Conjugation of Pea Peptides and D-Xylose via Maillard Glycosylation and Its Functionality to Antagonize Alcohol-Induced Liver Injury in Zebrafish
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of PPH and PPH-M
2.3. Structural Characterization of PPH and PPH-M
2.3.1. Fourier Transform Infrared Spectroscopy
2.3.2. UV Spectroscopic Determination
2.3.3. Determination of Molecular Weight Distribution
2.3.4. Scanning Electron Microscopy
2.3.5. Zeta Potential and Particle Size Determination
2.3.6. Determination of Amino Acid Composition
2.4. PPH-M Antagonized Alcoholic Liver Injury in Zebrafish
2.4.1. Zebrafish Feeding and Embryo Collection
2.4.2. Establishment of Alcohol Injury Model in Zebrafish
2.4.3. Grouping and Drug Administration
2.4.4. Morphological Observation of Zebrafish Liver
2.4.5. Pathological Evaluation of Zebrafish Liver Tissue
2.4.6. Detection of Related Biochemical Indexes of Zebrafish Liver
2.4.7. Detection of Related Genes by qRT-PCR
2.5. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Activity Analysis of PPH and PPH-M In Vitro
3.2. Conjugation of Pea Peptides and D-Xylose Was Confirmed by FTIR
3.3. UV Spectrum Analysis
3.4. Molecular Weight Distribution of PPH-M Becomes Larger
3.5. SEM Analysis
3.6. Zeta Potential and Particle Size Analysis
3.7. Amino Acid Composition
3.8. Screening of Alcohol Concentration in Zebrafish Liver Injury
3.9. Protective Effects of PPH-M on Alcoholic Liver Injury in Zebrafish
3.10. Effect of PPH-M on Relative Gene Expression of the Keap1/Nrf2 Signaling Pathway in Zebrafish
3.11. Effect of PPH-M on Relative Gene Expression of Glutathione Synthesis in Zebrafish
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ji, H.; Wang, Q.; Wang, X.; Zhang, L.; Yang, P. Pea protein-inulin conjugate prepared by atmospheric pressure plasma jet combined with glycosylation: Structure and emulsifying properties. Front. Nutr. 2024, 11, 1416753. [Google Scholar] [CrossRef]
- Bu, F.; Nayak, G.; Bruggeman, P.; Annor, G.; Ismail, B.P. Impact of plasma reactive species on the structure and functionality of pea protein isolate. Food Chem. 2022, 371, 131135. [Google Scholar] [CrossRef]
- Lam, A.C.Y.; Can Karaca, A.; Tyler, R.T.; Nickerson, M.T. Pea protein isolates: Structure, extraction, and functionality. Food Rev. Int. 2016, 34, 126–147. [Google Scholar] [CrossRef]
- Asledottir, T.; Vegarud, G.E.; Picariello, G.; Mamone, G.; Lea, T.E.; Røseth, A.; Ferranti, P.; Devold, T.G. Bioactive peptides identified in pea and faba bean after in vitro digestion with human gastrointestinal enzymes. J. Funct. Foods 2023, 102, 105445. [Google Scholar] [CrossRef]
- Fan, H.; Wu, K.; Wu, J. Pea-derived tripeptide LRW fails to reduce blood pressure in spontaneously hypertensive rats due to its low gastrointestinal stability and transepithelial permeability. Food Biosci. 2022, 49, 101964. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, H.; Wei, Y.; Cai, M.; Gu, R.; Wang, Y.; Ma, Y.; Chen, L. Pea-derived peptides, VLP, LLP, VA, and LL, improve insulin resistance in HepG2 cells via activating IRS-1/PI3K/AKT and blocking ROS-mediated p38MAPK signaling. J. Food Biochem. 2020, 44, e13454. [Google Scholar] [CrossRef]
- Ndiaye, F.; Vuong, T.; Duarte, J.; Aluko, R.E.; Matar, C. Anti-oxidant, anti-inflammatory and immunomodulating properties of an enzymatic protein hydrolysate from yellow field pea seeds. Eur. J. Nutr. 2012, 51, 29–37. [Google Scholar] [CrossRef]
- Li, M.; Huang, J.; Chen, Y.; Liu, C.; Wu, X. Protein from red adzuki bean: Extraction optimization, glycosylation modification and physicochemical properties of glycation products. J. Food Meas. Charact. 2024, 18, 4229–4245. [Google Scholar] [CrossRef]
- Li, Y.; Lu, F.; Luo, C.; Chen, Z.; Mao, J.; Shoemaker, C.; Zhong, F. Functional properties of the Maillard reaction products of rice protein with sugar. Food Chem. 2009, 117, 69–74. [Google Scholar] [CrossRef]
- Zhong, L.; Ma, N.; Wu, Y.; Zhao, L.; Ma, G.; Pei, F.; Hu, Q. Characterization and functional evaluation of oat protein isolate-Pleurotus ostreatus β-glucan conjugates formed via Maillard reaction. Food Hydrocoll. 2019, 87, 459–469. [Google Scholar] [CrossRef]
- Santagata, G.; Mallardo, S.; Fasulo, G.; Lavermicocca, P.; Valerio, F.; Di Biase, M.; Di Stasio, M.; Malinconico, M.; Volpe, M.G. Pectin-honey coating as novel dehydrating bioactive agent for cut fruit: Enhancement of the functional properties of coated dried fruits. Food Chem. 2018, 258, 104–110. [Google Scholar] [CrossRef]
- Mulcahy, E.M.; Park, C.W.; Drake, M.; Mulvihill, D.M.; O’Mahony, J.A. Enhancement of the functional properties of whey protein by conjugation with maltodextrin under dry-heating conditions. Int. J. Dairy Technol. 2017, 71, 216–225. [Google Scholar] [CrossRef]
- Wagner, K.H.; Reichhold, S.; Koschutnig, K.; Chériot, S.; Billaud, C. The potential antimutagenic and antioxidant effects of Maillard reaction products used as “natural antibrowning” agents. Mol. Nutr. Food Res. 2007, 51, 496–504. [Google Scholar] [CrossRef]
- Kang, N.; Song, H.; Zhang, W.; Zhao, J.; Zhang, M.; Xiong, W.; Xi, C. Effect of Substrate Ratios and the Species of Sugar on the Antioxidant Activity of Glycosylated Products of the Rana Debris Collagen Peptide. E3S Web Conf. 2019, 78, 02006. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Kong, B.; Jia, N.; Li, P. Antioxidant capacity of maillard reaction products formed by a porcine plasma protein hydrolysate-sugar model system as related to chemical characteristics. Food Sci. Biotechnol. 2013, 23, 33–41. [Google Scholar] [CrossRef]
- Sun, Y.; Hayakawa, S.; Puangmanee, S.; Izumori, K. Chemical properties and antioxidative activity of glycated α-lactalbumin with a rare sugar, d-allose, by Maillard reaction. Food Chem. 2006, 95, 509–517. [Google Scholar] [CrossRef]
- Gu, F.; Kim, J.M.; Hayat, K.; Xia, S.; Feng, B.; Zhang, X. Characteristics and antioxidant activity of ultrafiltrated Maillard reaction products from a casein–glucose model system. Food Chem. 2009, 117, 48–54. [Google Scholar] [CrossRef]
- Feng, T.; Zhou, Y.; Wang, X.; Wang, X.; Xia, S. α-Dicarbonyl compounds related to antimicrobial and antioxidant activity of maillard reaction products derived from xylose, cysteine and corn peptide hydrolysate. Food Biosci. 2021, 41, 100951. [Google Scholar] [CrossRef]
- Yao, F.; Abdel-Rahman, A.A. Tetrahydrobiopterin paradoxically mediates cardiac oxidative stress and mitigates ethanol-evoked cardiac dysfunction in conscious female rats. Eur. J. Pharmacol. 2021, 909, 174406. [Google Scholar] [CrossRef]
- Tsedensodnom, O.; Vacaru, A.M.; Howarth, D.L.; Yin, C.; Sadler, K.C. Ethanol metabolism and oxidative stress are required for unfolded protein response activation and steatosis in alcoholic liver disease. Dis. Models Mech. 2013, 6, 1213–1226. [Google Scholar] [CrossRef]
- Lackner, C.; Tiniakos, D. Fibrosis and alcohol-related liver disease. J. Hepatol. 2019, 70, 294–304. [Google Scholar] [CrossRef]
- Riley, B.; Wang, R.; Li, Z.; Wang, Y.; Gui, J.-F. An Apo-14 Promoter-Driven Transgenic Zebrafish That Marks Liver Organogenesis. PLoS ONE 2011, 6, e22555. [Google Scholar] [CrossRef]
- Wang, W.; Fang, S.; Xiong, Z. Protective effect of polysaccharide from Ligusticum chuanxiong hort against H2O2-induced toxicity in zebrafish embryo. Carbohydr. Polym. 2019, 221, 73–83. [Google Scholar] [CrossRef]
- Cao, J.; Feng, C.; Xie, L.; Li, L.; Chen, J.; Yun, S.; Guo, W.; Wang, T.; Wu, Y.; Meng, R.; et al. Sesamin attenuates histological alterations, oxidative stress and expressions of immune-related genes in liver of zebrafish (Danio rerio) exposed to fluoride. Fish Shellfish Immunol. 2020, 106, 715–723. [Google Scholar] [CrossRef]
- Song, Z.; Liu, H.; Chen, L.; Chen, L.; Zhou, C.; Hong, P.; Deng, C. Characterization and comparison of collagen extracted from the skin of the Nile tilapia by fermentation and chemical pretreatment. Food Chem. 2021, 340, 128139. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Ke, C.; Gao, X.; Liu, Z.; Chen, J. Comparison of Structural and Physicochemical Characteristics of Skin Collagen from Chum Salmon (Cold-Water Fish) and Nile Tilapia (Warm-Water Fish). Foods 2024, 13, 1213. [Google Scholar] [CrossRef]
- Liu, R.; Shi, C.; Song, Y.; Wu, T.; Zhang, M. Impact of oligomeric procyanidins on wheat gluten microstructure and physicochemical properties. Food Chem. 2018, 260, 37–43. [Google Scholar] [CrossRef]
- Jalbout, A.F.; Shipar, M.A.H.; Navarro, J.L. Density functional computational studies on ribose and glycine Maillard reaction: Formation of the Amadori rearrangement products in aqueous solution. Food Chem. 2007, 103, 919–926. [Google Scholar] [CrossRef]
- Zhan, F.; Luo, J.; Sun, Y.; Hu, Y.; Fan, X.; Pan, D. Antioxidant Activity and Cell Protection of Glycosylated Products in Different Reducing Sugar Duck Liver Protein Systems. Foods 2023, 12, 540. [Google Scholar] [CrossRef]
- Li, H.; Ping, Y.; Niranjan, K.; Wu, Q.; Chen, Z.; Zhang, L.; Zhao, B.; Liu, K. Structure, antioxidant properties and AGEs (advanced glycation end products) formation of modified wheat gluten protein after enzymatic hydrolysis and Maillard reaction. J. Food Compos. Anal. 2024, 136, 106795. [Google Scholar] [CrossRef]
- Liu, M.; Min, L.; Zhu, C.; Rao, Z.; Liu, L.; Xu, W.; Luo, P.; Fan, L. Preparation, characterization and antioxidant activity of silk peptides grafted carboxymethyl chitosan. Int. J. Biol. Macromol. 2017, 104, 732–738. [Google Scholar] [CrossRef]
- Chen, X.; Fang, F.; Wang, S. Physicochemical properties and hepatoprotective effects of glycated Snapper fish scale peptides conjugated with xylose via maillard reaction. Food Chem. Toxicol. 2020, 137, 111115. [Google Scholar] [CrossRef]
- Limsuwanmanee, J.; Chaijan, M.; Manurakchinakorn, S.; Panpipat, W.; Klomklao, S.; Benjakul, S. Antioxidant activity of Maillard reaction products derived from stingray (Himantura signifier) non-protein nitrogenous fraction and sugar model systems. LWT Food Sci. Technol. 2014, 57, 718–724. [Google Scholar] [CrossRef]
- Chen, J.; Yao, Y. Phytoglycogen to Enhance the Solubility and in-vitro Permeation of Resveratrol. Food Biophys. 2023, 18, 433–442. [Google Scholar] [CrossRef]
- Jackson, M.; Mantsch, H.H. The Use and Misuse of FTIR Spectroscopy in the Determination of Protein Structure. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 95–120. [Google Scholar]
- Wang, S.; Zhang, Y.; Chen, L.; Xu, X.; Zhou, G.; Li, Z.; Feng, X. Dose-dependent effects of rosmarinic acid on formation of oxidatively stressed myofibrillar protein emulsion gel at different NaCl concentrations. Food Chem. 2018, 243, 50–57. [Google Scholar] [CrossRef]
- Li, W.; Zhao, H.; He, Z.; Zeng, M.; Qin, F.; Chen, J. Modification of soy protein hydrolysates by Maillard reaction: Effects of carbohydrate chain length on structural and interfacial properties. Colloids Surf. B 2016, 138, 70–77. [Google Scholar] [CrossRef]
- Pancoska, P.; Wang, L.; Keiderling, T.A. Frequency analysis of infrared absorption and vibrational circular dichroism of proteins in D2O solution. Protein Sci. 1993, 2, 411–419. [Google Scholar] [CrossRef]
- Zare, F.; Ghaedi, M.; Jannesar, R.; Tayebi, L. Switchable polarity solvents for preconcentration and simultaneous determination of amino acids in human plasma samples. New J. Chem. 2018, 42, 10007–10015. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Y.; Guo, M.; Sun, J. Effect of Ball-Milling Treatment Combined with Glycosylation on the Structure and Functional Properties of Litopenaeus vannamei Protein. Foods 2024, 13, 1284. [Google Scholar] [CrossRef]
- Yang, Y.; Cui, S.W.; Gong, J.; Guo, Q.; Wang, Q.; Hua, Y. A soy protein-polysaccharides Maillard reaction product enhanced the physical stability of oil-in-water emulsions containing citral. Food Hydrocoll. 2015, 48, 155–164. [Google Scholar] [CrossRef]
- He, W.; Tian, L.; Fang, F.; Pan, S.; Jones, O.G. Heat-induced glycosylation with dextran to enhance solubility and interfacial properties of enzymatically hydrolyzed zein. J. Food Eng. 2022, 321, 110946. [Google Scholar] [CrossRef]
- Liu, J.; Ru, Q.; Ding, Y. Glycation a promising method for food protein modification: Physicochemical properties and structure, a review. Food Res. Int. 2012, 49, 170–183. [Google Scholar] [CrossRef]
- Khan, H.; Mudgil, P.; Alkaabi, S.A.S.; AlRashdi, Y.H.S.; Maqsood, S. Maillard reaction-based conjugation of pea protein and prebiotic (polydextrose): Optimization, characterization, and functional properties enhancement. Front. Sustainable Food Syst. 2024, 8, 1463058. [Google Scholar] [CrossRef]
- Zha, F.; Yang, Z.; Rao, J.; Chen, B. Gum Arabic-Mediated Synthesis of Glyco-pea Protein Hydrolysate via Maillard Reaction Improves Solubility, Flavor Profile, and Functionality of Plant Protein. J. Agric. Food. Chem. 2019, 67, 10195–10206. [Google Scholar] [CrossRef]
- Chen, X.; Dai, Y.; Huang, Z.; Zhao, L.; Du, J.; Li, W.; Yu, D. Effect of ultrasound on the glycosylation reaction of pea protein isolate–arabinose: Structure and emulsifying properties. Ultrason. Sonochem. 2022, 89, 106157. [Google Scholar] [CrossRef]
- Pereira Souza, A.C.; Deyse Gurak, P.; Marczak, D.F.L. Maltodextrin, pectin and soy protein isolate as carrier agents in the encapsulation of anthocyanins-rich extract from jaboticaba pomace. Food Bioprod. Process. 2017, 102, 186–194. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Zheng, X.; Qu, Y.; Shi, Y. Preparation of corn glycopeptides and evaluation of their antagonistic effects on alcohol-induced liver injury in rats. J. Funct. Foods 2020, 66, 103776. [Google Scholar] [CrossRef]
- Lesmes, U.; McClements, D.J. Controlling lipid digestibility: Response of lipid droplets coated by β-lactoglobulin-dextran Maillard conjugates to simulated gastrointestinal conditions. Food Hydrocoll. 2012, 26, 221–230. [Google Scholar] [CrossRef]
- Petrov, L.; Kachaunov, M.; Alexandrova, A.; Tsvetanova, E.; Georgieva, A.; Dolashki, A.; Velkova, L.; Dolashka, P. Snail Mucus Protective Effect on Ethanol-Induced Gastric Ulcers in Mice. Life 2022, 12, 1106. [Google Scholar] [CrossRef]
- Chen, B.; Dong, X.; Zhang, J.; Wang, W.; Song, Y.; Sun, X.; Zhao, K.; Sun, Z. Effects of oxidative stress regulation in inflammation-associated gastric cancer progression treated using traditional Chinese medicines: A review. Medicine 2023, 102, e36157. [Google Scholar] [CrossRef]
- Labenz, C.; Toenges, G.; Wörns, M.-A.; Sprinzl, M.F.; Galle, P.R.; Schattenberg, J.M. Liver injury in patients with severe acute respiratory syndrome coronavirus-2 infection: A systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 2020, 33, 1194–1200. [Google Scholar] [CrossRef]
- Qin, T.; Ren, Z.; Liu, X.; Luo, Y.; Long, Y.; Peng, S.; Chen, S.; Zhang, J.; Ma, Y.; Li, J.; et al. Study of the selenizing Codonopsis pilosula polysaccharides protects RAW264.7 cells from hydrogen peroxide-induced injury. Int. J. Biol. Macromol. 2019, 125, 534–543. [Google Scholar] [CrossRef]
- Suzuki, T.; Motohashi, H.; Yamamoto, M. Toward clinical application of the Keap1–Nrf2 pathway. Trends Pharmacol. Sci. 2013, 34, 340–346. [Google Scholar] [CrossRef]
- Lu, Z.; Xuehong, M.; Rongmei, S.; Libo, Z.; Ruolin, Z.; Ran, D.; Yuanyuan, Q.; Sijia, G.; Xinxia, L.; Jingjing, D.; et al. Allicin ameliorates IMQ-induced psoriasis-like skin inflammation via disturbing the interaction of keratinocytes with IL-17A. Br. J. Pharmacol. 2022, 180, 628–646. [Google Scholar]
- Hou, Y.; Zhang, X.; Liu, X.; Wu, Q.; Hou, J.; Su, P.; Guo, Q. Comparison of the Effects of 5-Hydroxymethylfurfural in Milk Powder Matrix and Standard Water on Oxidative Stress System of Zebrafish. Foods 2022, 11, 1814. [Google Scholar] [CrossRef]
- Buhrke, T.; Lengler, I.; Lampen, A. Analysis of proteomic changes induced upon cellular differentiation of the human intestinal cell line Caco-2. Dev. Growth Differ. 2011, 53, 411–426. [Google Scholar] [CrossRef]
- Petit, E.; Michelet, X.; Rauch, C.; Bertrand-Michel, J.; Tercé, F.; Legouis, R.; Morel, F. Glutathione transferases kappa 1 and kappa 2 localize in peroxisomes and mitochondria, respectively, and are involved in lipid metabolism and respiration in Caenorhabditis elegans. FEBS J. 2009, 276, 5030–5040. [Google Scholar] [CrossRef]
- Bonekamp, N.A.; Völkl, A.; Fahimi, H.D.; Schrader, M. Reactive oxygen species and peroxisomes: Struggling for balance. BioFactors 2009, 35, 346–355. [Google Scholar] [CrossRef]
- Kalinina, E.V.; Chernov, N.N.; Novichkova, M.D. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. Biochemistry Mosc. 2014, 79, 1562–1583. [Google Scholar] [CrossRef]
- Sreejayan; Rao, M.N.A. Curcuminoids as Potent Inhibitors of Lipid Peroxidation. J. Pharm. Pharmacol. 2011, 46, 1013–1016. [Google Scholar]
Ingredient | Content |
---|---|
2 × ChamQ Universal SYBR qPCR Master Mix | 10 μL |
Forward primer (10 μmol/L) | 0.4 μL |
Reverse primer (10 μmol/L) | 0.4 μL |
Template cDNA | 1 μL |
ddH2O | To 20 μL |
Gene Abbreviation | Forward Primer | Reverse Primer |
---|---|---|
β-actin | ACCCCATTGAGCACGGTATT | CTTTGGGATTCAGGGGAGCC |
Keap1 | GCACTGACCTACACCTTCGC | GCCTTGTAGACCTCGCTCTC |
Nrf2 | CTCCAAACCTCCGTTCACCA | GTCGTCTACGGGCAGATTGA |
CAT | ACATCACGCGCTACTCCAAA | CTGCGAAACCACGAGGATCT |
SOD | GGCCAACCGATAGTGTTAGA | CCAGCGTTGCCAGTTTTTAG |
Gstk1 | TACTTTGGGGTTCCTGTGCG | TCTCCTTCTCTGCTACCGCT |
Gsr | CTTGAGTCTTGCCCTAAACGTAG | CTCAGCACCCCTCCTTGTCG |
Gpx1a | AGATGTCATTCCTGCACACG | AAGGAGAAGCTTCCTCAGCC |
IdH1 | ATGCGGTTTGGAGGGTTCAA | ACCTTATCATCGGTGGCGTC |
<1.6 kDa (%) | 1.6 kDa–20 kDa (%) | >20 kDa (%) | |
---|---|---|---|
PPH | 44.27 | 44.61 | 11.12 |
PPH-M | 3.97 | 77.26 | 18.77 |
Sample | Zeta Potential (mV) |
---|---|
PPH | −11.50 ± 0.92 b |
PPH-M | −21.37 ± 0.51 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Liu, X.; Diao, S.; Zheng, X. Conjugation of Pea Peptides and D-Xylose via Maillard Glycosylation and Its Functionality to Antagonize Alcohol-Induced Liver Injury in Zebrafish. Nutrients 2025, 17, 2570. https://doi.org/10.3390/nu17152570
Li G, Liu X, Diao S, Zheng X. Conjugation of Pea Peptides and D-Xylose via Maillard Glycosylation and Its Functionality to Antagonize Alcohol-Induced Liver Injury in Zebrafish. Nutrients. 2025; 17(15):2570. https://doi.org/10.3390/nu17152570
Chicago/Turabian StyleLi, Guanlong, Xiaolan Liu, Siyu Diao, and Xiqun Zheng. 2025. "Conjugation of Pea Peptides and D-Xylose via Maillard Glycosylation and Its Functionality to Antagonize Alcohol-Induced Liver Injury in Zebrafish" Nutrients 17, no. 15: 2570. https://doi.org/10.3390/nu17152570
APA StyleLi, G., Liu, X., Diao, S., & Zheng, X. (2025). Conjugation of Pea Peptides and D-Xylose via Maillard Glycosylation and Its Functionality to Antagonize Alcohol-Induced Liver Injury in Zebrafish. Nutrients, 17(15), 2570. https://doi.org/10.3390/nu17152570