Curcumin-Rich Curry Consumption Is Associated with Lower Risk of Cognitive Decline and Incidence of Mild Cognitive Impairment or Dementia: An Asian Population-Based Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measurements
2.2.1. Curry Consumption
2.2.2. Diagnosis of Neurocognitive Disorder (MCI and Dementia)
2.2.3. Covariates
2.3. Analysis
3. Results
3.1. Cognitive Decline
3.2. Incident MCI-Dementia
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MCI | Mild cognitive impairment |
MMSE | Mini-Mental State Examination |
SLAS | Singapore Longitudinal Ageing Study |
CDR | Clinical Dementia Scale |
SD | Standard deviation |
BADL | Basic activities of daily living |
CN | Cognitively normal |
GDS | Geriatric Depression Scale |
APOE | Apolipoprotein E |
OR | Odds ratio |
CI | Confidence interval |
SAM | Senescence-accelerated mouse |
MWM | Morris water maze |
SD | Sprague Dawley |
LTP | Long-term potentiation |
NOL | Novel object location |
MoCA | Montreal Cognitive Assessment |
AD | Alzheimer’s disease |
Aβ | β amyloid |
APP | Amyloid precursor protein |
References
- Salehi, B.; Stojanović-Radić, Z.; Matejić, J.; Sharifi-Rad, M.; Anil Kumar, N.V.; Martins, N.; Sharifi-Rad, J. The therapeutic potential of curcumin: A review of clinical trials. Eur. J. Med. Chem. 2019, 163, 527–545. [Google Scholar] [CrossRef] [PubMed]
- Nicoliche, T.; Bartolomeo, C.S.; Lemes, R.M.R.; Pereira, G.C.; Nunes, T.A.; Oliveira, R.B.; Nicastro, A.L.M.; Soares, É.N.; Lima, B.F.d.C.; Rodrigues, B.M.; et al. Antiviral, anti-inflammatory and antioxidant effects of curcumin and curcuminoids in SH-SY5Y cells infected by SARS-CoV-2. Sci. Rep. 2024, 14, 10696. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.-S.; Chen, T.-H.; Weng, L.; Huang, L.; Lai, D.; Weng, C.-F. Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential. Biomed. Pharmacother. 2021, 141, 111888. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.P.; Chiam, P.C.; Lee, T.; Chua, H.C.; Lim, L.; Kua, E.H. Curry consumption and cognitive function in the elderly. Am. J. Epidemiol. 2006, 164, 898–906. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.P.; Nyunt, M.S.Z.; Gao, Q.; Gwee, X.; Chua, D.Q.L.; Yap, K.B. Curcumin-Rich Curry Consumption and Neurocognitive Function from 4.5-Year Follow-Up of Community-Dwelling Older Adults (Singapore Longitudinal Ageing Study). Nutrients 2022, 14, 1189. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Niti, M.; Yap, K.B.; Kua, E.H.; Tan, C.H.; Ng, T.P. Physical, social and productive leisure activities, cognitive decline and interaction with APOE-epsilon 4 genotype in Chinese older adults. Int. Psychogeriatr. 2008, 20, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Cheung, Y.B.; Xu, Y.; Feng, L.; Feng, L.; Nyunt, M.S.Z.; Chong, M.S.; Lim, W.S.; Lee, T.S.; Yap, P.; Yap, K.B.; et al. Unconditional and Conditional Standards Using Cognitive Function Curves for the Modified Mini-Mental State Exam: Cross-Sectional and Longitudinal Analyses in Older Chinese Adults in Singapore. Am. J. Geriatr. Psychiatry 2015, 23, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Jorm, A.F.; Scott, R.; Cullen, J.S.; MacKinnon, A.J. Performance of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) as a screening test for dementia. Psychol. Med. 1991, 21, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Cherbuin, N.; Anstey, K.J.; Lipnicki, D.M. Screening for dementia: A review of self- and informant-assessment instruments. Int. Psychogeriatr. 2008, 20, 431–458. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Ng, T.P.; Chuah, L.; Niti, M.; Kua, E.H. Homocysteine, folate, and vitamin B-12 and cognitive performance in older Chinese adults: Findings from the Singapore Longitudinal Ageing Study. Am. J. Clin. Nutr. 2006, 84, 1506–1512. [Google Scholar] [CrossRef] [PubMed]
- Segal, D.L. Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR). Corsini Encycl. Psychol. 2010. [Google Scholar] [CrossRef]
- Morris, J.C. The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology 1993, 43, 2412–2414. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Biddle, S.; Chan, M.F.; Cheng, A.; Cheong, M.; Chong, Y.S.; Foo, L.L.; Lee, C.H.; Lim, S.C.; Ong, W.S.; et al. Health Promotion Board-Ministry of Health Clinical Practice Guidelines: Obesity. Singap. Med. J. 2016, 57, 292–300. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tay, J.; Sule, A.; Chew, E.; Tey, J.; Lau, T.; Lee, S.; Leong, C.; Lim, S.; Low, L.; Oh, V.; et al. Ministry of Health Clinical Practice Guidelines: Hypertension. Singap. Med. J. 2018, 59, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Goh, S.; Ang, S.; Bee, Y.; Chen, Y.; Gardner, D.; Ho, E.; Adaikan, K.; Lee, Y.; Lee, C.; Lim, F.; et al. Ministry of Health Clinical Practice Guidelines: Diabetes Mellitus. Singap. Med. J. 2014, 55, 334–347. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tai, E.; Chia, B.; Bastian, A.; Chua, T.; Ho, S.; Koh, T.; Low, L.; Tey, J.; Poh, K.; Tan, C.; et al. Ministry of Health Clinical Practice Guidelines: Lipids. Singap. Med. J. 2017, 58, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Nyunt, M.S.; Fones, C.; Niti, M.; Ng, T.P. Criterion-based validity and reliability of the Geriatric Depression Screening Scale (GDS-15) in a large validation sample of community-living Asian older adults. Aging Ment. Health 2009, 13, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.Y.; Qi, S.S.; Zhou, P.; Cui, H.R.; Chen, S.X.; Dai, K.Y.; Tang, M.L. Neurobiological and pharmacological validity of curcumin in ameliorating memory performance of senescence-accelerated mice. Pharmacol. Biochem. Behav. 2013, 105, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Prior, M.; Dargusch, R.; Roberts, A.; Riek, R.; Eichmann, C.; Chiruta, C.; Akaishi, T.; Abe, K.; Maher, P.; et al. A novel neurotrophic drug for cognitive enhancement and Alzheimer’s disease. PLoS ONE 2011, 6, e27865. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cox, K.H.; Pipingas, A.; Scholey, A.B. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J. Psychopharmacol. 2015, 29, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Rainey-Smith, S.R.; Brown, B.M.; Sohrabi, H.R.; Shah, T.; Goozee, K.G.; Gupta, V.B.; Martins, R.N. Curcumin and cognition: A randomised, placebo-controlled, double-blind study of community-dwelling older adults. Br. J. Nutr. 2016, 115, 2106–2113. [Google Scholar] [CrossRef] [PubMed]
- Murrow, L.; Debnath, J. Autophagy as a Stress-Response and Quality-Control Mechanism: Implications for Cell Injury and Human Disease. Annu. Rev. Pathol. Mech. Dis. 2013, 8, 105–137. [Google Scholar] [CrossRef] [PubMed]
- Ravanan, P.; Srikumar, I.F.; Talwar, P. Autophagy: The spotlight for cellular stress responses. Life Sci. 2017, 188, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, X.; Teng, Z.; Zhang, T.; Li, Y. Downregulation of PI3K/Akt/mTOR signaling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice. Eur. J. Pharmacol. 2014, 740, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-Y.; Kim, H.-S.; Cho, E.-K.; Kwon, B.-Y.; Phark, S.; Hwang, K.-W.; Sul, D. Curcumin protected PC12 cells against beta-amyloid-induced toxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Food Chem. Toxicol. 2008, 46, 2881–2887. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Fiala, M.; Cashman, J.; Sayre, J.; Espinosa, A.; Mahanian, M.; Zaghi, J.; Badmaev, V.; Graves, M.C.; Bernard, G.; et al. Curcuminoids enhance amyloid-beta uptake by macrophages of Alzheimer’s disease patients. J. Alzheimer’s Dis. 2006, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Park, B.-S.; Lee, K.-G.; Choi, C.Y.; Jang, S.S.; Kim, Y.-H.; Lee, S.-E. Effects of naturally occurring compounds on fibril formation and oxidative stress of beta-amyloid. J. Agric. Food Chem. 2005, 53, 8537–8541. [Google Scholar] [CrossRef] [PubMed]
- Ono, K.; Hasegawa, K.; Naiki, H.; Yamada, M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J. Neurosci. Res. 2004, 75, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 2005, 280, 5892–5901. [Google Scholar] [CrossRef] [PubMed]
- Shimmyo, Y.; Kihara, T.; Akaike, A.; Niidome, T.; Sugimoto, H. Epigallocatechin-3-gallate and curcumin suppress amyloid beta-induced beta-site APP cleaving enzyme-1 upregulation. Neuroreport 2008, 19, 1329–1333. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Chen, X.; Li, W.; Han, Y.; Liu, P.; Pi, R. Exposure to metal ions regulates mRNA levels of APP and BACE1 in PC12 cells: Blockage by curcumin. Neurosci. Lett. 2008, 440, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Gilani, A.H.; Hosseinmardi, N.; Semnanian, S.; Enam, S.A.; Fathollahi, Y. Curcuminoids rescue long-term potentiation impaired by amyloid peptide in rat hippocampal slices. Synapse 2011, 65, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhao, R.; Liu, B.; Li, K. The effect of curcumin supplementation on cognitive function: An updated systematic review and meta-analysis. Front. Nutr. 2025, 12, 1549509. [Google Scholar] [CrossRef] [PubMed]
- Tsai, I.C.; Hsu, C.W.; Chang, C.H.; Tseng, P.T.; Chang, K.V. The effect of curcumin differs on individual cognitive domains across different patient populations: A systematic review and Meta-analysis. Pharmaceuticals 2021, 14, 1235. [Google Scholar] [CrossRef] [PubMed]
- Ganguli, M.; Chandra, V.; Kamboh, M.I.; Johnston, J.M.; Dodge, H.H.; Thelma, B.K.; Juyal, R.C.; Pandav, R.; Belle, S.H.; DeKosky, S.T. Apolipoprotein E polymorphism and Alzheimer disease: The Indo-US crossnational dementia study. Arch. Neurol. 2000, 57, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Dost, F.S.; Kaya, D.; Ontan, M.S.; Erken, N.; Bulut, E.A.; Aydin, A.E.; Isik, A.T. Teracurmin supplementation may be a therapeutic option for older patients with Alzheimer’s disease: A 6-month retrospective follow-up study. Curr. Alzheimer Res. 2021, 18, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.N.; Mei, X.; Zhang, Z.G.; Xie, Y.P.; Lang, F. Curcumin intervention for cognitive function in different types of people: A systematic review and meta-analysis. Phytother Res. 2019, 33, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, N.S.A.; Oskouie, M.N.; Butler, A.E.; Petit, P.X.; Barreto, G.E.; Sahebkar, A. Hormetic effects of curcumin: What is the evidence? J. Cell. Physiol. 2019, 234, 10060–10071. [Google Scholar] [CrossRef] [PubMed]
Never or Rarely | Occasional | Often | Very Often | Daily | ||
---|---|---|---|---|---|---|
(Never or < Once/Year) | (>Once/Year, <Once/Month) | (>Once/Month, <Once/Week) | (>Once/Week, Not Daily) | (≥Once Daily) | p | |
N of participants | 417 | 1030 | 805 | 395 | 273 | |
Sex: women | 71.5 (298) | 70.6 (727) | 63.2 (509) | 58.0 (229) | 52.0 (142) | <0.001 |
Age, years | 66.4 ± 7.3 | 65.7 ± 7.0 | 65.6 ± 7.2 | 64.9 ± 7.1 | 64.4 ± 6.7 | 0.003 |
Ethnicity: Chinese | 98.6 (411) | 97.4 (1003) | 93.4 (752) | 89.9 (355) | 75.5 (206) | |
Malay, Indian, and Other | 1.4 (6) | 2.6 (27) | 6.6 (53) | 10.1 (40) | 24.5 (67) | <0.001 |
Education: 0–6 years | 63.3 (264) | 53.2 (548) | 48.9 (394) | 44.6 (176) | 42.5 (116) | <0.001 |
Smoking: past smoker | 8.4 (35) | 6.7 (69) | 9.7 (78) | 11.4 (45) | 8.4 (23) | |
Current smoker | 5.0 (21) | 6.3 (65) | 7.8 (63) | 6.3 (25) | 9.5 (26) | 0.005 |
Alcohol ≥ once/week | 5.3 (22) | 4.1 (42) | 2.2 (18) | 5.3 (21) | 8.1 (22) | 0.143 |
Physical activity score | 2.45 ± 1.91 | 2.42 ± 1.82 | 2.30 ± 1.70 | 2.39 ± 1.84 | 2.43 ± 1.88 | 0.594 |
Social activity score | 2.87 ± 2.30 | 3.32 ± 2.48 | 3.28 ± 2.54 | 3.30 ± 2.44 | 3.35 ± 2.60 | 0.023 |
Productive activity score | 3.96 ± 1.76 | 4.02 ± 1.73 | 4.05 ± 1.85 | 4.18 ± 1.82 | 4.15 ± 1.92 | 0.375 |
APOE-ε 4 ≥ 1 allele | 16.3 (68) | 17.6 (181) | 15.7 (126) | 15.0 (65) | 18.3 (50) | 0.901 |
Central obesity | 43.2 (180) | 48.7 (502) | 52.7 (424) | 50.1 (198) | 52.7 (144) | 0.009 |
Hypertension | 59.2 (247) | 59.2 (610) | 62.2 (501) | 56.7 (224) | 54.6 (149) | 0.256 |
Diabetes or FBG > 5.6 mmol/L | 17.3 (72) | 17.8 (183) | 22.5 (181) | 19.0 (75) | 22.7 (62) | 0.032 |
High triglyceride > 2.2 mmol/L | 18.0 (75) | 27.6 (284) | 33.4 (269) | 21.0 (83) | 26.0 (71) | 0.167 |
Low HDL-cholesterol (<1.0 mmol/L) | 18.7 (78) | 27.2 (280) | 34.7 (279) | 19.2 (76) | 29.3 (80) | 0.068 |
Cardiac diseases | 8.2 (34) | 6.3 (65) | 8.2 (66) | 5.6 (22) | 8.8 (24) | 0.819 |
GDS depression score | 1.58 ± 2.30 | 1.01 ± 1.94 | 0.91 ± 1.74 | 1.27 ± 2.30 | 1.33 ± 2.42 | <0.001 |
GDS ≥ 5 | 9.8 (41) | 5.8 (60) | 3.6 (29) | 7.6 (30) | 7.7 (21) | <0.001 |
MMSE | 27.3 ± 3.0 | 27.9 ± 2.5 | 28.2 ± 2.2 | 28.1 ± 2.3 | 27.8 ± 2.8 | <0.001 |
Cognitive Decline | Incident Mild Cognitive Impairment or Dementia | ||||||
---|---|---|---|---|---|---|---|
No | Yes | p | No | Yes | p | ||
No. of participants | N = 2489 | N = 432 | N = 2254 | N = 192 | |||
Never or rarely | never or <once/year | 13.6 (339) | 18.1 (78) | 0.037 | 12.9 (291) | 22.9 (44) | <0.001 |
Occasionally | >once/year, <once/month | 35.4 (880) | 34.8 (78) | 35.5 (801) | 35.4 (68) | ||
Often | >once/month, <once/week | 27.9 (694) | 25.8 (150) | 28.4 (641) | 25.5 (49) | ||
Very often | >once/week, not daily | 13.6 (338) | 13.2 (57) | 13.6 (307) | 12.0 (23) | ||
Daily | ≥once daily | 9.6 (238) | 8.1 (35) | 9.5 (214) | 4.2 (8) | ||
Sex | Female | 64.3 (1601) | 70.5 (304) | 0.012 | 63.8 (1439) | 73.4 (141) | 0.008 |
Age, years | Mean ± SD | 65.2 ± 6.9 | 67.4 ± 7.8 | <0.001 | 64.6 ± 6.6 | 68.8 ± 7.9 | <0.001 |
Non-Chinese ethnicity | Malay, Indian, and Other | 6.3 (156) | 8.6 (37) | <0.001 | 5.2 (118) | 10.9 (21) | <0.001 |
Education | 0–6 years | 49.4 (1229) | 62.4 (269) | <0.001 | 43.5 (981) | 72.4 (139) | <0.001 |
Smoking | Past smoker | 9.0 (224) | 6.0 (26) | 0.056 | 8.6 (193) | 6.8 (13) | 0.657 |
Current smoker | 7.0 (175) | 5.8 (25) | 7.1 (159) | 7.8 (15) | |||
Alcohol | ≥once/week | 4.3 (106) | 4.4 (19) | 0.887 | 4.5 (101) | 4.2 (8) | 0.839 |
Physical activity score | Mean ± SD | 2.41 ± 1.81 | 2.30 ± 1.83 | 0.258 | 2.49 ± 1.82 | 2.10 ± 1.75 | 0.004 |
Social activity score | Mean ± SD | 3.25 ± 2.47 | 3.19 ± 2.51 | 0.653 | 3.36 ± 2.55 | 3.10 ± 2.06 | 0.174 |
Productive activity score | Mean ± SD | 4.09 ± 1.80 | 3.87 ± 1.80 | 0.020 | 4.16 ± 1.80 | 3.94 ± 1.78 | 0.097 |
APOE-ε 4 ≥ 1 allele | 16.6 (413) | 17.9 (77) | 0.514 | 16.1 (362) | 19.3 (37) | 0.248 | |
Central obesity | 49.0 (1219) | 53.1 (229) | 0.111 | 48.8 (1101) | 56.8 (109) | 0.035 | |
Hypertension | 58.3 (1452) | 64.7 (279) | 0.013 | 58.4 (1317) | 62.5 (120) | 0.271 | |
Diabetes or FBG | >5.6 mmol/L | 19.7 (490) | 19.3 (83) | 0.836 | 17.7 (400) | 25.5 (49) | 0.010 |
High triglyceride | >2.2 mmol/L | 27.5 (685) | 22.5 (97) | 0.029 | 27.9 (628) | 21.4 (41) | 0.052 |
Low HDL-cholesterol | (<1.0 mmol/L) | 27.6 (686) | 24.8 (107) | 0.239 | 28.0 (631) | 22.9 (44) | 0.131 |
Cardiac diseases | 6.7 (168) | 10.0 (43) | 0.020 | 6.7 (151) | 6.3 (12) | 0.811 | |
GDS depression score | Mean ± SD | 1.14 ± 2.05 | 1.24 ± 2.07 | 0.326 | 0.91 ± 1.67 | 1.47 ± 2.36 | <0.001 |
GDS ≥ 5 | 6.1 (153) | 6.5 (28) | 0.781 | 4.2 (95) | 9.9 (19) | <0.001 | |
MMSE | Mean ± SD | 27.8 ± 2.55 | 28.2 ± 2.35 | 0.009 | 28.7 ± 1.62 | 27.2 ± 2.43 | <0.001 |
Exposed | Cognitive Decline | Unadjusted | Adjusted † | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Yes | Per 100 | OR | 95% | CI | p | OR | 95% | CI | p | ||
Never or rarely | never or <once/year | 417 | 78 | 18.7 | 1 | 1 | ||||||
Occasionally | >once/year, once/month | 1030 | 150 | 14.6 | 0.74 | 0.55 | 1.00 | 0.73 | 0.53 | 1.01 | ||
Often | >once/month, <once/week) | 805 | 111 | 13.8 | 0.69 | 0.51 | 0.96 | * | 0.68 | 0.48 | 0.95 | * |
Very often | >once/week, not daily) | 395 | 57 | 14.4 | 0.73 | 0.50 | 1.06 | 0.74 | 0.50 | 1.11 | ||
Daily | ≥once daily | 273 | 35 | 12.8 | 0.64 | 0.41 | 0.98 | * | 0.66 | 0.41 | 1.06 | |
Linear trend, p | 0.037 | 0.150 |
Exposed | Mild Cognitive Impairment or Dementia | Unadjusted | Adjusted † | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | MCI + Dementia | Per 100 | OR | 95% | CI | p | OR | 95% | CI | p | |||
Never or rarely | never or <once/year | 335 | 42 + 2 | 13.1 | 1 | 1 | |||||||
Occasionally | >once/year, <once/month | 869 | 61 + 7 | 7.8 | 0.56 | 0.38 | 0.84 | ** | 0.61 | 0.40 | 0.94 | * | |
Often | >once/month, <once/week) | 690 | 46 + 3 | 7.1 | 0.51 | 0.33 | 0.78 | ** | 0.56 | 0.35 | 0.89 | * | |
Very often | >once/week, not daily) | 330 | 20 + 3 | 7.0 | 0.49 | 0.29 | 0.84 | ** | 0.54 | 0.30 | 0.96 | * | |
Daily | ≥once daily | 222 | 8 | 3.6 | 0.25 | 0.11 | 0.54 | *** | 0.21 | 0.09 | 0.49 | *** | |
Linear trend, p | <0.001 | 0.021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Lee, T.S.; Lim, W.S.; Yap, P.; Cheong, C.Y.; Rawtaer, I.; Liew, T.M.; Gwee, X.; Gao, Q.; Yap, K.B.; et al. Curcumin-Rich Curry Consumption Is Associated with Lower Risk of Cognitive Decline and Incidence of Mild Cognitive Impairment or Dementia: An Asian Population-Based Study. Nutrients 2025, 17, 2488. https://doi.org/10.3390/nu17152488
Lu Y, Lee TS, Lim WS, Yap P, Cheong CY, Rawtaer I, Liew TM, Gwee X, Gao Q, Yap KB, et al. Curcumin-Rich Curry Consumption Is Associated with Lower Risk of Cognitive Decline and Incidence of Mild Cognitive Impairment or Dementia: An Asian Population-Based Study. Nutrients. 2025; 17(15):2488. https://doi.org/10.3390/nu17152488
Chicago/Turabian StyleLu, Yanxia, Tih Shih Lee, Wee Shiong Lim, Philip Yap, Chin Yee Cheong, Iris Rawtaer, Tau Ming Liew, Xinyi Gwee, Qi Gao, Keng Bee Yap, and et al. 2025. "Curcumin-Rich Curry Consumption Is Associated with Lower Risk of Cognitive Decline and Incidence of Mild Cognitive Impairment or Dementia: An Asian Population-Based Study" Nutrients 17, no. 15: 2488. https://doi.org/10.3390/nu17152488
APA StyleLu, Y., Lee, T. S., Lim, W. S., Yap, P., Cheong, C. Y., Rawtaer, I., Liew, T. M., Gwee, X., Gao, Q., Yap, K. B., & Ng, T. P. (2025). Curcumin-Rich Curry Consumption Is Associated with Lower Risk of Cognitive Decline and Incidence of Mild Cognitive Impairment or Dementia: An Asian Population-Based Study. Nutrients, 17(15), 2488. https://doi.org/10.3390/nu17152488