/60 g) | Immediately post-exercise | Compared with baseline: 1.5 (15 g), 2.0 (30 g), 1.5 (60 g) | — |
Reidy et al. 2013 [36] | RCT (parallel) | 17, male, 24.1 ± 1.5 years, 2 times/week | 8 sets, 10 repetitions of leg extension at 55–70% 1RM | Whey protein (17.7 g), Blend protein (19.3 g) | 1 h post-exercise | Compared with baseline: 1.3 (Whey protein), 1.5 (Blend) | — |
Tang et al. 2009 [37] | RCT (parallel) | 18, male, 22.8 ± 3.9 years, 2–3 times/week | 4 sets, leg press and leg extension at 10–12RM | Whey protein (21.4 g), Soy protein (22.2 g), Casein (21.9 g) | Immediately post-exercise | Compared with baseline: 1.7 (Whey protein), 1.5 (Soy protein), 1.4(Casein) | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, X.; Ye, X.; Ji, S.; Zhang, S.; Wang, Y.; Zhou, Z.; Xiang, D.; Luo, B. Whey Protein Supplementation Combined with Exercise on Muscle Protein Synthesis and the AKT/mTOR Pathway in Healthy Adults: A Systematic Review and Meta-Analysis. Nutrients 2025, 17, 2579. https://doi.org/10.3390/nu17162579
Ji X, Ye X, Ji S, Zhang S, Wang Y, Zhou Z, Xiang D, Luo B. Whey Protein Supplementation Combined with Exercise on Muscle Protein Synthesis and the AKT/mTOR Pathway in Healthy Adults: A Systematic Review and Meta-Analysis. Nutrients. 2025; 17(16):2579. https://doi.org/10.3390/nu17162579
Chicago/Turabian StyleJi, Xiaorong, Xuanyin Ye, Shuyi Ji, Shuxin Zhang, Yuwen Wang, Zhibei Zhou, Dao Xiang, and Beibei Luo. 2025. "Whey Protein Supplementation Combined with Exercise on Muscle Protein Synthesis and the AKT/mTOR Pathway in Healthy Adults: A Systematic Review and Meta-Analysis" Nutrients 17, no. 16: 2579. https://doi.org/10.3390/nu17162579
APA StyleJi, X., Ye, X., Ji, S., Zhang, S., Wang, Y., Zhou, Z., Xiang, D., & Luo, B. (2025). Whey Protein Supplementation Combined with Exercise on Muscle Protein Synthesis and the AKT/mTOR Pathway in Healthy Adults: A Systematic Review and Meta-Analysis. Nutrients, 17(16), 2579. https://doi.org/10.3390/nu17162579