Association Between Sociodemographic and Lifestyle Factors and Type 2 Diabetes Risk Scores in a Large Working Population: A Comparative Study Between the Commerce and Industry Sectors
Abstract
1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Inclusion and Exclusion Criteria
2.3. Data Collection
2.3.1. Blood Pressure Measurement
2.3.2. Blood Sample Collection and Processing
2.3.3. Physical Activity Assessment (IPAQ-SF)
2.3.4. Mediterranean Diet Adherence (PREDIMED-MEDAS)
2.3.5. Validated Type 2 Diabetes Risk Scales
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Sectoral Differences and Occupational Determinants
4.2. Lifestyle Behaviors: Physical Activity and Diet
4.3. Sociodemographic Influences: Sex, Age, Education
4.4. Comparison with Other Risk Tools and Populations
4.5. Policy Implications and Workplace Prevention
4.6. Strengths and Limitations
4.7. Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magliano, D.J.; Boyko, E.J. IDF Diabetes Atlas 10th edition scientific committee. In IDF DIABETES ATLAS [Internet], 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar] [PubMed]
- World Health Organization. Diabetes Fact Sheet [Internet]; WHO: Geneva, Switzerland, 2024; Available online: https://diabetesatlas.org/media/uploads/sites/3/2025/04/IDF_Atlas_11th_Edition_2025_Global-Factsheet.pdf (accessed on 22 June 2025).
- GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Hu, F.B. The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases. Nat. Rev. Endocrinol. 2022, 18, 205–218. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hill-Briggs, F.; Adler, N.E.; Berkowitz, S.A.; Chin, M.H.; Gary-Webb, T.L.; Navas-Acien, A.; Thornton, P.L.; Haire-Joshu, D. Social Determinants of Health and Diabetes: A Scientific Review. Diabetes Care 2020, 44, 258–279. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aguiló Juanola, M.C.; López-González, A.A.; Tomás-Gil, P.; Paublini, H.; Tárraga-López, P.J.; Ramírez-Manent, J.I. Influence of tobacco consumption on the values of different cardiometabolic risk scales in 418,343 spanish workers. Acad. J. Health Sci. 2024, 39, 92–98. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Huang, Q.; Zhang, Q.; Li, M.; Wu, Y. The effectiveness of lifestyle interventions for diabetes remission on patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Worldviews Evid. Based Nurs. 2023, 20, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Buss, V.H.; Varnfield, M.; Harris, M.; Barr, M. Validation of a lifestyle-based risk score for type 2 diabetes mellitus in Australian adults. Prev. Med. Rep. 2021, 24, 101647. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fitzpatrick-Lewis, D.; Ali, M.U.; Horvath, S.; Nagpal, S.; Ghanem, S.; Sherifali, D. Effectiveness of Workplace Interventions to Reduce the Risk for Type 2 Diabetes: A Systematic Review and Meta-Analysis. Can. J. Diabetes 2022, 46, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, R.M.; Grega, M.L.; Karlsen, M.C.; Dabrh, A.M.A.; Aurora, R.N.; Bonnet, J.P.; Donnell, L.; Fitzpatrick, S.L.; Frates, B.; Joy, E.A.; et al. Lifestyle Interventions for Treatment and Remission of Type 2 Diabetes and Prediabetes in Adults: A Clinical Practice Guideline From the American College of Lifestyle Medicine. Am. J. Lifestyle Med. 2025, 19 (Suppl. 2), 10S–131S. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, C.; Hof, H.; Gysan, D.B.; Albus, C.; Millentrup, S.; Bjarnason-Wehrens, B.; Latsch, J.; Herold, G.; Wegscheider, K.; Heming, C.; et al. Lifestyle intervention reduces risk score for cardiovascular mortality in company employees with pre-diabetes or diabetes mellitus—A secondary analysis of the PreFord randomized controlled trial with 3 years of follow-up. Front. Endocrinol. 2023, 14, 1106334. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Loeb, T.B.; Ramm, K.; Gholami, M.; Shedd, K.; Soetenga, S.; Bhagat, M.; Jackson, N.J.; Chung, U.Y.R.; Duru, O.K.; Mangione, C.M.; et al. Implementation lessons learned from the University of California’s Diabetes Prevention Program Initiative. BMC Public Health 2024, 24, 2777. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mortensen, J.; Clark, A.J.; Lange, T.; Andersen, G.S.; Goldberg, M.; Ramlau-Hansen, C.H.; Head, J.; Kivimäki, M.; Madsen, I.; Leineweber, C.; et al. Informal caregiving as a risk factor for type 2 diabetes in individuals with favourable and unfavourable psychosocial work environments: A longitudinal multi-cohort study. Diabetes Metab. 2018, 44, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Viklund, A.; Andersson, T.; Selander, J.; Kader, M.; Albin, M.; Bodin, T.; Härmä, M.; Ljungman, P.; Bigert, C. Night and shift work patterns and incidence of type 2 diabetes and hypertension in a prospective cohort study of healthcare employees. Scand. J. Work Environ. Health 2023, 49, 439–448. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vézina-Im, L.A.; Morin, C.M.; Desroches, S. Sleep, Diet and Physical Activity Among Adults Living with Type 1 and Type 2 Diabetes. Can. J. Diabetes 2021, 45, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.C.; Yang, H.Y. Relationship of long working hours and night shift working hours with incident diabetes: A retrospective cohort study in Taiwan. Ann. Epidemiol. 2023, 80, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Busquets-Cortés, C.; Bennasar-Veny, M.; López-González, A.A.; Fresneda, S.; Aguiló, A.; Yanez, A. Fatty liver index and progression to type 2 diabetes: A 5-year longitudinal study in Spanish workers with pre-diabetes. BMJ Open. 2021, 11, e045498. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, J.; Wang, L.; Cui, X.; Shen, Q.; Wu, D.; Yang, M.; Dong, Y.; Liu, Y.; Chen, H.; Yang, Z.; et al. Polygenic Risk Score, Lifestyles, and Type 2 Diabetes Risk: A Prospective Chinese Cohort Study. Nutrients 2023, 15, 2144. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mohsen, F.; Al-Absi, H.R.H.; Yousri, N.A.; El Hajj, N.; Shah, Z. A scoping review of artificial intelligence-based methods for diabetes risk prediction. NPJ Digit. Med. 2023, 6, 197. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al-Absi, H.R.H.; Pai, A.; Naeem, U.; Mohamed, F.K.; Arya, S.; Sbeit, R.A.; Bashir, M.; El Shafei, M.M.; El Hajj, N.; Alam, T. DiaNet v2 deep learning based method for diabetes diagnosis using retinal images. Sci. Rep. 2024, 14, 1595. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vicente-Herrero, M.T.; Egea-Sancho, M.; Ramírez Iñiguez de la Torre, M.V.; López-González, A.A. Relación de los índices de adiposidad visceral (VAI) y adiposidad disfuncional (DAI) con las escalas de riesgo de resistencia a la insulina y prediabetes. Acad. J. Health Sci. 2024, 39, 25–31. [Google Scholar] [CrossRef]
- Mestre-Font, M.; Busquets-Cortés, C.; Ramírez-Manent, J.I.; Tomás-Gil, P.; Paublini, H.; López-González, A.A. Influence of sociodemographic variables and healthy habits on the values of type 2 diabetes risk scales. Acad. J. Health Sci. 2024, 39, 99–106. [Google Scholar] [CrossRef]
- Meo, S.A.; Muneif, Y.A.B.; BenOmran, N.A.; AlSadhan, M.A.; Hashem, R.F.; Alobaisi, A.S. Prevalence of Pre Diabetes and Type 2 Diabetes Mellitus among cement industry workers. Pak. J. Med. Sci. 2020, 36, 32–36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Celada Roldán, C.; López Diez, J.; Rider, F.; Tárraga Marcos, A.; Tárraga Marcos, M.L.; Tárraga López, P.J.; Gallegos, I.R.; Arroyo, M.M.; Manent, J.I.R.; González, Á.A.L. Impact of adherence to the Mediterranean diet on health-related quality of life in poorly controlled diabetics. Acad. J. Health Sci. 2024, 39, 103–112. [Google Scholar] [CrossRef]
- Benavides, F.G.; Delclós, J.; Serra, C. Estado del bienestar y salud pública, una relación que debe ser actualizada. Gac. Sanit. 2018, 32, 193–197. (In Spanish) [Google Scholar] [CrossRef] [PubMed]
- Mestre Font, M.; Busquets-Cortés, C.; Ramírez-Manent, J.I.; Vallejos, D.; Sastre Alzamora, T.; López-González, A.A. Influence of sociodemographic variables and healthy habits on the values of cardiometabolic risk scales in 386924 spanish workers. Acad. J. Health Sci. 2024, 39, 112–121. [Google Scholar] [CrossRef]
- Meh, K.; Jurak, G.; Sorić, M.; Rocha, P.; Sember, V. Validity and Reliability of IPAQ-SF and GPAQ for Assessing Sedentary Behaviour in Adults in the European Union: A Systematic Review and Meta-Analysis. Int. J. Envrion. Res. Public Health 2021, 18, 4602. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Murtagh, E.M.; Murphy, M.H.; Milton, K.; Roberts, N.W.; O’Gorman, C.S.; Foster, C. Interventions outside the workplace for reducing sedentary behaviour in adults under 60 years of age. Cochrane Database Syst. Rev. 2020, 7, CD012554. [Google Scholar] [CrossRef] [PubMed]
- Sember, V.; Meh, K.; Sorić, M.; Starc, G.; Rocha, P.; Jurak, G. Validity and Reliability of International Physical Activity Questionnaires for Adults across EU Countries: Systematic Review and Meta Analysis. Int. J. Envrion. Res. Public Health 2020, 17, 7161. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mestre-Font, M.; Busquets-Cortés, C.; Ramírez-Manent, J.I.; Tomás-Gil, P.; Paublini, H.; López-González, A.A. Influence of sociodemographic variables and healthy habits on the values of overweight and obesity scales in 386,924 Spanish workers. Acad. J. Health Sci. 2024, 39, 27–35. [Google Scholar] [CrossRef]
- Schröder, H.; Zomeño, M.D.; Martínez-González, M.A.; Salas-Salvadó, J.; Corella, D.; Vioque, J.; Romaguera, D.; Martínez, J.A.; Tinahones, F.J.; Miranda, J.L.; et al. Validity of the energy-restricted Mediterranean Diet Adherence Screener. Clin. Nutr. 2021, 40, 4971–4979. [Google Scholar] [CrossRef] [PubMed]
- Lindström, J.; Tuomilehto, J. The diabetes risk score: A practical tool to predict type 2 diabetes risk. Diabetes Care 2003, 26, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Saaristo, T.; Peltonen, M.; Lindström, J.; Saarikoski, L.; Sundvall, J.; Eriksson, J.G.; Tuomilehto, J. Cross-sectional evaluation of the Finnish Diabetes Risk Score: A tool to identify undiagnosed type 2 diabetes, abnormal glucose tolerance and metabolic syndrome. Diabetes Vasc. Dis. Res. 2005, 2, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Hippisley-Cox, J.; Coupland, C.; Robson, J.; Sheikh, A.; Brindle, P. Predicting risk of type 2 diabetes in England and Wales: Prospective derivation and validation of QDScore. BMJ. 2009, 338, b880. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.J.; Coons, M.; Haensel, H.; Vallis, M.; Yale, J.F. Diabetes Canada Position Statement: Screening for type 1 and type 2 diabetes. Can. J. Diabetes 2018, 42 (Suppl. 1), S17–S23. [Google Scholar] [CrossRef]
- Bird, M.; Cerutti, S.; Jiang, Y.; Srugo, S.A.; de Groh, M. Implementation of the CANRISK Tool: A Qualitative Exploration Among Allied Health Professionals in Canada. Can. J. Diabetes 2022, 46, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Latchan, Z.; Seereeram, R.; Kamalodeen, A.; Sanchez, S.; Deonarine, U.; Sinanan, R.; Mungrue, K. TRAQ-D (Trinidad Risk Assessment Questionnaire for Type 2 Diabetes Mellitus): A cheap, reliable, non-invasive screening tool for diabetes. Br. J. Diabetes Vasc. Dis. 2010, 10, 187. [Google Scholar] [CrossRef]
- Trudel, X.; Brisson, C.; Talbot, D.; Gilbert-Ouimet, M.; Milot, A. Long Working Hours and Risk of Recurrent Coronary Events. J. Am. Coll. Cardiol. 2021, 77, 1616–1625. [Google Scholar] [CrossRef] [PubMed]
- Camero, A.; Muriel, J.L.; Morell, N.; Lurquin, M.; López-González, A.A.; Serra-Capó, A.; Villaroel, G. Risk of insulin resistance appliying 3 different scales in 703,472 spanish workers: Associated variables. J. Cin. TrialsExp Investig. 2024, 3, 125–135. [Google Scholar]
- Ismail, L.; Materwala, H.; Al Kaabi, J. Association of risk factors with type 2 diabetes: A systematic review. Comput. Struct. Biotechnol. J. 2021, 19, 1759–1785. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gan, Y.; Yang, C.; Tong, X.; Sun, H.; Cong, Y.; Yin, X.; Li, L.; Cao, S.; Dong, X.; Gong, Y.; et al. Shift work and diabetes mellitus: A meta-analysis of observational studies. Occup. Environ. Med. 2015, 72, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Martín-Peláez, S.; Fito, M.; Castaner, O. Mediterranean Diet Effects on Type 2 Diabetes Prevention, Disease Progression, and Related Mechanisms. A Review. Nutrients 2020, 12, 2236. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Touitou, Y.; Reinberg, A.; Touitou, D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption. Life Sci. 2017, 173, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, P.; Weiskirchen, R. The Role of Obesity in Type 2 Diabetes Mellitus-An Overview. Int. J. Mol. Sci. 2024, 25, 1882. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xie, F.; Hu, K.; Fu, R.; Zhang, Y.; Xiao, K.; Tu, J. Association between night shift work and the risk of type 2 diabetes mellitus: A cohort-based meta-analysis. BMC Endocr. Disord. 2024, 24, 268. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, M.; Li, B.; Xia, J.; Yin, C.; Yang, Y. Causal Relationship between Television Viewing Time, Cardiovascular Diseases, and Potential Mechanisms. Arq. Bras. Cardiol. 2024, 121, e20230796, (In Portuguese, English). [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- D’Ettorre, G.; Pellicani, V.; Caroli, A.; Greco, M. Shift work sleep disorder and job stress in shift nurses: Implications for preventive interventions. Med. Lav. 2020, 111, 195–202. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aranceta-Bartrina, J.; Partearroyo, T.; López-Sobaler, A.M.; Ortega, R.M.; Varela-Moreiras, G.; Serra-Majem, L.; Pérez-Rodrigo, C. Updating the Food-Based Dietary Guidelines for the Spanish Population: The Spanish Society of Community Nutrition (SENC) Proposal. Nutrients 2019, 11, 2675. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Magkos, F.; Hjorth, M.F.; Astrup, A. Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2020, 16, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Bonilla-Escobar, B.A.; Borrell, L.N.; Del Cura-González, I.; Sánchez-Perruca, L.; Escortell-Mayor, E.; Franco, M. Type 2 diabetes prevalence among Andean immigrants and natives in a Southern European City. Acta Diabetol. 2020, 57, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Umpierrez, G.E.; Pasquel, F.J. Management of Inpatient Hyperglycemia and Diabetes in Older Adults. Diabetes Care 2017, 40, 509–517. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Allen, L.; Williams, J.; Townsend, N.; Mikkelsen, B.; Roberts, N.; Foster, C.; Wickramasinghe, K. Socioeconomic status and non-communicable disease behavioural risk factors in low-income and lower-middle-income countries: A systematic review. Lancet Glob. Health 2017, 5, e277–e289. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hernández-Teixidó, C.; López-Simarro, F.; Arranz Martínez, E.; Escobar Lavado, F.J.; Miravet Jiménez, S. Vulnerabilidad y determinantes sociales en diabetes. Semergen 2023, 49, 102044. (In Spanish) [Google Scholar] [CrossRef] [PubMed]
- Garcia-Samuelsson, M.; Tarraga-Lopez, P.J.; Lopez-González, A.A.; Busquets-Cortes, C.; Obrador de Hevia, J.; Ramirez-Manent, J.I. Evaluation of Type 2 Diabetes Risk in Individuals With or Without Metabolically Healthy Obesity. Biology 2025, 14, 608. [Google Scholar] [CrossRef] [PubMed]
- Hung, H.H.Y.; Chan, E.Y.Y.; Chow, E.Y.K.; Chung, G.K.K.; Lai, F.T.T.; Yeoh, E.K. Non-skilled occupation as a risk factor of diabetes among working population: A population-based study of community-dwelling adults in Hong Kong. Health Soc. Care Community 2022, 30, e86–e94. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carlsson, S.; Andersson, T.; Talbäck, M.; Feychting, M. Incidence and prevalence of type 2 diabetes by occupation: Results from all Swedish employees. Diabetologia 2020, 63, 95–103. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brand, S.L.; Thompson Coon, J.; Fleming, L.E.; Carroll, L.; Bethel, A.; Wyatt, K. Whole-system approaches to improving the health and wellbeing of healthcare workers: A systematic review. PLoS ONE 2017, 12, e0188418. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Prince, S.A.; Rasmussen, C.L.; Biswas, A.; Holtermann, A.; Aulakh, T.; Merucci, K.; Coenen, P. The effect of leisure time physical activity and sedentary behaviour on the health of workers with different occupational physical activity demands: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mitchell, M.S.; Orstad, S.L.; Biswas, A.; Oh, P.I.; Jay, M.; Pakosh, M.T.; Faulkner, G. Financial incentives for physical activity in adults: Systematic review and meta-analysis. Br. J. Sports Med. 2020, 54, 1259–1268. [Google Scholar] [CrossRef] [PubMed]
- Siguero, M.A.; Maqueda, J.; Marqués, F.; Sagües, M.J.; Solé, M.D. Evaluation of the Effectiveness of Workplace Health Promotion Programs from 2000 to 2020: Literature Review. Open J. Prev. Med. 2021, 11, 113–131. [Google Scholar] [CrossRef]
- Melnyk, B.M.; Kelly, S.A.; Stephens, J.; Dhakal, K.; McGovern, C.; Tucker, S.; Hoying, J.; McRae, K.; Ault, S.; Spurlock, E.; et al. Interventions to Improve Mental Health, Well-Being, Physical Health, and Lifestyle Behaviors in Physicians and Nurses: A Systematic Review. Am. J. Health Promot. 2020, 34, 929–941. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fernández-Figares Vicioso, M.P.; Riutord Sbert, P.; López-González, Á.A.; Ramírez-Manent, J.I.; Del Barrio Fernández, J.L.; Herrero, M.T.V. Risk of Insulin Resistance: Comparison of the Commerce vs. Industry Sector and Associated Variables. Diseases 2025, 13, 150. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cho, S.M.J.; Koyama, S.; Honigberg, M.C.; Surakka, I.; Haidermota, S.; Ganesh, S.; Patel, A.P.; Bhattacharya, R.; Lee, H.; Kim, H.C.; et al. Genetic, sociodemographic, lifestyle, and clinical risk factors of recurrent coronary artery disease events: A population-based cohort study. Eur. Heart J. 2023, 44, 3456–3465. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lam, B.; Catt, M.; Cassidy, S.; Bacardit, J.; Darke, P.; Butterfield, S.; Alshabrawy, O.; Trenell, M.; Missier, P. Using Wearable Activity Trackers to Predict Type 2 Diabetes: Machine Learning-Based Cross-sectional Study of the UK Biobank Accelerometer Cohort. JMIR Diabetes 2021, 6, e23364. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Godevithana, J.; Wijesinghe, C.J.; Wijesinghe, M.S.D. Paper-based and mobile application-based self-monitoring tool for healthy dietary intake, development and applicability: A non-randomized trial. BMC Digit Health 2024, 2, 53. [Google Scholar] [CrossRef]
- Medina, C.; Monge, A.; Denova-Gutiérrez, E.; López-Ridaura, R.; Barquera, S.; Romieu, I.; Lajous, M. Validity and reliability of the International Physical Activity Questionnaire (IPAQ) long-form in a subsample of female Mexican teachers. Salud Publica Mex. 2022, 64, 57–65. [Google Scholar] [CrossRef] [PubMed]
Men | Women | |||||
---|---|---|---|---|---|---|
Commerce n = 18160 | Industry n = 25824 | Commerce n = 9288 | Industry n = 3584 | |||
Mean (SD) | Mean (SD) | p-Value | Mean (SD) | Mean (SD) | p-Value | |
Age (years) | 39.5 (9.8) | 39.4 (10.5) | 0.225 | 35.9 (10.1) | 41.6 (10.5) | <0.001 |
Height (cm) | 175.0 (6.7) | 173.9 (7.0) | <0.001 | 162.0 (6.4) | 160.9 (6.5) | <0.001 |
Weight (cm) | 81.5 (12.5) | 81.3 (14.2) | 0.064 | 65.3 (13.4) | 68.8 (14.0) | <0.001 |
Hip | 87.5 (8.8) | 87.7 (9.0) | 0.121 | 73.7 (7.5) | 75.1 (8.0) | <0.001 |
Cadera (cm) | 100.6 (7.9) | 99.6 (8.4) | <0.001 | 97.0 (8.9) | 98.1 (9.4) | <0.001 |
SBP (mmHg) | 122.6 (14.4) | 124.5 (5.0) | 0.024 | 112.6 (14.2) | 117.9 (16.2) | <0.001 |
DBP (mmHg) | 74.5 (10.2) | 75.6 (10.5) | 0.170 | 68.9 (9.8) | 71.5 (10.7) | <0.001 |
Total Cholesterol (mg/dL) | 193.9 (37.4) | 197.5 (38.6) | <0.001 | 189.4 (35.4) | 201.1 (39.3) | <0.001 |
HDL-cholesterol (mg/dL) | 51.1 (6.7) | 51.4 (7.0) | <0.001 | 54.5 (7.9) | 52.3 (7.5) | <0.001 |
LDL-cholesterol (mg/dL) | 119.4 (37.7) | 121.9 (37.2) | <0.001 | 117.7 (35.6) | 130.6 (38.8) | <0.001 |
Triglycerides (mg/dL) | 119.3 (81.3) | 122.4 (84.6) | <0.001 | 85.4 (37.6) | 90.8 (45.8) | <0.001 |
Glucose (mg/dL) | 86.3 (11.9) | 88.7 (12.9) | <0.001 | 84.2 (10.6) | 84.3 (11.9) | 0.210 |
(%) | (%) | p-value | (%) | (%) | p-value | |
18–29 years | 17.7 | 20.3 | <0.001 | 32.1 | 16.5 | <0.001 |
30–39 years | 31.8 | 31.7 | 32.6 | 26.9 | ||
40–49 years | 33.6 | 28.5 | 23.6 | 31.0 | ||
50–59 years | 14.7 | 16.7 | 10.3 | 23.4 | ||
60–69 years | 2.2 | 2.8 | 1.4 | 2.2 | ||
Elementary | 52.4 | 36.7 | <0.001 | 90.1 | 83.7 | <0.001 |
High school | 47.6 | 63.3 | 9.9 | 16.3 | ||
Non Physical activity | 51.5 | 55.4 | <0.001 | 42.7 | 59.4 | <0.001 |
Yes Physical activity | 48.5 | 44.6 | 57.7 | 40.6 | ||
Non Mediterranean diet | 56.1 | 59.8 | <0.001 | 44.4 | 59.8 | <0.001 |
Yes Mediterranean diet | 43.9 | 40.2 | 55.6 | 40.2 | ||
Non smokers | 70.5 | 63.0 | <0.001 | 68.0 | 67.2 | 0.181 |
Smokers | 29.5 | 37.0 | 32.0 | 32.8 |
QD-Score RR * | Finrisk * | Canrisk * | TRAQ-D * | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Commerce | Industry | Commerce | Industry | Commerce | Industry | Commerce | Industry | |||||||||
Men | n | Mean (SD) | n | Mean (SD) | n | Mean (SD) | n | Mean (SD) | n | Mean (SD) | n | Mean (SD) | n | Mean (SD) | n | Mean (SD) |
18–29 years | 3224 | 0.8 (1.2) | 5248 | 1.0 (1.4) | 3224 | 2.2 (3.1) | 5248 | 2.2 (3.1) | 3224 | 14.6 (5.8) | 5248 | 15.1 (5.7) | 3224 | 3.4 (2.1) | 5248 | 3.6 (2.1) |
30–39 years | 5768 | 1.0 (1.2) | 8184 | 1.3 (1.7) | 5768 | 3.1 (3.5) | 8184 | 3.9 (3.9) | 5768 | 15.0 (6.6) | 8184 | 17.8 (7.0) | 5768 | 4.6 (2.4) | 8184 | 5.1 (2.6) |
40–49 years | 6104 | 1.2 (1.2) | 7360 | 1.5 (1.6) | 6104 | 5.1 (3.8) | 7360 | 6.1 (4.3) | 6104 | 19.7 (7.9) | 7360 | 23.3 (8.8) | 6104 | 5.8 (2.4) | 7360 | 6.2 (2.9) |
50–59 years | 2664 | 1.5 (1.2) | 4312 | 1.6 (1.2) | 2664 | 7.9 (4.2) | 4312 | 8.1 (4.3) | 2664 | 28.4 (8.8) | 4312 | 30.1 (8.2) | 2664 | 7.8 (3.2) | 4312 | 8.1 (3.0) |
60–69 years | 400 | 1.6 (1.1) | 720 | 1.7 (1.3) | 400 | 9.5 (3.8) | 720 | 9.6 (4.7) | 400 | 35.2 (7.2) | 720 | 36.0 (8.8) | 400 | 10.6 (2.9) | 720 | 10.7 (3.0) |
Elementary | 9512 | 1.2 (1.3) | 9480 | 1.3 (1.5) | 9512 | 4.6 (4.1) | 9480 | 5.1 (4.5) | 9512 | 20.2 (8.8) | 9480 | 22.0 (9.5) | 9512 | 5.5 (2.9) | 9480 | 5.9 (3.1) |
High school | 8648 | 1.1 (1.1) | 16,344 | 1.4 (1.6) | 8648 | 4.4 (4.2) | 16,344 | 5.0 (4.4) | 8648 | 17.6 (9.0) | 16,344 | 21.1 (9.4) | 8648 | 5.3 (3.0) | 16,344 | 5.6 (3.1) |
Non PhA | 9344 | 1.7 (1.4) | 14,304 | 1.9 (1.8) | 9344 | 7.5 (3.6) | 14,304 | 7.9 (3.8) | 9344 | 24.2 (8.5) | 14,304 | 26.4 (8.9) | 9344 | 6.6 (3.1) | 14,304 | 6.9 (3.2) |
Yes PhA | 8816 | 0.5 (0.4) | 11,520 | 0.6 (0.3) | 8816 | 1.3 (1.7) | 11,520 | 1.5 (2.1) | 8816 | 13.3 (5.3) | 11,520 | 15.1 (5.7) | 8816 | 4.1 (2.1) | 11,520 | 4.3 (2.4) |
Non MD | 10,184 | 1.6 (1.4) | 15,440 | 1.8 (1.8) | 10,184 | 7.1 (3.8) | 15,440 | 7.5 (4.0) | 10,184 | 23.5 (8.7) | 15,440 | 25.8 (8.9) | 10,184 | 6.4 (3.1) | 15,440 | 6.7 (3.2) |
Yes MD | 7976 | 0.5 (0.5) | 10,384 | 0.6 (0.3) | 7976 | 1.2 (1.7) | 10,384 | 1.4 (2.1) | 7976 | 13.1 (5.2) | 10,384 | 14.8 (5.7) | 7976 | 4.2 (2.1) | 10,384 | 4.3 (2.4) |
Non smokers | 12,808 | 1.0 (1.0) | 16,280 | 1.3 (1.5) | 12,808 | 4.4 (4.1) | 16,280 | 5.2 (4.5) | 12,808 | 18.7 (9.0) | 16,280 | 21.8 (9.6) | 12,808 | 4.6 (2.5) | 16,280 | 5.0 (3.0) |
Smokers | 5352 | 1.3 (1.5) | 9544 | 1.4 (1.6) | 5352 | 4.6 (4.3) | 9544 | 4.8 (4.4) | 5352 | 19.4 (8.9) | 9544 | 20.6 (9.2) | 5352 | 7.1 (3.0) | 9544 | 7.2 (3.0) |
Women | n | Mean (SD) | n | Mean (SD) | n | Mean (SD) | n | Mean (SD) | n | Mean (SD) | n | Mean (SD) | n | Mean (SD) | n | Mean (SD) |
18–29 years | 2984 | 0.9 (1.2) | 592 | 1.2 (3.8) | 2984 | 2.0 (3.1) | 592 | 2.3 (3.4) | 2984 | 8.3 (5.4) | 592 | 8.5 (5.8) | 2984 | 1.2 (2.2) | 592 | 1.9 (2.7) |
30–39 years | 3024 | 1.2 (2.2) | 960 | 1.4 (2.9) | 3024 | 2.5 (3.4) | 960 | 3.9 (4.1) | 3024 | 9.1 (6.2) | 960 | 11.2 (7.2) | 3024 | 2.1 (2.5) | 960 | 3.0 (3.2) |
40–49 years | 2192 | 1.4 (1.8) | 1112 | 1.6 (1.9) | 2192 | 4.3 (4.0) | 1112 | 5.6 (4.3) | 2192 | 13.8 (7.7) | 1112 | 17.0 (8.7) | 2192 | 3.6 (3.1) | 1112 | 3.9 (2.8) |
50–59 years | 960 | 1.6 (1.7) | 840 | 1.7 (1.3) | 960 | 7.6 (4.8) | 840 | 7.9 (3.9) | 960 | 23.1 (9.7) | 840 | 24.1 (8.8) | 960 | 5.4 (3.7) | 840 | 5.6 (3.2) |
60–69 years | 128 | 1.7 (1.8) | 80 | 1.8 (1.2) | 128 | 7.8 (2.8) | 80 | 9.4 (4.0) | 128 | 25.9 (5.6) | 80 | 31.1 (7.0) | 128 | 7.1 (2.4) | 80 | 8.6 (5.0) |
Elementary | 8368 | 1.4 (2.6) | 3000 | 1.7 (2.1) | 8368 | 3.4 (4.1) | 3000 | 5.5 (4.5) | 8368 | 11.9 (8.3) | 3000 | 17.2 (10.0) | 8368 | 2.6 (3.1) | 3000 | 4.0 (3.4) |
High school | 920 | 1.1 (1.7) | 584 | 1.4 (1.8) | 920 | 3.2 (3.6) | 584 | 3.8 (4.0) | 920 | 9.7 (8.2) | 584 | 9.9 (6.7) | 920 | 2.4 (2.6) | 584 | 2.9 (3.1) |
Non PhA | 3928 | 2.4 (3.5) | 2128 | 2.5 (2.4) | 3928 | 7.0 (3.8) | 2128 | 7.9 (3.7) | 3928 | 18.0 (8.6) | 2128 | 21.1 (9.2) | 3928 | 3.9 (3.8) | 2128 | 4.9 (3.8) |
Yes PhA | 5360 | 0.5 (0.2) | 1456 | 0.6 (0.3) | 5360 | 0.8 (1.4) | 1456 | 1.3 (1.5) | 5360 | 7.0 (3.8) | 1456 | 8.6 (4.9) | 5360 | 1.7 (1.9) | 1456 | 2.2 (2.0) |
Non MD | 4120 | 2.3 (3.4) | 2144 | 2.4 (2.4) | 4120 | 6.6 (4.0) | 2144 | 7.8 (3.9) | 4120 | 17.4 (8.7) | 2144 | 20.9 (9.3) | 4120 | 3.8 (3.7) | 2144 | 4.8 (3.7) |
Yes MD | 5168 | 0.5 (0.3) | 1440 | 0.6 (0.3) | 5168 | 0.9 (1.6) | 1440 | 1.4 (1.7) | 5168 | 7.1 (4.0) | 1440 | 8.7 (5.0) | 5168 | 1.7 (2.0) | 1440 | 2.2 (2.0) |
Non smokers | 6320 | 1.2 (1.8) | 2408 | 1.7 (2.0) | 6320 | 3.1 (3.8) | 2408 | 3.9 (3.7) | 6320 | 10.7 (7.2) | 2408 | 12.7 (7.7) | 6320 | 1.9 (2.8) | 2408 | 3.4 (3.6) |
Smokersc | 2968 | 1.5 (3.5) | 1176 | 1.8 (2.2) | 2968 | 3.6 (4.1) | 1176 | 5.9 (4.6) | 2968 | 12.1 (8.8) | 1176 | 17.7 (10.4) | 2968 | 4.1 (3.1) | 1176 | 4.7 (2.7) |
Qd-Score RR > 3 * | Finrisk High * | Canrisk High * | Traq-D High * | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Commerce | Industry | Commerce | Industry | Commerce | Industry | Commerce | Industry | |||||||||
Men | n | % | n | % | n | % | n | % | n | % | n | % | n | % | n | % |
18–29 years | 3224 | 1.9 | 5248 | 6.8 | 3224 | 0.5 | 5248 | 0.6 | 3224 | 1.0 | 5248 | 1.2 | 3224 | 0.7 | 5248 | 0.9 |
30–39 years | 5768 | 6.0 | 8184 | 9.6 | 5768 | 1.1 | 8184 | 1.4 | 5768 | 2.1 | 8184 | 3.3 | 5768 | 1.1 | 8184 | 1.3 |
40–49 years | 6104 | 6.6 | 7360 | 11.3 | 6104 | 1.4 | 7360 | 4.1 | 6104 | 7.2 | 7360 | 12.8 | 6104 | 1.5 | 7360 | 1.6 |
50–59 years | 2664 | 12.3 | 4312 | 12.7 | 2664 | 4.1 | 4312 | 6.7 | 2664 | 27.9 | 4312 | 31.2 | 2664 | 1.7 | 4312 | 2.0 |
60–69 years | 400 | 12.9 | 720 | 13.4 | 400 | 12.0 | 720 | 12.4 | 400 | 62.0 | 720 | 63.9 | 400 | 1.8 | 720 | 2.2 |
Elementary | 9512 | 7.3 | 9480 | 8.4 | 9512 | 2.5 | 9480 | 3.2 | 9512 | 9.6 | 9480 | 12.2 | 9512 | 2.2 | 9480 | 2.3 |
High school | 8648 | 6.4 | 16,344 | 10.8 | 8648 | 1.8 | 16,344 | 3.0 | 8648 | 7.8 | 16,344 | 11.3 | 8648 | 1.8 | 16,344 | 1.9 |
Non PhA | 9344 | 12.6 | 14,304 | 17.1 | 9344 | 4.2 | 14,304 | 5.7 | 9344 | 16.2 | 14,304 | 20.3 | 9344 | 3.9 | 14,304 | 4.1 |
Yes PhA | 8816 | 1.3 | 11,520 | 1.9 | 8816 | 0.8 | 11,520 | 1.2 | 8816 | 1.2 | 11,520 | 1.5 | 8816 | 0.8 | 11,520 | 0.9 |
Non MD | 10,184 | 12.2 | 15,440 | 16.4 | 10,184 | 4.0 | 15,440 | 5.3 | 10,184 | 15.5 | 15,440 | 18.7 | 10,184 | 3.7 | 15,440 | 3.8 |
Yes MD | 7976 | 2.2 | 10,384 | 2.7 | 7976 | 1.1 | 10,384 | 1.5 | 7976 | 1.9 | 10,384 | 2.2 | 7976 | 1.1 | 10,384 | 1.2 |
Non smokers | 12,808 | 5.6 | 16,280 | 10.0 | 12,808 | 2.1 | 16,280 | 3.3 | 12,808 | 8.5 | 16,280 | 10.5 | 12,808 | 1.9 | 16,280 | 2.1 |
Smokers | 5352 | 9.9 | 9544 | 11.2 | 5352 | 2.4 | 9544 | 3.5 | 5352 | 8.8 | 9544 | 12.6 | 5352 | 2.4 | 9544 | 2.7 |
Women | n | % | n | % | n | % | n | % | n | % | n | % | n | % | n | % |
18–29 years | 2984 | 4.1 | 592 | 5.8 | 2984 | 0.5 | 592 | 0.7 | 2984 | 5.4 | 592 | 5.9 | 2984 | 0.6 | 592 | 0.9 |
30–39 years | 3024 | 9.0 | 960 | 11.8 | 3024 | 1.1 | 960 | 2.1 | 3024 | 9.3 | 960 | 15.8 | 3024 | 1.2 | 960 | 1.6 |
40–49 years | 2192 | 10.2 | 1112 | 14.4 | 2192 | 5.8 | 1112 | 7.5 | 2192 | 17.5 | 1112 | 26.6 | 2192 | 1.8 | 1112 | 2.2 |
50–59 years | 960 | 13.6 | 840 | 17.4 | 960 | 12.5 | 840 | 16.2 | 960 | 51.6 | 840 | 58.1 | 960 | 2.1 | 840 | 2.5 |
60–69 years | 128 | 15.9 | 80 | 20.2 | 128 | 15.7 | 80 | 17.9 | 128 | 58.8 | 80 | 61.3 | 128 | 2.9 | 80 | 3.3 |
Elementary | 8368 | 10.8 | 3000 | 15.5 | 8368 | 6.6 | 3000 | 7.2 | 8368 | 15.9 | 3000 | 33.1 | 8368 | 2.5 | 3000 | 2.7 |
High school | 920 | 7.1 | 584 | 13.8 | 920 | 4.9 | 584 | 6.1 | 920 | 13.0 | 584 | 21.2 | 920 | 1.6 | 584 | 1.9 |
Non PhA | 3928 | 20.7 | 2128 | 24.2 | 3928 | 6.8 | 2128 | 7.2 | 3928 | 35.4 | 2128 | 47.7 | 3928 | 3.0 | 2128 | 3.2 |
Yes PhA | 5360 | 3.9 | 1456 | 4.4 | 5360 | 0.8 | 1456 | 1.1 | 5360 | 2.9 | 1456 | 3.6 | 5360 | 0.2 | 1456 | 0.3 |
Non MD | 4120 | 19.8 | 2144 | 22.1 | 4120 | 6.5 | 2144 | 6.9 | 4120 | 33.3 | 2144 | 42.8 | 4120 | 2.9 | 2144 | 3.0 |
Yes MD | 5168 | 5.1 | 1440 | 6.5 | 5168 | 1.3 | 1440 | 1.6 | 5168 | 4.8 | 1440 | 6.2 | 5168 | 0.4 | 1440 | 0.5 |
Non smokers | 6320 | 10.0 | 2408 | 13.2 | 6320 | 4.8 | 2408 | 5.2 | 6320 | 10.9 | 2408 | 13.7 | 6320 | 1.9 | 2408 | 2.2 |
Smokers | 2968 | 11.2 | 1176 | 14.8 | 2968 | 5.9 | 1176 | 6.6 | 2968 | 17.8 | 1176 | 28.9 | 2968 | 2.1 | 1176 | 2.5 |
QD-Score RR > 3 * | Finrisk High * | Canrisk High * | TRAQ-D High * | |
---|---|---|---|---|
OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | |
Women | 1 | 1 | 1 | 1 |
Men | 0.48 (0.44–0.52) | 1.08 (1.05–1.11) | 6.31 (5.12–7.51) | 1.29 (1.22–1.36) |
18–29 years | 1 | 1 | 1 | 1 |
30–39 years | 1.20 (1.16–1.24) | 1.59 (1.50–1.69) | 1.25 (1.20–1.30) | 1.39 (1.29–1.49) |
40–49 years | 1.26 (1.21–1.31) | 3.41 (2.90–3.91) | 2.18 (1.85–2.31) | 2.30 (2.01–2.61) |
50–59 years | 1.40 (1.33–1.47) | 6.16 (5.01–7.32) | 4.48 (3.58–5.59) | 4.75 (3.96–5.55) |
60–69 years | 1.56 (1.48–1.65) | 10.05 (8.65–11.46) | 7.94 (6.50–9.28) | 7.33 (6.12–8.43) |
Elementary | 1 | 1 | 1 | 1 |
High school | 1.39 (1.35–1.44) | 1.20 (1.15–1.25) | 1.82 (1.72–1.93) | 1.18 (1.14–1.22) |
Commerce | 1 | 1 | 1 | 1 |
Industry | 1.27 (1.22–1.32) | 1.23 (1.18–1.24) | 1.98 (1.88–2.09) | 1.43 (1.37–1.50) |
Yes physical activity | 1 | 1 | 1 | 1 |
Non physical activity | 12.49 (11.19–13.80) | 8.88 (7.87–9.90) | 6.91 (6.27–7.55) | 5.52 (4.86–6.18) |
Yes mediterranean diet | 1 | 1 | 1 | 1 |
Non mediterranean diet | 6.62 (5.80–7.45) | 4.37 (3.56–5.18) | 4.24 (3.82–4.66) | 2.82 (2.30–3.35) |
Non smokers | 1 | 1 | 1 | 1 |
Smokers | 1.17 (1.13–1.21) | 1.09 (1.06–1.13) | 1.23 (1.18–1.29) | 1.38 (1.29–1.48) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Figares Vicioso, M.P.; Riutord Sbert, P.; Ramírez-Manent, J.I.; López-González, Á.A.; del Barrio Fernández, J.L.; Vicente Herrero, M.T. Association Between Sociodemographic and Lifestyle Factors and Type 2 Diabetes Risk Scores in a Large Working Population: A Comparative Study Between the Commerce and Industry Sectors. Nutrients 2025, 17, 2420. https://doi.org/10.3390/nu17152420
Fernández-Figares Vicioso MP, Riutord Sbert P, Ramírez-Manent JI, López-González ÁA, del Barrio Fernández JL, Vicente Herrero MT. Association Between Sociodemographic and Lifestyle Factors and Type 2 Diabetes Risk Scores in a Large Working Population: A Comparative Study Between the Commerce and Industry Sectors. Nutrients. 2025; 17(15):2420. https://doi.org/10.3390/nu17152420
Chicago/Turabian StyleFernández-Figares Vicioso, María Pilar, Pere Riutord Sbert, José Ignacio Ramírez-Manent, Ángel Arturo López-González, José Luis del Barrio Fernández, and María Teófila Vicente Herrero. 2025. "Association Between Sociodemographic and Lifestyle Factors and Type 2 Diabetes Risk Scores in a Large Working Population: A Comparative Study Between the Commerce and Industry Sectors" Nutrients 17, no. 15: 2420. https://doi.org/10.3390/nu17152420
APA StyleFernández-Figares Vicioso, M. P., Riutord Sbert, P., Ramírez-Manent, J. I., López-González, Á. A., del Barrio Fernández, J. L., & Vicente Herrero, M. T. (2025). Association Between Sociodemographic and Lifestyle Factors and Type 2 Diabetes Risk Scores in a Large Working Population: A Comparative Study Between the Commerce and Industry Sectors. Nutrients, 17(15), 2420. https://doi.org/10.3390/nu17152420