The Role of Vitamin K Deficiency in Chronic Kidney Disease—A Scoping Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Experimental Studies
3.1.1. Chronic Kidney Disease
3.1.2. Kidney Transplant Recipients
3.1.3. Hemodialysis Patients
3.2. Cohort Studies
3.2.1. General Adult Populations
3.2.2. Cohort Studies in Kidney Transplant Recipients
3.2.3. Cohort Study in Type 1 Diabetes Patients
3.2.4. Cohort Study in Chronic Kidney Disease Cohort
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CKD | Chronic kidney disease |
GFR | Glomerular filtration rate |
NF-kB | Nuclear factor kappa beta |
BMP2 | Bone morphogenic protein 2 |
VSMC | Vascular smooth muscle cell |
T2D | Type 2 diabetes |
T1D | Type 1 diabetes |
MKs | Menaquinones |
VKDP | Vitamin K-dependent protein |
Dp-ucMGP | Dephospho-uncarboxylated matrix Gla protein |
PIVKA | Protein induced by vitamin K absence |
GAS-6 | Growth arrest-specific protein 6 |
OR | Odds ratio |
CI | Confidence interval |
RCT | Randomized controlled trial |
KTR | Kidney transplant recipients |
HD | Hemodialysis |
Uc-OC | Uncarboxylated osteocalcin |
OC | Osteocalcin |
eGFR | Estimated glomerular filtration rate |
UACR | Urine albumin–creatinine ratio |
ESKD | End-stage kidney disease |
Appendix A. Search Strategy
MeSH Terms | Kidney Failure, Chronic | Renal Insufficiency, Chronic | Renal Insufficiency | Glomerulosclerosis Focal Segmental | Glomerular Filtration Rate | Estimated Glomerular Filtration Rate | eGFR | Proteinuria | Albuminuria | Renal Dialysis | Dialysis |
---|---|---|---|---|---|---|---|---|---|---|---|
Entry terms | Renal failure, chronic | Chronic renal insufficiencies | Renal insufficiencies | Segmental glomerulosclerosis focal | Filtration rate, glomerular | Proteinurias | Albuminurias | Dialyses, renal | Dialyses | ||
Chronic renal Failure | Renal insufficiencies, chronic | Kidney insufficiency | Glomerulo-nephritis, focal sclerosing | Filtration rates, Glomerular | Renal dialyses | ||||||
End-stage kidney disease | Chronic kidney insufficiency | Insufficiency, kidney | Focal sclerosing glomerulo-nephritides | Glomerular filtration rates | Dialysis, renal | ||||||
Disease, end-stage kidney | Chronic kidney insufficiencies | Kidney insufficiencies | Focal sclerosing glomerulonephritis | Rate, glomerular filtration | Hemodialysis | ||||||
End-stage kidney Disease | Kidney insufficiencies chronic | Kidney failure | Glomerulo-nephritides, focal sclerosing | Rates, glomerular filtration | Hemodialyses | ||||||
Kidney disease, end-stage | Chronic renal insufficiency | Failure, kidney | Sclerosing glomerulo-nephritides, focal | Dialysis, extracorporeal | |||||||
ESRD | Kidney insufficiency, chronic | Failures, kidney | Sclerosing glomerulonephritis focal | Dialyses, extracorporeal | |||||||
End-stage renal disease | Chronic kidney diseases | Kidney failures | Glomerulosclerosis focal | Extracorporeal dialyses | |||||||
Disease, end-stage renal | Chronic kidney disease | Renal failure | Focal glomerulosclerosis | Extracorporeal dialysis | |||||||
End-stage renal disease | Disease, chronic kidney | Failure, renal | Focal segmental glomerulosclerosis | ||||||||
Renal disease, end-stage | Diseases, chronic kidney | Failures, renal | Hyalinosis, segmental glomerular | ||||||||
Renal disease, end-stage | Kidney disease, chronic | Renal failures | Glomerular hyalinosis, segmental | ||||||||
Renal failure, end-stage | Kidney diseases, chronic | Hyalinosis, segmental | |||||||||
End-stage renal failure | Chronic renal diseases | Segmental hyalinosis | |||||||||
Renal failure, end-stage | Chronic renal disease | Segmental glomerular hyalinosis | |||||||||
Chronic kidney failure | Disease, chronic renal | ||||||||||
Diseases, chronic renal | |||||||||||
Renal disease, chronic | |||||||||||
Renal diseases, chronic |
MeSH Terms | Carboxyprothrombin | Vitamin K1 | Vitamin K2 | Menaquinone 7 | Matrix Gla Protein | Dp-ucMGP | ucMGP | Osteocalcin | Vitamin K |
---|---|---|---|---|---|---|---|---|---|
Entry terms | Decarboxyprothrombin | Phyto-nadione | Mena-quinone | Menaquinone K7 | Gla protein, matrix | Desphospho-uncarboxylated matrix GLA protein, human | 4-Carboxyglutamic protein, bone | ||
Des(gamma-carboxy)prothrombin | Phyllo-quinone | Vitamin K quinone | Vitamin MK 7 | Matrix gamma-carboxyglu-tamic acid protein | Dephosphory-lated uncarboxylated matrix Gla protein | 4 Carboxyglutamic protein, bone | |||
Des-gamma-carboxy prothrombin | Phyto-menadione | Vitamin K2 | Menaquinone-7 | Bone 4-carboxy- glutamic protein | |||||
Descarboxylated prothrombin | Vitamin K1 | Mena-quinones | Vitamin K2(35) | Protein, bone 4-carboxyglutamic | |||||
Descarboxyprothrombin | Konakion | 1,4-naphthalenedione, 2-(3,7,11,15,19,23,27-heptamethyl-2,6,10,14,18,22,26-octacosaheptaenyl)-3-methyl-, (all-E)- | Bone gamma-carboxyglutamic acid protein | ||||||
Non-carboxylated factor II | Phyllohydro-quinone | Bone gamma carboxyglutamic acid protein | |||||||
PIVKA II | Aqua-mephyton | Bone Gla protein | |||||||
PIVKA-II | Protein, bone Gla | ||||||||
protein induced by vitamin K absence or antagonist-II | Calcium-binding protein, vitamin K-dependent | ||||||||
Des-gamma-carboxyprothrombin | Calcium-binding protein, vitamin K-dependent | ||||||||
DCP (prothrombin) | Gla protein, bone | ||||||||
Acarboxy prothrombin | Vitamin K-dependent bone protein | ||||||||
protein induced by vitamin K absence or antagonists | Vitamin K-dependent bone protein | ||||||||
PIVKA | |||||||||
Prothrombin precursor | |||||||||
Isoprothrombin |
Appendix B. Extracted Data
Author | Country | Title | Study Design | Population Description | Sample Size | Intervention | Kidney Outcome (Primary/Secondary) | Vitamin K Measurements/Outcomes |
---|---|---|---|---|---|---|---|---|
Lees et al., 2021 [30] | United Kingdom | The ViKTORIES trial: A randomized, double-blind, placebo-controlled trial of vitamin K supplementation to improve vascular health in kidney transplant recipients. | RCT | KTR with functioning kidney transplant for 1 year or more. | 90 | Vitamin K (menadiol diphosphate) 5 mg orally ×3 weekly for 12 months + Placebo (n = 45 intervention, n = 45 placebo). | Secondary: No treatment effect on eGFR or urine protein–creatinine ratio between intervention group and placebo. | Dp-ucMGP: Significant lowering in intervention group to placebo. |
Eelderink et al., 2023 [31] | The Netherlands | Effect of vitamin K supplementation on serum calcification propensity and arterial stiffness in vitamin K-deficient kidney transplant recipients: A double-blind, randomized, placebo-controlled clinical trial. | RCT | KTR with eGFR > 20 and vitamin K deficiency (plasma dp-ucMGP > 500 pmol/L). | 40 | Vitamin K2 (MK-7) 360 μg/day for 12 weeks + placebo (n = 20 intervention, n = 20 placebo). | Secondary: No treatment effect on eGFR. | Dp-ucMGP, ucOC, ucOC/cOC ratio: all showed significant lower score in treatment group compared with placebo. |
Naiyarakseree et al., 2023 [33] | Thailand | Effect of Menaquinone-7 Supplementation on Arterial Stiffness in Chronic Hemodialysis Patients: A Multicenter Randomized Controlled Trial. | RCT | Chronic HD patients with arterial stiffness (cfPWV ≥ 10 m/s). | 96 | Vitamin K2 (MK-7) 375 µg/daily for 24 weeks, no placebo (n = 50 intervention, n = 46 control). | No significant differences or changes in serum creatinine after 12 and 24 weeks. | No vitamin K measurements. |
Witham et al., 2020 [27] | United Kingdom | Vitamin K Supplementation to Improve Vascular Stiffness in CKD: The K4Kidneys Randomized Controlled Trial. | RCT | CKD patients stage 3b or 4 (defined as an eGFR of >15 mL/min and <45 mL/min). | 159 | vitamin K2 (MK-7) 400 µg tablet/day for 12 months + placebo (n = 80 intervention, n = 79 placebo). | eGFR, urinary protein–creatinine ratio and serum creatinine: No significant differences in intervention group to placebo. | Significantly lowered osteocalcin and log-transformed dp-ucMGP between intervention and placebo. |
Kurnatowska et al., 2015 [29] | Poland | Effect of vitamin K2 on progression of atherosclerosis and vascular calcification in nondialyzed patients with chronic kidney disease stages 3–5. | RCT | CKD stage 3–5 with eGFR < 60 for at least 6 months. | 42 | Vitamin K2 (MK-7) 90 µg/day + 10 µg vitamin D for 270 ± 12 days + placebo 10 µg vitamin D/day (n = 29 intervention, n = 13 placebo). | Significant rise in serum creatinine in intervention group. Significant group difference in eGFR after intervention (decline in eGFR in intervention group). | Significant decrease in dp-ucMGP in intervention group, but no significant difference to placebo. Significant decrease in osteocalcin in treatment group, significant increase in placebo group, but no significant difference between the groups. Borderline significant increase in MGP for treatment group, no significant difference to placebo. |
Oikonomaki et al., 2019 [34] | Greece | The effect of vitamin K2 supplementation on vascular calcification in hemodialysis patients: a 1-year follow-up randomized trial. | RCT | ESRD patients on hemodialysis. | 102 | Vitamin K2 (MK-7) 200 µg/day for 12 months, no placebo (n = 58 intervention, n = 44 control). | No significant change or difference in serum creatinine. | Significant decrease in ucMGP in intervention group at 12 months follow-up and significant difference to placebo group. |
Macias-Cervantes et al., 2025 [35] | Mexico | Effect of vitamin K1 supplementation on coronary calcifications in hemodialysis patients: a randomized controlled trial. | RCT | Chronic hemodialysis patients. 58.3% (n = 35) with diabetic nephropathy being the primary etiology of chronic kidney disease. The median duration of hemodialysis was 48 months (12–204). | 60 | Vitamin K1 10 mg IV ×3 weekly, after hemodialysis session, for 12 months, placebo (n = 30 intervention, n = 30 placebo). | Secondary: Serum creatinine: No significant changes between groups at follow-up. | No vitamin K measurements. |
Kurnatowska et al., 2016 [28] | Poland | Plasma Desphospho-Uncarboxylated Matrix Gla Protein as a Marker of Kidney Damage and Cardiovascular Risk in Advanced Stage of Chronic Kidney Disease. | RCT | CKD patients stage 4–5 with a coronary calcification score (CACS) of ≥10 Agatston units. | 38 | Vitamin K2 (MK-7) 90 µg/day + 10 µg vitamin D for 270 ± 12 days. Placebo with vitamin D 10 µg (n = 26 intervention, n = 12 placebo). | Primary: Association between plasma dp-ucMGP and kidney function (serum creatinine, eGFR and proteinuria): No significant change in eGFR in either group after substitution. Strong inverse association between eGFR and dp-ucMGP. Positive correlation between dp-ucMGP, creatinine and proteinuria. | Dp-ucMGP: Significant decrease from baseline to follow-up in intervention group, compared to placebo? Osteocalcin: Significant difference between groups at follow-up. |
Mansour et al., 2017 [32] | Lebanon | Vitamin K2 supplementation and arterial stiffness among renal transplant recipients—a single-arm, single-center clinical trial. | Non-controlled clinical trial | KTR patients with functional renal graft. | 60 | Vitamin K2 (MK-7) 360 μg/day for 8 weeks, no control group (n = 60 intervention). | Secondary: Serum creatinine: Borderline significant increase from baseline to follow-up. | Dp-ucMGP: Significant decrease from baseline to follow-up. |
Author | Country | Title | Study Design | Aim of Study/Purpose | Population Description | Sample Size | Follow Up (Years) | Kidney Outcome (Primary/Secondary) | Vitamin K Measurements |
---|---|---|---|---|---|---|---|---|---|
Van Ballegooijen et al., 2019 [39] | The Nether-lands | Joint association of vitamins D and K status with long-term outcomes in stable kidney transplant recipients. | Cohort study | The association of both vitamins D and K status, and vitamin D treatment with all-cause mortality and death-censored graft failure. | Adult kidney transplant recipients. Stable kidney function, median 6.1 years post transplantation, mean age of 52 years, 53% male. | 461 | Median 9.8 | Primary: Associations of combined vitamin D and dp-ucMGP levels with graft failure(return to dialysis therapy or re-transplantation), showed significantly. Higher eGFR in the groups with low dp-ucMGP levels. | dp-ucMGP < 1057pmol/L or ≥1057pmol/L. |
Keyzer et al., 2015 [40] | The Nether-lands | Vitamin K status and mortality after kidney transplantation: a cohort study. | Cohort study | Investigating if Vitamin K deficiency increase risk of all-cause mortality and transplant failure after kidney transplantation. | Kidney transplant recipients with stable kidney function, 56% male, mean age 51 years, median of 6 years after kidney transplantation. | 518 | Median 9.8 | Primary: Highest quartile showed significant increase in transplant failure in three adjustment models, association was lost after adjustment for baseline kidney function. | dp-ucMGP Quartiles Q1: <734pmol/L, Q2: 734–1038 pmol/L, Q3: 1039–1535 pmol/L and Q4: >1535 pmol/L. |
Wei et al., 2018 [38] | Belgium | Desphospho-uncarboxylated matrix Gla protein is a novel circulating biomarker predicting deterioration of renal function in the general population. | Cohort study | Does dp-ucMGP predict a decrease in eGFR. | Flemish from the FLEMENGHO family-based population study, present analysis covered period from 1996 to 2015, 50.6% women, white Europeans. | 1009 | Median 8.9 | Primary: Association between eGFR and plasma dp-ucMGP. with significant decline in eGFR between low and high levels of dp-ucMGP. | dp-ucMGP low: mean 2.42 µg/L (1.87–3.06) and high mean 5.08 ug/L (4.22–6.30). |
Nielsen et al., 2025 [41] | Den-mark | The associations between functional vitamin K status and all-cause mortality, cardiovascular disease and end-stage kidney disease in persons with type 1 diabetes | Cohort study | To assess the association of dp-ucMGP with mortality, cardiovascular disease, and progression to ESKD in persons with T1D | Data from a cohort of persons with T1D followed up at Steno Diabetes Center Copenhagen, Denmark. 55% male. | 667 | Approximately 5–7 | Primary: Progression of ESKD. Lost significance in multivariable adjustment model four after adjusting for baseline eGFR and urinary albumin excretion rate. | dp-ucMGP quartiles (pmol/L): 316.5 (302.0–336.0) 386.0 (370.0–398.0) 457.0 (433.5–478.0) 611.0 (551.0–775.0). |
O’Seaghdha et al., 2012 [37] | USA | Phylloquinone and vitamin D status: associations with incident chronic kidney disease in the Framingham Offspring cohort. | Cohort study | Investigating if deficiencies of vitamins D and K may be associated with incident CKD and/or incident albuminuria in general population. | Framingham Heart Study participants (mean age 58 years; 50.5% women), free of CKD (eGFR < 60 mL/min/1.732). | 1442 | Median 7.8 | Primary: Significantly higher incidence of CKD in the highest quartile of phylloquinone. Secondary: Significant association between higher quartiles of phylloquinone and incident albuminuria, but a borderline significance in the highest quartiles. | Phylloquinone levels stratified into 4 quartiles (nmol/L): 0.05–0.55, 0.56–0.98, 0.99–1.77 and 1.78–35.02. |
Groothof et al., 2020 [36] | The Nether-lands | Functional vitamin K status and risk of incident chronic kidney disease and microalbuminuria: a prospective general population-based cohort study. | Cohort study | To assess the association between. circulating dp-ucMGP and incident CKD | Inhabitants from the city of Groningen, mean age 52.3 years, mainly Caucasian. | 3969 | Median 7.1 | Primary: Incident CKD or microalbuminuria. The association of plasma dp-ucMGP with incident CKD disappeared following adjustment for the confounding effect of baseline eGFR. The association to proteinuria in males disappeared after adjustment for age. | Dp-ucMGP levels stratified in four quartiles (pmol/L) Males: <245, 245–381, 382–550 and >550. Females: <193, 193–341, 342–513 and >513. |
Roumeliotis et al., 2020 [42] | Greece | The Association of dp-ucMGP with Cardiovascular Morbidity and Decreased Renal Function in Diabetic Chronic Kidney Disease. | Cohort study | Investigating the association between dp-ucMGP and mortality, CV disease, and decreased renal function in a cohort of patients with diabetic CKD. | Diabetic CKD patients, divided into two groups: dp-ucMGP over and under 656 pM Mean age 67.4 (dp-ucMGP < 656 pM) Mean age 69.7 (dp-ucMGP > 656 pM) Almost all male in both groups. | 66 | Median 7 | Primary: Significantly higher risk of eGFR decline or progression to ESKD which remained after adjustment for T2D, proteinuria and serum albumin. | Dp-ucMGP < 656 pmol/L and Dp-ucMGP ≥ 656 pmol/L. |
Author | Sample Size | Type of Vitamin K (Administration Form) | Dosage | Duration | Placebo/Controlled |
---|---|---|---|---|---|
Lees et al., 2021 [30] | 90 | Vitamin K (Menadiol diphosphate) (Oral) | 5 mg × 3 weekly | 12 months | Placebo (n = 45) |
Eelderink et al., 2023 [31] | 40 | Vitamin K2 (MK-7) (Oral) | 360 μg/day | 12 weeks | Placebo (n = 20) |
Naiyarakseree et al., 2023 [33] | 96 | Vitamin K2 (MK-7) (Oral) | 375 µg/daily | 24 weeks | Controlled (n = 46) |
Witham et al., 2020 [27] | 159 | Vitamin K2 (MK-7) (Oral) | 400 μg/day | 12 months | Placebo (n = 79) |
Kurnatowska et al., 2015 [29] | 42 | Vitamin K2 (MK-7) (Oral) | 90 µg/day | 270 ± 12 days | Placebo (n = 13) |
Oikonomaki et al., 2019 [34] | 102 | Vitamin K2 (MK-7) (Oral) | 200 μg/day | 12 months | Controlled (n = 44) |
Macias-Cervantes et al., 2025 [35] | 60 | Vitamin K1 (Intravenous) | 10 mg × 3 weekly | 12 months | Placebo (n = 30) |
Kurnatowska et al., 2016 [28] | 38 | Vitamin K2 (MK-7) (Oral) | 90 µg/day | 270 ± 12 days | Placebo (n = 12) |
Mansour et al., 2017 [32] | 60 | Vitamin K2 (MK-7) (Oral) | 360 μg/day | 8 Weeks | No control group |
References
- Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.D.R. Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0158765. [Google Scholar] [CrossRef]
- Düsing, P.; Zietzer, A.; Goody, P.R.; Hosen, M.R.; Kurts, C.; Nickenig, G.; Jansen, F. Vascular pathologies in chronic kidney disease: Pathophysiological mechanisms and novel therapeutic approaches. J. Mol. Med. 2021, 99, 335. [Google Scholar] [CrossRef] [PubMed]
- Shea, M.K.; Booth, S.L.; Vitamin, K. Vascular Calcification, and Chronic Kidney Disease: Current Evidence and Unanswered Questions. Curr. Dev. Nutr. 2019, 3, nzz077. [Google Scholar] [CrossRef]
- Dai, L.; Li, L.; Erlandsson, H.; Jaminon, A.M.G.; Qureshi, A.R.; Ripsweden, J.; Brismar, T.B.; Witasp, A.; Heimbürger, O.; Jørgensen, H.S.; et al. Functional vitamin K insufficiency, vascular calcification and mortality in advanced chronic kidney disease: A cohort study. PLoS ONE 2021, 16, e0247623. [Google Scholar] [CrossRef] [PubMed]
- Rizzoni, D.; Agabiti-Rosei, E. Structural abnormalities of small resistance arteries in essential hypertension. Intern. Emerg. Med. 2012, 7, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Oates, J.C.; Russell, D.L.; Van Beusecum, J.P. Endothelial cells: Potential novel regulators of renal inflammation. Am. J. Physiol.-Ren. Physiol. 2022, 322, F309–F321. [Google Scholar] [CrossRef]
- Shioi, A.; Morioka, T.; Shoji, T.; Emoto, M. The Inhibitory Roles of Vitamin K in Progression of Vascular Calcification. Nutrients 2020, 12, 583. [Google Scholar] [CrossRef]
- Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic kidney disease: Challenges, progress, and possibilities. Clin. J. Am. Soc. Nephrol. 2017, 12, 2032–2045. [Google Scholar] [CrossRef]
- Lacombe, J.; Guo, K.; Bonneau, J.; Faubert, D.; Gioanni, F.; Vivoli, A.; Muir, S.M.; Hezzaz, S.; Poitout, V.; Ferron, M. Vitamin K-dependent carboxylation regulates Ca2+ flux and adaptation to metabolic stress in β cells. Cell Rep. 2023, 42, 112500. [Google Scholar] [CrossRef]
- Moore, D.J.; Leibel, N.I.; Polonsky, W.; Rodriguez, H. Understanding the different stages of type 1 diabetes and their management: A plain language summary. Curr. Med. Res. Opin. 2025, 41, 13–24. [Google Scholar] [CrossRef]
- Bhikadiya, D.; Bhikadiya, K. Calcium Regulation and the Medical Advantages of Vitamin K2. South East Eur. J. Public Health 2024, 24, 1568–1579. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Dounousi, E.; Salmas, M.; Eleftheriadis, T.; Liakopoulos, V. Vascular Calcification in Chronic Kidney Disease: The Role of Vitamin K- Dependent Matrix Gla Protein. Front. Med. 2020, 7, 154. [Google Scholar] [CrossRef]
- Chen, H.G.; Sheng, L.T.; Zhang, Y.B.; Cao, A.L.; Lai, Y.W.; Kunutsor, S.K.; Jiang, L.; Pan, A. Association of vitamin K with cardiovascular events and all-cause mortality: A systematic review and meta-analysis. Eur. J. Nutr. 2019, 58, 2191–2205. [Google Scholar] [CrossRef]
- Van Der Meer, J.H.M.; Van Der Poll, T.; Van’t Veer, C. TAM receptors, Gas6, and protein S: Roles in inflammation and hemostasis. Blood 2014, 123, 2460–2469. [Google Scholar] [CrossRef] [PubMed]
- Thamratnopkoon, S.; Susantitaphong, P.; Tumkosit, M.; Katavetin, P.; Tiranathanagul, K.; Praditpornsilpa, K.; Eiam-Ong, S. Correlations of Plasma Desphosphorylated Uncarboxylated Matrix Gla Protein with Vascular Calcification and Vascular Stiffness in Chronic Kidney Disease. Nephron 2017, 135, 167–172. [Google Scholar] [CrossRef]
- Kaesler, N.; Schreibing, F.; Speer, T.; de la Puente-Secades, S.; Rapp, N.; Drechsler, C.; Kabgani, N.; Kuppe, C.; Boor, P.; Jankowski, V.; et al. Altered vitamin K biodistribution and metabolism in experimental and human chronic kidney disease. Kidney Int. 2022, 101, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Grzejszczak, P.; Kurnatowska, I. Role of Vitamin K in CKD: Is Its Supplementation Advisable in CKD Patients? Kidney Blood Press. Res. 2021, 46, 523–530. [Google Scholar] [CrossRef]
- Bellone, F.; Cinquegrani, M.; Nicotera, R.; Carullo, N.; Casarella, A.; Presta, P.; Andreucci, M.; Squadrito, G.; Mandraffino, G.; Prunestì, M.; et al. Role of Vitamin K in Chronic Kidney Disease: A Focus on Bone and Cardiovascular Health. Int. J. Mol. Sci. 2022, 23, 5282. [Google Scholar] [CrossRef] [PubMed]
- Taher, M.; Wafa, E.; Sayed-Ahmed, N.; el Dahshan, K. Correlation Between Matrix Gla Protein Level and Effect of Vitamin K2 Therapy on Vascular Calcification in Hemodialysis Patients. Nephrol. Dial. Transplant. 2023, 38, gfad063c_5745. [Google Scholar] [CrossRef]
- Lin, Y.L.; Hsu, B.G. Vitamin K and vascular calcification in chronic kidney disease: An update of current evidence. Tzu Chi Med. J. 2023, 35, 44–50. [Google Scholar] [CrossRef]
- Kida, Y.; Yamaguchi, I. The vascular protective effect of matrix Gla protein during kidney injury. Front. Mol. Med. 2022, 2, 970744. [Google Scholar] [CrossRef]
- Dihingia, A.; Ozah, D.; Baruah, P.K.; Kalita, J.; Manna, P. Prophylactic role of vitamin K supplementation on vascular inflammation in type 2 diabetes by regulating the NF-κB/Nrf2 pathway via activating Gla proteins. Food Funct. 2018, 9, 450–462. [Google Scholar] [CrossRef]
- Manna, P.; Kalita, J. Beneficial role of vitamin K supplementation on insulin sensitivity, glucose metabolism, and the reduced risk of type 2 diabetes: A review. Nutrition 2016, 32, 732–739. [Google Scholar] [CrossRef]
- Lauridsen, J.A.; Leth-Møller, K.B.; Møllehave, L.T.; Kårhus, L.L.; Dantoft, T.M.; Kofoed, K.F.; Linneberg, A. Investigating the associations between uncarboxylated matrix gla protein as a proxy for vitamin K status and cardiovascular disease risk factors in a general adult population. Eur. J. Nutr. 2025, 64, 17. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.D.J.; Godfrey, C.; McInterney, P.; Munn, Z.; Tricco, A.C.; Khalil, H. Scoping Reviews. In JBI Manual for Evidence Synthesis; Aromataris, E., Lockwood, C., Porritt, K., Pilla, B., Jordan, Z., Eds.; JBI: North Adelaide, Australia, 2024; Available online: https://synthesismanual.jbi.global (accessed on 20 May 2025).
- Covidence 2025. Covidence Systematic Review Software; Veritas Health Innovation: Melbourne, Australia; Available online: www.covidence.org (accessed on 25 May 2025).
- Witham, M.D.; Lees, J.S.; White, M.; Band, M.; Bell, S.; Chantler, D.J.; Ford, I.L.; Fulton, R.; Kennedy, G.; Littleford, R.C.; et al. Vitamin K Supplementation to Improve Vascular Stiffness in CKD: The K4Kidneys Randomized Controlled Trial. J. Am. Soc. Nephrol. 2020, 31, 2434–2445. [Google Scholar] [CrossRef]
- Kurnatowska, I.; Grzelak, P.; Masajtis-Zagajewska, A.; Kaczmarska, M.; Stefańczyk, L.; Vermeer, C.; Maresz, K.; Nowicki, M. Plasma Desphospho-Uncarboxylated Matrix Gla Protein as a Marker of Kidney Damage and Cardiovascular Risk in Advanced Stage of Chronic Kidney Disease. Kidney Blood Press. Res. 2016, 41, 231–239. [Google Scholar] [CrossRef]
- Kurnatowska, I.; Grzelak, P.; Masajtis-Zagajewska, A.; Kaczmarska, M.; Stefańczyk, L.; Vermeer, C.; Maresz, K.; Nowicki, M. Effect of vitamin K2 on progression of atherosclerosis and vascular calcification in nondialyzed patients with chronic kidney disease stages 3-5. Pol. Arch. Med. Wewn. 2015, 125, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Lees, J.S.; Rankin, A.J.; Gillis, K.A.; Zhu, L.Y.; Mangion, K.; Rutherford, E.; Roditi, G.H.; Witham, M.D.; Chantler, D.; Panarelli, M.; et al. The ViKTORIES trial: A randomized, double-blind, placebo-controlled trial of vitamin K supplementation to improve vascular health in kidney transplant recipients. Am. J. Transplant. 2021, 21, 3356–3368. [Google Scholar] [CrossRef]
- Eelderink, C.; Kremer, D.; Riphagen, I.J.; Knobbe, T.J.; Schurgers, L.J.; Pasch, A.; Mulder, D.; Corpeleijn, E.; Navis, G.; Bakker, S.; et al. Effect of vitamin K supplementation on serum calcification propensity and arterial stiffness in vitamin K-deficient kidney transplant recipients: A double-blind, randomized, placebo-controlled clinical trial. Am. J. Transplant. 2023, 23, 520–530. [Google Scholar] [CrossRef]
- Mansour, A.G.; Hariri, E.; Daaboul, Y.; Korjian, S.; El Alam, A.; Protogerou, A.D.; Kilany, H.; Karam, A.; Stephan, A.; Bahous, S.A. Vitamin K2 supplementation and arterial stiffness among renal transplant recipients-a single-arm, single-center clinical trial. J. Am. Soc. Hypertens. 2017, 11, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Naiyarakseree, N.; Phannajit, J.; Naiyarakseree, W.; Mahatanan, N.; Asavapujanamanee, P.; Lekhyananda, S.; Vanichakarn, S.; Avihingsanon, Y.; Praditpornsilpa, K.; Eiam-Ong, S.; et al. Effect of Menaquinone-7 Supplementation on Arterial Stiffness in Chronic Hemodialysis Patients: A Multicenter Randomized Controlled Trial. Nutrients 2023, 15, 2422. [Google Scholar] [CrossRef]
- Oikonomaki, T.; Papasotiriou, M.; Ntrinias, T.; Kalogeropoulou, C.; Zabakis, P.; Kalavrizioti, D.; Papadakis, I.; Goumenos, D.S.; Papachristou, E. The effect of vitamin K2 supplementation on vascular calcification in haemodialysis patients: A 1-year follow-up randomized trial. Int. Urol. Nephrol. 2019, 51, 2037–2044. [Google Scholar] [CrossRef] [PubMed]
- Macias-Cervantes, H.E.; Ocampo-Apolonio, M.A.; Guardado-Mendoza, R.; Baron-Manzo, M.; Pereyra-Nobara, T.A.; Hinojosa-Gutiérrez, L.R.; Escalante-Gutiérrez, S.E.; Castillo-Velázquez, M.A.; Aguilar-Guerrero, R. Effect of vitamin K1 supplementation on coronary calcifications in hemodialysis patients: A randomized controlled trial. J. Nephrol. 2025, 38, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Groothof, D.; Post, A.; Sotomayor, C.G.; Keyzer, C.A.; Flores-Guerero, J.L.; Hak, E.; Bos, J.H.J.; Schurgers, L.J.; Navis, G.J.; Gans, R.O.B.; et al. Functional vitamin K status and risk of incident chronic kidney disease and microalbuminuria: A prospective general population-based cohort study. Nephrol. Dial. Transplant. 2021, 36, 2290–2299. [Google Scholar] [CrossRef] [PubMed]
- O’Seaghdha, C.M.; Hwang, S.J.; Holden, R.; Booth, S.L.; Fox, C.S. Phylloquinone and vitamin D status: Associations with incident chronic kidney disease in the Framingham Offspring cohort. Am. J. Nephrol. 2012, 36, 68–77. [Google Scholar] [CrossRef]
- Wei, F.F.; Trenson, S.; Thijs, L.; Huang, Q.F.; Zhang, Z.Y.; Yang, W.Y.; Moliterno, P.; Allegaert, K.; Boggia, J.; Janssens, S.; et al. Desphospho-uncarboxylated matrix Gla protein is a novel circulating biomarker predicting deterioration of renal function in the general population. Nephrol. Dial. Transplant. 2018, 33, 1122–1128. [Google Scholar] [CrossRef]
- Van Ballegooijen, A.J.; Beulens, J.W.J.; Keyzer, C.A.; Navis, G.J.; Berger, S.P.; de Borst, M.H.; Vervloet, M.G.; Bakker, S.J.L. Joint association of vitamins D and K status with long-term outcomes in stable kidney transplant recipients. Nephrol. Dial. Transplant. 2020, 35, 706–714. [Google Scholar] [CrossRef]
- Keyzer, C.A.; Vermeer, C.; Joosten, M.M.; Knapen, M.H.; Drummen, N.E.; Navis, G.; Bakker, S.J.; de Borst, M.H. Vitamin K status and mortality after kidney transplantation: A cohort study. Am. J. Kidney Dis. 2015, 65, 474–483. [Google Scholar] [CrossRef]
- Nielsen, C.F.B.; Thysen, S.M.; Kampmann, F.B.; Hansen, T.W.; Jørgensen, N.R.; Tofte, N.; Winther, S.A.; Theilade, S.; Rossing, P.; Frimodt-Møller, M.; et al. The associations between functional vitamin K status and all-cause mortality, cardiovascular disease and end-stage kidney disease in persons with type 1 diabetes. Diabetes Obes. Metab. 2025, 27, 348–356. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Roumeliotis, A.; Stamou, A.; Leivaditis, K.; Kantartzi, K.; Panagoutsos, S.; Liakopoulos, V. The Association of dp-ucMGP with Cardiovascular Morbidity and Decreased Renal Function in Diabetic Chronic Kidney Disease. Int. J. Mol. Sci. 2020, 21, 6035. [Google Scholar] [CrossRef]
- Neradova, A.; Schumacher, S.P.; Hubeek, I.; Lux, P.; Schurgers, L.J.; Vervloet, M.G. Phosphate binders affect Vitamin K concentration by undesired binding, an in vitro study. BMC Nephrol. 2017, 18, 149. [Google Scholar] [CrossRef] [PubMed]
- Schlackow, I.; Simons, C.; Oke, J.; Feakins, B.; O’Callaghan, C.A.; Richard Hobbs, F.D.; Lasserson, D.; Stevens, R.J.; Perera, R.; Mihaylova, B.; et al. Long-term health outcomes of people with reduced kidney function in the UK: A modelling study using population health data. PLoS Med. 2020, 17, e1003478. [Google Scholar] [CrossRef] [PubMed]
- Sai Varsha, M.K.N.; Raman, T.; Manikandan, R.; Dhanasekaran, G. Hypoglycemic action of vitamin K1 protects against early-onset diabetic nephropathy in streptozotocin-induced rats. Nutrition 2015, 31, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tybjerg Wegge, V.; Kjær Torbensen, M.; Linneberg, A.; Aaberg Lauridsen, J. The Role of Vitamin K Deficiency in Chronic Kidney Disease—A Scoping Review. Nutrients 2025, 17, 2559. https://doi.org/10.3390/nu17152559
Tybjerg Wegge V, Kjær Torbensen M, Linneberg A, Aaberg Lauridsen J. The Role of Vitamin K Deficiency in Chronic Kidney Disease—A Scoping Review. Nutrients. 2025; 17(15):2559. https://doi.org/10.3390/nu17152559
Chicago/Turabian StyleTybjerg Wegge, Valdemar, Mette Kjær Torbensen, Allan Linneberg, and Julie Aaberg Lauridsen. 2025. "The Role of Vitamin K Deficiency in Chronic Kidney Disease—A Scoping Review" Nutrients 17, no. 15: 2559. https://doi.org/10.3390/nu17152559
APA StyleTybjerg Wegge, V., Kjær Torbensen, M., Linneberg, A., & Aaberg Lauridsen, J. (2025). The Role of Vitamin K Deficiency in Chronic Kidney Disease—A Scoping Review. Nutrients, 17(15), 2559. https://doi.org/10.3390/nu17152559