Excessive Daytime Sleepiness and Associated Cardiometabolic Factors in Latino Individuals of Mexican Ancestry at High Risk of Type 2 Diabetes: An El Banco Biobank Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Daytime Sleepiness Assessment
2.3. Physical Activity Assessment
2.4. Sociodemographic Characteristics
2.5. Dietary Assessment
2.6. Cardiometabolic Risk Factors
2.7. Statistical Analysis
2.8. Statistical Power Calculation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Koren, D.; Dumin, M.; Gozal, D. Role of sleep quality in the metabolic syndrome. Diabetes Metab. Syndr. Obes. 2016, 9, 281–310. [Google Scholar] [CrossRef]
- Perez-Carbonell, L.; Mignot, E.; Leschziner, G.; Dauvilliers, Y. Understanding and approaching excessive daytime sleepiness. Lancet 2022, 400, 1033–1046. [Google Scholar] [CrossRef] [PubMed]
- Wondie, A.; Taderegew, M.M.; Girma, B.; Getawey, A.; Tessema, Z.; Emrie, A.A.; Terefe, T.F. Excessive daytime sleepiness and its predictors among type 2 diabetes mellitus patients at central ethiopia. Sci. Rep. 2024, 14, 31693. [Google Scholar] [CrossRef]
- Arosemena Coronel, M.; Sanchez Armijos, J.; Tettamanti Miranda, D.; Vasquez Cedeno, D.; Mariani Carrera, R.; Navarro Chavez, M.; Castillo, P.R. Excessive daytime somnolence is associated with hypoglycemia in adult Latinos with type 2 diabetes mellitus. Sleep Med. 2017, 36, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Inkster, B.; Riha, R.L.; Van Look, L.; Williamson, R.; McLachlan, S.; Frier, B.M.; Strachan, M.W.; Price, J.F.; Reynolds, R.M. Association between excessive daytime sleepiness and severe hypoglycemia in people with type 2 diabetes: The Edinburgh Type 2 Diabetes Study. Diabetes Care 2013, 36, 4157–4159. [Google Scholar] [CrossRef]
- Shibabaw, Y.Y.; Dejenie, T.A.; Tesfa, K.H. Glycemic control and its association with sleep quality and duration among type 2 diabetic patients. Metabol. Open 2023, 18, 100246. [Google Scholar] [CrossRef]
- Plantinga, L.; Rao, M.N.; Schillinger, D. Prevalence of self-reported sleep problems among people with diabetes in the United States, 2005–2008. Prev. Chronic Dis. 2012, 9, E76. [Google Scholar] [CrossRef]
- Aurora, R.N.; Punjabi, N.M. Obstructive Sleep Apnea, Sleepiness, and Glycemic Control in Type 2 Diabetes. J. Clin. Sleep Med. 2019, 15, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Aguayo-Mazzucato, C.; Diaque, P.; Hernandez, S.; Rosas, S.; Kostic, A.; Caballero, A.E. Understanding the growing epidemic of type 2 diabetes in the Hispanic population living in the United States. Diabetes Metab. Res. Rev. 2019, 35, e3097. [Google Scholar] [CrossRef]
- Roncoroni, J.; Okun, M.; Hudson, A. Systematic review: Sleep health in the US Latinx population. Sleep 2022, 45, zsac092. [Google Scholar] [CrossRef]
- Parra, O.D.; Kohler, L.N.; Landes, L.; Soto, A.A.; Garcia, D.; Mullins, J.; Molina, P.; Pereira, E.; Spegman, D.J.; Soltani, L.; et al. Biobanking in Latinos: Current status, principles for conduct, and contribution of a new biobank, El Banco por Salud, designed to improve the health of Latino patients of Mexican ancestry with type 2 diabetes. BMJ Open Diabetes Res. Care 2022, 10, e002709. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef]
- Johns, M.W. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef]
- Godin, G.; Shephard, R.J. A simple method to assess exercise behavior in the community. Can. J. Appl. Sport. Sci. 1985, 10, 141–146. [Google Scholar]
- Verde, L.; Kohler, L.N.; Muscogiuri, G.; Parra, O.; Klimentidis, Y.C.; Coletta, D.K.; Mandarino, L.J. Food insecurity and its associations with cardiometabolic health in Latino individuals of Mexican ancestry. Front. Nutr. 2024, 11, 1499504. [Google Scholar] [CrossRef] [PubMed]
- Wakimoto, P.; Block, G.; Mandel, S.; Medina, N. Development and reliability of brief dietary assessment tools for Hispanics. Prev. Chronic Dis. 2006, 3, A95. [Google Scholar]
- Frank, D.; DeBenedetti, A.F.; Volk, R.J.; Williams, E.C.; Kivlahan, D.R.; Bradley, K.A. Effectiveness of the AUDIT-C as a screening test for alcohol misuse in three race/ethnic groups. J. Gen. Intern. Med. 2008, 23, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Barrea, L.; Annunziata, G.; Di Somma, C.; Laudisio, D.; Colao, A.; Savastano, S. Obesity and sleep disturbance: The chicken or the egg? Crit. Rev. Food Sci. Nutr. 2019, 59, 2158–2165. [Google Scholar] [CrossRef]
- Alcantara, C.; Gallo, L.C.; Wen, J.; Dudley, K.A.; Wallace, D.M.; Mossavar-Rahmani, Y.; Sotres-Alvarez, D.; Zee, P.C.; Ramos, A.R.; Petrov, M.E.; et al. Employment status and the association of sociocultural stress with sleep in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Sleep 2019, 42, zsz002. [Google Scholar] [CrossRef]
- Diaz, K.M.; Goldsmith, J.; Greenlee, H.; Strizich, G.; Qi, Q.; Mossavar-Rahmani, Y.; Vidot, D.C.; Buelna, C.; Brintz, C.E.; Elfassy, T.; et al. Prolonged, Uninterrupted Sedentary Behavior and Glycemic Biomarkers Among US Hispanic/Latino Adults: The HCHS/SOL (Hispanic Community Health Study/Study of Latinos). Circulation 2017, 136, 1362–1373. [Google Scholar] [CrossRef]
- Knutson, K.L.; Wu, D.; Patel, S.R.; Loredo, J.S.; Redline, S.; Cai, J.; Gallo, L.C.; Mossavar-Rahmani, Y.; Ramos, A.R.; Teng, Y.; et al. Association Between Sleep Timing, Obesity, Diabetes: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL) Cohort Study. Sleep 2017, 40, zsx014. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.R.; Sotres-Alvarez, D.; Castaneda, S.F.; Dudley, K.A.; Gallo, L.C.; Hernandez, R.; Medeiros, E.A.; Penedo, F.J.; Mossavar-Rahmani, Y.; Ramos, A.R.; et al. Social and Health Correlates of Sleep Duration in a US Hispanic Population: Results from the Hispanic Community Health Study/Study of Latinos. Sleep 2015, 38, 1515–1522. [Google Scholar] [CrossRef]
- Johnson, M.; Berwick, D.M. Medicare 2.0-A Vision for the Future of America’s Health Insurance Plan. JAMA 2022, 328, 2107–2108. [Google Scholar] [CrossRef]
- Shandra, C.L.; Kruger, A.; Hale, L. Disability and sleep duration: Evidence from the American Time Use Survey. Disabil. Health J. 2014, 7, 325–334. [Google Scholar] [CrossRef]
- Wickwire, E.M.; Tom, S.E.; Scharf, S.M.; Vadlamani, A.; Bulatao, I.G.; Albrecht, J.S. Untreated insomnia increases all-cause health care utilization and costs among Medicare beneficiaries. Sleep 2019, 42, zsz007. [Google Scholar] [CrossRef] [PubMed]
- Drake, I.; Sonestedt, E.; Ericson, U.; Wallstrom, P.; Orho-Melander, M. A Western dietary pattern is prospectively associated with cardio-metabolic traits and incidence of the metabolic syndrome. Br. J. Nutr. 2018, 119, 1168–1176. [Google Scholar] [CrossRef] [PubMed]
- Standage-Beier, C.S.; Bakhshi, B.; Parra, O.D.; Soltani, L.; Spegman, D.J.; Molina, P.; Pereira, E.; Landes, L.; Mandarino, L.J.; Kohler, L.N. Fruit, Vegetable, and Physical Activity Guideline Adherence and Metabolic Syndrome in El Banco por Salud. Nutrients 2022, 14, 1767. [Google Scholar] [CrossRef]
- Akhlaghi, M.; Kohanmoo, A. Sleep deprivation in development of obesity, effects on appetite regulation, energy metabolism, and dietary choices. Nutr. Res. Rev. 2023, 1–21. [Google Scholar] [CrossRef]
- Kopp, W. How Western Diet And Lifestyle Drive The Pandemic Of Obesity And Civilization Diseases. Diabetes Metab. Syndr. Obes. 2019, 12, 2221–2236. [Google Scholar] [CrossRef]
- Kline, C.E. The bidirectional relationship between exercise and sleep: Implications for exercise adherence and sleep improvement. Am. J. Lifestyle Med. 2014, 8, 375–379. [Google Scholar] [CrossRef]
- Forhan, M.; Gill, S.V. Obesity, functional mobility and quality of life. Best. Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Diet strategies for promoting healthy aging and longevity: An epidemiological perspective. J. Intern. Med. 2024, 295, 508–531. [Google Scholar] [CrossRef] [PubMed]
- Joseph, R.J.; Alonso-Alonso, M.; Bond, D.S.; Pascual-Leone, A.; Blackburn, G.L. The neurocognitive connection between physical activity and eating behaviour. Obes. Rev. 2011, 12, 800–812. [Google Scholar] [CrossRef] [PubMed]
- Barcelo, A.; Barbe, F.; de la Pena, M.; Martinez, P.; Soriano, J.B.; Pierola, J.; Agusti, A.G. Insulin resistance and daytime sleepiness in patients with sleep apnoea. Thorax 2008, 63, 946–950. [Google Scholar] [CrossRef]
- Saaresranta, T.; Irjala, K.; Aittokallio, T.; Polo, O. Sleep quality, daytime sleepiness and fasting insulin levels in women with chronic obstructive pulmonary disease. Respir. Med. 2005, 99, 856–863. [Google Scholar] [CrossRef]
- Stamatakis, K.A.; Punjabi, N.M. Effects of sleep fragmentation on glucose metabolism in normal subjects. Chest 2010, 137, 95–101. [Google Scholar] [CrossRef]
- Gomez-Peralta, F.; Abreu, C.; Castro, J.C.; Alcarria, E.; Cruz-Bravo, M.; Garcia-Llorente, M.J.; Albornos, C.; Moreno, C.; Cepeda, M.; Almodovar, F. An association between liraglutide treatment and reduction in excessive daytime sleepiness in obese subjects with type 2 diabetes. BMC Endocr. Disord. 2015, 15, 78. [Google Scholar] [CrossRef]
- Malhotra, A.; Grunstein, R.R.; Fietze, I.; Weaver, T.E.; Redline, S.; Azarbarzin, A.; Sands, S.A.; Schwab, R.J.; Dunn, J.P.; Chakladar, S.; et al. Tirzepatide for the Treatment of Obstructive Sleep Apnea and Obesity. N. Engl. J. Med. 2024, 391, 1193–1205. [Google Scholar] [CrossRef]
Parameters | N of Respondents | All | Without Daytime Sleepiness (ESS ≤ 10) N = 1314, 78.0% | With EDS (ESS > 10) N = 371, 22.0% | p Value |
---|---|---|---|---|---|
Age (years) | 1685 | 52.6 ± 14.3 | 52.5 ± 14.5 | 52.8 ± 13.8 | 0.747 |
Sex | 1684 | ||||
Male (N, %) | 544, 32.3% | 421, 32.1% | 123, 33.2% | 0.612 | |
Female (N, %) | 1140, 67.7% | 892, 67.9% | 248, 66.8% | ||
BMI (kg/m2) | 1676 | 32.4 ± 7.0 | 32.1 ± 6.8 | 33.6 ± 7.6 | <0.001 |
WC (inch) | 1670 | 42.1 ± 6.3 | 41.8 ± 6.3 | 43.0 ± 6.5 | 0.002 |
WC (cm) | 1670 | 106.9 ± 16.0 | 106.2 ± 16.0 | 109.2 ± 16.5 | 0.002 |
Physical activity | 1666 | ||||
Sedentary (n, %) | 734, 44.1% | 552, 42.6% | 182, 49.3% | 0.017 | |
Moderately active (n, %) | 280, 16.8% | 214, 16.5% | 66, 17.9% | ||
Active (n, %) | 652, 39.1% | 531, 40.9% | 121, 32.8% | ||
Alcohol use | 1685 | ||||
At-risk drinking (n, %) | 381, 22.6% | 291, 22.1% | 90, 24.3% | 0.390 | |
Not at-risk drinking (n, %) | 1304, 77.4% | 1023, 77.9% | 281, 75.7% | ||
Cardiometabolic risk factors | |||||
Large WC (yes) (n, %) | 1669 | 1391, 82.6% | 1074, 82.3% | 317, 87.1% | 0.030 |
Dyslipidemia (yes) (n, %) | 1675 | 757, 44.9% | 573, 43.8% | 184, 50.0% | 0.036 |
Elevated FPG (yes) (n, %) | 1576 | 1046, 62.5% | 801, 61.4% | 245, 66.0% | 0.102 |
Low HDL (yes) (n, %) | 1643 | 918, 54.5% | 707, 55.2% | 211, 58.3% | 0.295 |
Hypertension (yes) (n, %) | 1665 | 528, 31.3% | 407, 31.3% | 121, 33.1% | 0.530 |
HbA1c (mmol/mol) | 1685 | 56.7 ± 22.8 | 55.3 ± 22.6 | 59.3 ± 23.3 | 0.007 |
HbA1c (%) | 1685 | 7.3 ± 2.1 | 7.3 ± 2.1 | 7.6 ± 2.1 | 0.007 |
Parameters | N of Respondents | All | Without Daytime Sleepiness (ESS ≤ 10) N = 1314, 78.0% | With EDS (ESS > 10) N = 371, 22.0% | p Value |
---|---|---|---|---|---|
Participant type | 1685 | ||||
Proband (N, %) | 933, 55.4% | 690, 52.5% | 243, 65.5% | <0.001 | |
Family member/ Proband Family Friend (N, %) | 752, 44.6% | 624, 47.5% | 128, 34.5% | ||
Home language | 1679 | ||||
Only Spanish (N, %) | 577, 34.4% | 442, 33.7% | 135, 36.6% | 0.081 | |
More Spanish than English (N, %) | 387, 23.0% | 318, 24.3% | 68, 18.7% | ||
Both equally (N, %) | 301, 17.9% | 237, 18.1% | 64, 17.3% | ||
More English than Spanish (N, %) | 279, 16.6% | 205, 15.6% | 74, 20.1% | ||
Only English (N, %) | 135, 8.0% | 108, 8.2% | 27, 7.3% | ||
Education | 1679 | ||||
<High school (N, %) | 47.5, 47.7% | 614, 46.9% | 187, 50.4% | 0.239 | |
≥High school (N, %) | 878, 52.3% | 694, 53.1% | 184, 49.6% | ||
Work | 1657 | ||||
Full-time (N, %) | 493, 29.8% | 392, 30.3% | 101, 27.7% | 0.103 | |
Part-time (N, %) | 218, 13.2% | 179, 13.9% | 39, 10.7% | ||
Unemployed (N, %) | 946, 57.1% | 721, 55.8% | 225, 61.6% | ||
Marital status | 1684 | ||||
Single, never married (N, %) | 363, 21.6% | 275, 20.9% | 88, 23.7% | 0.304 | |
Married or domestic partnership (N, %) | 844, 50.1% | 676, 51.5% | 168, 45.3% | ||
Widowed (N, %) | 121, 7.2% | 94, 7.2% | 27, 7.3% | ||
Divorced (N, %) | 267, 15.9% | 200, 15.2% | 67, 18.1% | ||
Separated (N, %) | 89, 5.3% | 68, 5.2% | 21, 5.7% | ||
Country of birth | 1668 | ||||
Not US (N, %) | 975, 58.5% | 768, 59.0% | 207, 56.4% | 0.367 | |
US (N, %) | 693, 41.5% | 533, 41.0% | 160, 43.6% | ||
Insurance | 1683 | ||||
Medicare (N, %) | 547, 32.5% | 404, 30.8% | 143, 38.6% | 0.003 | |
Commercial (N, %) | 272, 16.2% | 212, 16.1% | 60, 16.2% | ||
Medicaid (N, %) | 328, 19.5% | 251, 19.1% | 77, 20.8% | ||
None (N, %) | 310, 18.4% | 264, 20.1% | 46, 12.4% | ||
Unknown (N, %) | 226, 13.4% | 182, 13.9% | 44, 11.9% | ||
Household income (USD/year) | 1672 | 53,082.0 ± 12,155.1 | 52,971.5 ± 11,885.2 | 53,470.7 ± 13,070.0 | 0.486 |
Outcomes | R2 | Beta | CI (95%) | p Value | Overall p Value |
---|---|---|---|---|---|
Dietary fat sources (times/month) | |||||
Flour tortilla | 0.017 | 0.053 | 0.01–0.04 | 0.031 | <0.001 |
Refried beans | 0.017 | 0.043 | −0.01–0.03 | NS | <0.001 |
Hamburgers/cheeseburgers | 0.103 | 0.069 | 0.01–0.03 | 0.004 | <0.001 |
French fries/fried potatoes | 0.072 | 0.065 | 0.01–0.03 | 0.007 | <0.001 |
Fried chicken | 0.013 | 0.061 | 0.01–0.03 | 0.014 | <0.001 |
Eggs | 0.005 | 0.021 | −0.01–0.03 | NS | 0.112 |
Tacos/burritos/enchiladas | 0.047 | 0.062 | 0.01–0.03 | 0.011 | <0.001 |
Other mixed dishes with meat | 0.050 | 0.039 | −0.01–0.03 | NS | <0.001 |
Pizza | 0.129 | 0.049 | 0.01–0.02 | 0.034 | <0.001 |
Roast pork, beef, or steak | 0.036 | 0.054 | 0.01–0.03 | 0.026 | <0.001 |
Cheese/cheese spread | 0.008 | 0.040 | −0.01–0.03 | NS | 0.016 |
Cake, sweet rolls, doughnuts | 0.012 | 0.091 | 0.01–0.04 | <0.001 | 0.002 |
Use fat or oil to fry, cook, or season | 0.007 | 0.038 | −0.01–0.03 | NS | 0.034 |
Salad dressing | 0.026 | 0.069 | 0.01–0.03 | 0.005 | <0.001 |
Potato/corn chips, peanuts | 0.072 | 0.067 | 0.01–0.03 | 0.005 | <0.001 |
Whole milk | 0.008 | 0.022 | −0.01–0.03 | NS | 0.022 |
Dietary fruit and vegetable sources (times/week) | |||||
Green salad | 0.028 | 0.014 | −0.02–0.03 | NS | <0.001 |
Fresh vegetables | 0.018 | −0.040 | −0.05–0.01 | NS | <0.001 |
Fruit juice | 0.025 | 0.079 | 0.03–0.09 | <0.001 | <0.001 |
Fruit (fresh/frozen/canned) | 0.008 | 0.052 | 0.01–0.08 | 0.035 | 0.029 |
Any potatoes | 0.027 | 0.076 | 0.01–0.04 | 0.002 | <0.001 |
Tomatoes/fresh salsa | 0.017 | 0.018 | −0.02–0.04 | NS | <0.001 |
Vegetable stew/soup | 0.004 | 0.019 | −0.01–0.03 | NS | 0.191 |
Outcome (HbA1c, mmol/mol) | R2 | Beta | CI (95%) | p Value | Overall p Value |
---|---|---|---|---|---|
Model 1 a | |||||
ESS score | 0.011 | 0.103 | 0.001–0.003 | <0.001 | <0.001 |
Model 2 b | |||||
ESS score | 0.088 | 0.088 | 0.001–0.003 | <0.001 | <0.001 |
Model 3 c | |||||
ESS score | 0.107 | 0.068 | 0.001–0.003 | 0.004 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verde, L.; Coletta, D.K.; Klimentidis, Y.C.; Kohler, L.N.; Soltani, L.; Parra, O.D.; Parthasarathy, S.; Mandarino, L.J.; Muscogiuri, G. Excessive Daytime Sleepiness and Associated Cardiometabolic Factors in Latino Individuals of Mexican Ancestry at High Risk of Type 2 Diabetes: An El Banco Biobank Cross-Sectional Study. Nutrients 2025, 17, 2476. https://doi.org/10.3390/nu17152476
Verde L, Coletta DK, Klimentidis YC, Kohler LN, Soltani L, Parra OD, Parthasarathy S, Mandarino LJ, Muscogiuri G. Excessive Daytime Sleepiness and Associated Cardiometabolic Factors in Latino Individuals of Mexican Ancestry at High Risk of Type 2 Diabetes: An El Banco Biobank Cross-Sectional Study. Nutrients. 2025; 17(15):2476. https://doi.org/10.3390/nu17152476
Chicago/Turabian StyleVerde, Ludovica, Dawn K. Coletta, Yann C. Klimentidis, Linsday N. Kohler, Lisa Soltani, Oscar D. Parra, Sairam Parthasarathy, Lawrence J. Mandarino, and Giovanna Muscogiuri. 2025. "Excessive Daytime Sleepiness and Associated Cardiometabolic Factors in Latino Individuals of Mexican Ancestry at High Risk of Type 2 Diabetes: An El Banco Biobank Cross-Sectional Study" Nutrients 17, no. 15: 2476. https://doi.org/10.3390/nu17152476
APA StyleVerde, L., Coletta, D. K., Klimentidis, Y. C., Kohler, L. N., Soltani, L., Parra, O. D., Parthasarathy, S., Mandarino, L. J., & Muscogiuri, G. (2025). Excessive Daytime Sleepiness and Associated Cardiometabolic Factors in Latino Individuals of Mexican Ancestry at High Risk of Type 2 Diabetes: An El Banco Biobank Cross-Sectional Study. Nutrients, 17(15), 2476. https://doi.org/10.3390/nu17152476