The Gut Mycobiome and Nutritional Status in Paediatric Phenylketonuria: A Cross-Sectional Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Cohort Design
2.2. Stool Sample Collection and Preservation
2.3. DNA Extraction, Library Preparation, and ITS Sequencing
2.4. Bioinformatic Pipeline and Taxonomic Assignment
2.5. Bioinformatics and Statistical Analysis of Mycobiome Composition
2.6. Assessment of Nutritional Status and Dietary Intake
2.7. Statistical Analysis of Nutritional Data
3. Results
3.1. Nutritional Assessment
3.2. Alpha and Beta Diversity of the Gut Mycobiome in PKU and Control Groups
3.3. Gut Mycobiome Profiling in PKU and Healthy Children Across Age Groups
3.4. Core Gut Mycobiota Structure and Age-Dependent Shifts in Children with Phenylketonuria and Healthy Controls
3.5. Fungal Biomarkers Associated with PKU and Control Groups: A LEfSe Analysis
3.6. Nutritional Correlates of Gut Mycobiome Composition
4. Discussion
4.1. Nutritional Implications in PKU Management
4.2. Comparative Multivariate Analysis of Fungal Communities in PKU and Controls
4.3. Fungal Community Shifts in PKU Children According to Diet and Age
4.4. Differential Abundance of Taxa in Healthy Children and PKU
4.5. LEfSe-Based Identification of Differentially Abundant Fungal Taxa in PKU and Healthy Controls
4.6. Gut Fungal Dysbiosis in PKU: Biomarkers, Clinical Implications, and Therapeutic Perspectives
4.7. Study Limitations
4.8. Future Perspectives and Methodological Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffmann, C.; Dollive, S.; Grunberg, S.; Chen, J.; Li, H.; Wu, G.D.; Lewis, J.D.; Bushman, F.D. Archaea and Fungi of the Human Gut Microbiome: Correlations with Diet and Bacterial Residents. PLoS ONE 2013, 8, e66019. [Google Scholar] [CrossRef] [PubMed]
- Seed, P.C. The Human Mycobiome. Cold Spring Harb. Perspect. Med. 2015, 5, a019810. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, X.; Yu, J. Gut Mycobiome in Metabolic Diseases: Mechanisms and Clinical Implication. Biomed. J. 2023, 47, 100625. [Google Scholar] [CrossRef] [PubMed]
- Van Syoc, E.; Nixon, M.P.; Silverman, J.D.; Luo, Y.; Gonzalez, F.J.; Elbere, I.; Klovins, J.; Patterson, A.D.; Rogers, C.J.; Ganda, E. Changes in the Type 2 Diabetes Gut Mycobiome Associate with Metformin Treatment across Populations. mBio 2024, 15, e00169-24. [Google Scholar] [CrossRef] [PubMed]
- Cabalska, B. Wybrane Choroby Metaboliczne u Dzieci, 1st ed.; Cabalska, B., Ed.; Wydawn. Lekarskie PZWL: Warszawa, Poland, 2002; ISBN 9788320026450. [Google Scholar]
- Montanari, C.; Ceccarani, C.; Corsello, A.; Zuvadelli, J.; Ottaviano, E.; Dei Cas, M.; Banderali, G.; Zuccotti, G.; Borghi, E.; Verduci, E. Glycomacropeptide Safety and Its Effect on Gut Microbiota in Patients with Phenylketonuria: A Pilot Study. Nutrients 2022, 14, 1883. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.H.; Rohr, F.; Frazier, D.; Cunningham, A.; Mofidi, S.; Ogata, B.; Splett, P.L.; Moseley, K.; Huntington, K.; Acosta, P.B.; et al. Recommendations for the Nutrition Management of Phenylalanine Hydroxylase Deficiency. Genet. Med. 2014, 16, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Parolisi, S.; Montanari, C.; Borghi, E.; Cazzorla, C.; Zuvadelli, J.; Tosi, M.; Barone, R.; Bensi, G.; Bonfanti, C.; Dionisi Vici, C.; et al. Possible Role of Tryptophan Metabolism along the Microbiota-Gut-Brain Axis on Cognitive & Behavioral Aspects in Phenylketonuria. Pharmacol. Res. 2023, 197, 106952. [Google Scholar] [CrossRef] [PubMed]
- Afzaal, M.; Saeed, F.; Shah, Y.A.; Hussain, M.; Rabail, R.; Socol, C.T.; Hassoun, A.; Pateiro, M.; Lorenzo, J.M.; Rusu, A.V.; et al. Human Gut Microbiota in Health and Disease: Unveiling the Relationship. Front. Microbiol. 2022, 13, 999001. [Google Scholar] [CrossRef] [PubMed]
- Hadrich, I.; Turki, M.; Chaari, I.; Abdelmoula, B.; Gargouri, R.; Khemakhem, N.; Elatoui, D.; Abid, F.; Kammoun, S.; Rekik, M.; et al. Gut Mycobiome and Neuropsychiatric Disorders: Insights and Therapeutic Potential. Front. Cell. Neurosci. 2025, 18, 1495224. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, K.; Zeng, Y.; Luo, Y.; Peng, J.; Zhang, J.; Kuang, T.; Fan, G. Gut Mycobiome and Metabolic Diseases: The Known, the Unknown, and the Future. Pharmacol. Res. 2023, 193, 106807. [Google Scholar] [CrossRef] [PubMed]
- Lamendella, R.; Wright, J.R.; Hackman, J.; McLimans, C.; Toole, D.R.; Bernard Rubio, W.; Drucker, R.; Wong, H.T.; Sabey, K.; Hegarty, J.P.; et al. Antibiotic Treatments for Clostridium Difficile Infection Are Associated with Distinct Bacterial and Fungal Community Structures. mSphere 2018, 3, e00572-17. [Google Scholar] [CrossRef] [PubMed]
- Vujkovic-Cvijin, I.; Sklar, J.; Jiang, L.; Natarajan, L.; Knight, R.; Belkaid, Y. Host Variables Confound Gut Microbiota Studies of Human Disease. Nature 2020, 587, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Jeżewska-Zychowicz, M.; Gawęcki, J.; Wądołowska, L.; Czarnocińska, J.; Galiński, G.; Kołłajtis-Dołowy, A.; Roszkowski, W.; Wawrzyniak, A.; Przybyłowicz, K.; Krusińska, B.; et al. Kwestionariusz do Badania Poglądów i Zwyczajów Żywieniowych dla Osób w Wieku od 16 do 65 Lat, Wersja 1.1-Kwestionariusz Administrowany Przez Ankietera-Badacza. Available online: http://www.medprew.cm-uj.krakow.pl/doku/kwestionariusz_kompan2016.pdf (accessed on 20 June 2021).
- Deshpande, V.; Wang, Q.; Greenfield, P.; Charleston, M.; Porras-Alfaro, A.; Kuske, C.R.; Cole, J.R.; Midgley, D.J.; Tran-Dinh, N. Fungal Identification Using a Bayesian Classifier and the Warcup Training Set of Internal Transcribed Spacer Sequences. Mycologia 2016, 108, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Abarenkov, K.; Henrik Nilsson, R.; Larsson, K.-H.; Taylor, A.F.; May, T.W.; Guldberg Frøslev, T.; Pawlowska, J.; Lindahl, B.; Põldmaa, K.; Truong, C.; et al. The UNITE Database for Molecular Identification and Taxonomic Communication of Fungi and Other Eukaryotes: Sequences, Taxa and Classifications Reconsidered. Nucleic Acids Res. 2023, 52, D791–D797. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing|BibSonomy; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Hadley, W. Ggplot2: Elegant Graphics for Data Analysis. J. R. Stat. Soc. Ser. A Stat. Soc. 2016, 174, 245–246. [Google Scholar]
- Kolde, R. CRAN: Package Pheatmap. Available online: https://cran.r-project.org/web/packages/pheatmap/index.html (accessed on 30 April 2025).
- Xu, S.; Zhan, L.; Tang, W.; Wang, Q.; Dai, Z.; Zhou, L.; Feng, T.; Chen, M.; Wu, T.; Hu, E.; et al. MicrobiotaProcess: A Comprehensive R Package for Deep Mining Microbiome. Innovation 2023, 4, 100388. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Community Ecology Package, Version 2.7-1; CRAN Team: Vienna, Austria, 2025. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 10 June 2025).
- Kassambara, A. R Package Ggpubr, Version 0.6.0; “ggplot2” Based Publication Ready Plots; CRAN Team: Vienna, Austria, 2023. [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic Biomarker Discovery and Explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed]
- Lahti, L.; Shetty, S. Microbiome R Package; CRAN Team: Vienna, Austria, 2019; Available online: https://github.com/microbiome/microbiome (accessed on 10 June 2025).
- Lu, Y.; Zhou, G.; Ewald, J.; Pang, Z.; Shiri, T.; Xia, J. MicrobiomeAnalyst 2.0: Comprehensive Statistical, Functional and Integrative Analysis of Microbiome Data. Nucleic Acids Res. 2023, 51, W310–W318. [Google Scholar] [CrossRef] [PubMed]
- Kułaga, Z.; Różdżyńska-Świątkowska, A.; Grajda, A.; Gurzkowska, B.; Wojtyło, M.; Góźdź, M.; Świąder-Leśniak, A.; Litwin, M. Siatki Centylowe dla Oceny Wzrastania i Stanu Odżywienia Polskich Dzieci i Młodzieży od Urodzenia do 18 Roku Życia. Available online: https://www.standardy.pl/artykuly/id/804 (accessed on 6 June 2025).
- Kunachowicz, H.; Przygoda, B.; Nadolna, I.; Iwanow, K. Tabele Składu i Wartości Odżywczej Żywności, IV; National Institute of Public Health-National Research Institute: Warsaw, Poland, 2025. [Google Scholar]
- Rychlik, E.; Stoś, K.; Woźniak, A.; Mojska, H. Normy Żywienia Dla Populacji Polski; Rychlik, E., Stoś, K., Woźniak, A., Mojska, H., Eds.; Narodowy Instytut Zdrowia Publicznego-Państwowy Zakład Higieny: Warsaw, Poland, 2017. [Google Scholar]
- Evans, S.; Daly, A.; Chahal, S.; Ashmore, C.; MacDonald, J.; MacDonald, A. The Influence of Parental Food Preference and Neophobia on Children with Phenylketonuria (PKU). Mol. Genet. Metab. Rep. 2018, 14, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.; Daly, A.; Chahal, S.; MacDonald, J.; MacDonald, A. Food Acceptance and Neophobia in Children with Phenylketonuria: A Prospective Controlled Study. J. Hum. Nutr. Diet. 2016, 29, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.A.A.; Ahmed, G.F.; ElKhashab, K.M.A.; Amin, A.A.; Elsebaey, A.F.A.; Abbas, E.S.; Ibrahim, H.A.A.; Ahmed, G.F.; ElKhashab, K.M.A.; Amin, A.A.; et al. Prevalence of Overweight and Obesity in Children Diagnosed with Phenylketonuria. J. Compr. Pediatr. 2023, 14, e136499. [Google Scholar] [CrossRef]
- Lubina, O.; Gailite, L.; Borodulina, J.; Auzenbaha, M. Nutrient Status among Latvian Children with Phenylketonuria. Children 2023, 10, 936. [Google Scholar] [CrossRef] [PubMed]
- Mezzomo, T.R.; Dias, M.R.M.G.; Santos, T.; Pereira, R.M. Dietary Intake in Individuals with Phenylketonuria: An Integrative Review. Nutr. Hosp. 2024, 41, 212–223. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.; Rylance, G.; Asplin, D.; Hall, K.; Harris, G.; Booth, I. Feeding Problems in Young PKU Children. Acta Paediatr. 1994, 407, 73–74. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Álvarez, R.; Kapp, M.; Bélanger-Quintana, A.; Rodríguez-Ruiz, M.M.; Solano-Galvis, C.A.; Campos Soto, A.; Ahring, K.; Waisbren, S.E. Parent Knowledge Regarding Food Selection for Children with PKU: Results of a Survey in the United States. Nutrition 2023, 116, 112201. [Google Scholar] [CrossRef] [PubMed]
- Abdillah, A.; Kodio, A.; Ranque, S. Malian Children’s Core Gut Mycobiome. Microorganisms 2024, 12, 926. [Google Scholar] [CrossRef] [PubMed]
- Strati, F.; Di Paola, M.; Stefanini, I.; Albanese, D.; Rizzetto, L.; Lionetti, P.; Calabrò, A.; Jousson, O.; Donati, C.; Cavalieri, D.; et al. Age and Gender Affect the Composition of Fungal Population of the Human Gastrointestinal Tract. Front. Microbiol. 2016, 7, 1227. [Google Scholar] [CrossRef] [PubMed]
- Burton, M.; Krumbeck, J.A.; Wu, G.; Tang, S.; Prem, A.; Gupta, A.K.; Dawson, T.L. The Adult Microbiome of Healthy and Otitis Patients: Definition of the Core Healthy and Diseased Ear Microbiomes. PLoS ONE 2022, 17, e0262806. [Google Scholar] [CrossRef] [PubMed]
- Buttar, J.; Kon, E.; Lee, A.; Kaur, G.; Lunken, G. Effect of Diet on the Gut Mycobiome and Potential Implications in Inflammatory Bowel Disease. Gut Microbes 2024, 16, 2399360. [Google Scholar] [CrossRef] [PubMed]
- Manimala, M.R.A.; Murugesan, R. In Vitro Antioxidant and Antimicrobial Activity of Carotenoid Pigment Extracted from Sporobolomyces sp. Isolated from Natural Source. J. Appl. Nat. Sci. 2014, 6, 649–653. [Google Scholar] [CrossRef]
- Ostrowska, M.; Nowosad, K.; Mikoluc, B.; Szczerba, H.; Komon-Janczara, E. Changes in the Gut and Oral Microbiome in Children with Phenylketonuria in the Context of Dietary Restrictions—A Preliminary Study. Nutrients 2024, 16, 3915. [Google Scholar] [CrossRef] [PubMed]
- Bassanini, G.; Ceccarani, C.; Borgo, F.; Severgnini, M.; Rovelli, V.; Morace, G.; Verduci, E.; Borghi, E. Phenylketonuria Diet Promotes Shifts in Firmicutes Populations. Front. Cell. Infect. Microbiol. 2019, 9, 101. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro de Oliveira, F.; Mendes, R.H.; Dobbler, P.T.; Mai, V.; Pylro, V.S.; Waugh, S.G.; Vairo, F.; Refosco, L.F.; Roesch, L.F.W.; Schwartz, I.V.D. Phenylketonuria and Gut Microbiota: A Controlled Study Based on Next-Generation Sequencing. PLoS ONE 2016, 11, e0157513. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.; van Wegberg, A.M.J.; Ahring, K.; Beblo, S.; Bélanger-Quintana, A.; Burlina, A.; Campistol, J.; Coşkun, T.; Feillet, F.; Giżewska, M.; et al. PKU Dietary Handbook to Accompany PKU Guidelines. Orphanet J. Rare Dis. 2020, 15, 171. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.J.; Li, S.C.; Yeh, Y.M.; Lee, S.Y.; Kuo, H.C.; Yang, C.Y. Gut Mycobiome Dysbiosis and Its Impact on Intestinal Permeability in Attention-Deficit/Hyperactivity Disorder. J. Child Psychol. Psychiatry 2023, 64, 1280–1291. [Google Scholar] [CrossRef] [PubMed]
- Berger, R.G.; Ersoy, F. Improved Foods Using Enzymes from Basidiomycetes. Processes 2022, 10, 726. [Google Scholar] [CrossRef]
- Meade, S.; Liu Chen Kiow, J.; Massaro, C.; Kaur, G.; Squirell, E.; Bressler, B.; Lunken, G. Gut Microbiome-Associated Predictors as Biomarkers of Response to Advanced Therapies in Inflammatory Bowel Disease: A Systematic Review. Gut Microbes 2023, 15, 2287073. [Google Scholar] [CrossRef] [PubMed]
- Garicano Vilar, E.; López Oliva, S.; Penadés, B.F.; Sánchez Niño, G.M.; Terrén Lora, A.; Sanz Rojo, S.; Mauro Martín, I.S. Mediterranean Diet Effect on the Intestinal Microbiota, Symptoms, and Markers in Patients with Functional Gastrointestinal Disorders. Microorganisms 2024, 12, 1969. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Gou, W.; Ma, Y.; Shuai, M.; Liang, X.; Fu, Y.; Zheng, J.S. The Short-Term Variation of Human Gut Mycobiome in Response to Dietary Intervention of Different Macronutrient Distributions. Nutrients 2023, 15, 2152. [Google Scholar] [CrossRef] [PubMed]
- Mok, N.; Knox, N.C.; Zhu, F.; Arnold, D.L.; Bar-Or, A.; Bernstein, C.N.; Bonner, C.; Forbes, J.D.; Graham, M.; Marrie, R.A.; et al. The Fungal Gut Microbiota in Pediatric-Onset Multiple Sclerosis. Front. Microbiol. 2024, 15, 1258978. [Google Scholar] [CrossRef] [PubMed]
- Raimondi, S.; Amaretti, A.; Gozzoli, C.; Simone, M.; Righini, L.; Candeliere, F.; Brun, P.; Ardizzoni, A.; Colombari, B.; Paulone, S.; et al. Longitudinal Survey of Fungi in the Human Gut: ITS Profiling, Phenotyping, and Colonization. Front. Microbiol. 2019, 10, 1575. [Google Scholar] [CrossRef] [PubMed]
- Spatz, M.; Richard, M.L. Overview of the Potential Role of Malassezia in Gut Health and Disease. Front. Cell. Infect. Microbiol. 2020, 10, 201. [Google Scholar] [CrossRef] [PubMed]
- Saunte, D.M.L.; Gaitanis, G.; Hay, R.J. Malassezia-Associated Skin Diseases, the Use of Diagnostics and Treatment. Front. Cell. Infect. Microbiol. 2020, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Liguori, G.; Lamas, B.; Richard, M.L.; Brandi, G.; da Costa, G.; Hoffmann, T.W.; Di Simone, M.P.; Calabrese, C.; Poggioli, G.; Langella, P.; et al. Fungal Dysbiosis in Mucosa-Associated Microbiota of Crohn’s Disease Patients. J. Crohns Colitis 2016, 10, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Forbes, J.D.; Bernstein, C.N.; Tremlett, H.; Van Domselaar, G.; Knox, N.C. A Fungal World: Could the Gut Mycobiome Be Involved in Neurological Disease? Front. Microbiol. 2019, 9, 3249. [Google Scholar] [CrossRef] [PubMed]
- Witherden, E.A.; Shoaie, S.; Hall, R.A.; Moyes, D.L. The Human Mucosal Mycobiome and Fungal Community Interactions. J. Fungi 2017, 3, 56. [Google Scholar] [CrossRef] [PubMed]
- Sahu, N.; Indic, B.; Wong-Bajracharya, J.; Merényi, Z.; Ke, H.M.; Ahrendt, S.; Monk, T.L.; Kocsubé, S.; Drula, E.; Lipzen, A.; et al. Vertical and Horizontal Gene Transfer Shaped Plant Colonization and Biomass Degradation in the Fungal Genus Armillaria. Nat. Microbiol. 2023, 8, 1668–1681. [Google Scholar] [CrossRef] [PubMed]
- Verburgt, C.; Dunn, K.A.; Bielawski, J.P.; Otley, A.R.; Heyman, M.B.; Sunseri, W.; Shouval, D.; Levine, A.; De Meij, T.; Hyams, J.S.; et al. P712 Fungal Microbiota Composition in Inflammatory Bowel Disease Patients in a Norwegian Cohort: Characterization of Disease Phenotypes and Correlation with Clinical Activity and Disease Course. J. Crohns Colitis 2022, 16, i608–i609. [Google Scholar] [CrossRef]
- Jeziorek, M.; Frej-Mądrzak, M.; Choroszy-Król, I. The Influence of Diet on Gastrointestinal Candida spp. Colonization and the Susceptibility of Candida spp. to Antifungal Drugs. Rocz. Panstw. Zakl. Hig. 2019, 70, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, A.; Salamon, D.; Kowalska-Duplaga, K.; Bogiel, T.; Gosiewski, T. Association of Fungi and Archaea of the Gut Microbiota with Crohn’s Disease in Pediatric Patients—Pilot Study. Pathogens 2021, 10, 1119. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, L.; De Salvo, C.; Buela, K.A.; Hager, C.; Ghannoum, M.; Osme, A.; Buttò, L.; Bamias, G.; Pizarro, T.T.; Cominelli, F. Candida Tropicalis Infection Modulates the Gut Microbiome and Confers Enhanced Susceptibility to Colitis in Mice. Cell. Mol. Gastroenterol. Hepatol. 2022, 13, 901–923. [Google Scholar] [CrossRef] [PubMed]
- Shuai, M.; Fu, Y.; Zhong, H.L.; Gou, W.; Jiang, Z.; Liang, Y.; Miao, Z.; Xu, J.J.; Huynh, T.; Wahlqvist, M.L.; et al. Mapping the Human Gut Mycobiome in Middle-Aged and Elderly Adults: Multiomics Insights and Implications for Host Metabolic Health. Gut 2022, 71, 1812–1820. [Google Scholar] [CrossRef] [PubMed]
- Capuano, E. The Behavior of Dietary Fiber in the Gastrointestinal Tract Determines Its Physiological Effect. Crit. Rev. Food Sci. Nutr. 2017, 57, 3543–3564. [Google Scholar] [CrossRef] [PubMed]
- Nash, A.K.; Auchtung, T.A.; Wong, M.C.; Smith, D.P.; Gesell, J.R.; Ross, M.C.; Stewart, C.J.; Metcalf, G.A.; Muzny, D.M.; Gibbs, R.A.; et al. The Gut Mycobiome of the Human Microbiome Project Healthy Cohort. Microbiome 2017, 5, 153. [Google Scholar] [CrossRef] [PubMed]
- Gautam, A.K.; Verma, R.K.; Avasthi, S.; Sushma; Bohra, Y.; Devadatha, B.; Niranjan, M.; Suwannarach, N. Current Insight into Traditional and Modern Methods in Fungal Diversity Estimates. J. Fungi 2022, 8, 226. [Google Scholar] [CrossRef] [PubMed]
- Krüger, W.; Vielreicher, S.; Kapitan, M.; Jacobsen, I.D.; Niemiec, M.J. Fungal-Bacterial Interactions in Health and Disease. Pathogens 2019, 8, 70. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Coughlin, L.A.; Neubauer, M.M.; Kim, J.; Kim, M.S.; Zhan, X.; Simms-Waldrip, T.R.; Xie, Y.; Hooper, L.V.; Koh, A.Y. Activation of HIF-1α and LL-37 by Commensal Bacteria Inhibits Candida Albicans Colonization. Nat. Med. 2015, 21, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Limon, J.J.; Tang, J.; Li, D.; Wolf, A.J.; Michelsen, K.S.; Funari, V.; Gargus, M.; Nguyen, C.; Sharma, P.; Maymi, V.I.; et al. Malassezia Is Associated with Crohn’s Disease and Exacerbates Colitis in Mouse Models. Cell Host Microbe 2019, 25, 377–388.e6. [Google Scholar] [CrossRef] [PubMed]
No | Gender | Age | Body Mass (kg) | Height (m) | BMI (kg/m2) | Nutritional Status |
---|---|---|---|---|---|---|
Control group | ||||||
C1 | Male | 17.0 | 74.0 | 1.71 | 25.3 | Overweight |
C2 | Female | 12.8 | 58.0 | 1.62 | 22.1 | Norm |
C3 | Female | 8.6 | 25.0 | 1.32 | 14.3 | Underweight |
C4 | Male | 3.0 | 14.0 | 0.98 | 14.6 | Norm |
C5 | Female | 5.0 | 22.0 | 1.16 | 16.3 | Norm |
C6 | Female | 17.0 | 67.0 | 1.66 | 24.3 | Norm |
C7 | Male | 13.0 | 52.0 | 1.53 | 22.2 | Overweight |
C8 | Male | 6.4 | 24.0 | 1.26 | 15.1 | Norm |
C9 | Male | 9.5 | 38.0 | 1.42 | 18.8 | Norm |
C10 | Female | 3.4 | 16.0 | 1.00 | 16.0 | Norm |
AVG | – | 9.6 A ± 5.2 | 39.0 A ± 22.1 | 1.4 A ± 0.3 | 18.9 A ± 4.2 | – |
Studied group | ||||||
PKU1 | Male | 17.0 | 70.0 | 1.70 | 24.2 | Overweight |
PKU2 | Female | 3.0 | 17.3 | 1.00 | 17.3 | Norm |
PKU3 | Female | 1.4 | 12.3 | 0.86 | 16.6 | Norm |
PKU4 | Male | 13.0 | 64.0 | 1.59 | 25.3 | Overweight |
PKU5 | Male | 6.0 | 25.0 | 1.24 | 16.3 | Norm |
PKU6 | Female | 17.5 | 50.6 | 1.64 | 19.0 | Norm |
PKU7 | Male | 2.9 | 14.0 | 0.89 | 17.7 | Norm |
PKU8 | Male | 2.8 | 11.8 | 0.86 | 16.0 | Underweight |
PKU9 | Female | 12.7 | 37.0 | 1.56 | 15.2 | Norm |
PKU10 | Female | 9.8 | 33.4 | 1.36 | 17.8 | Norm |
AVG | – | 8.6 A ± 6.2 | 33.5 A ± 21.6 | 1.3 A ± 0.3 | 18.5 A ± 3.5 | – |
No | Energy (kcal) | Protein (g) | Fats (g) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean Daily Intake | EER | Compliance with the Standard (%) | Mean Daily Intake | 10–20% of EER (g) | Compliance with the Standard | Mean Daily Intake | 30–40% of EER (g) | Compliance with the Standard | ||
C1 | 2635.9 | 2933 | 89.9 | 137.5 | 73.3–146.7 | Norm | 90.2 | 97.8–130.4 | Norm | |
C2 | 2343.8 | 2111 | 111.0 | 82.7 | 52.8–105.6 | Norm | 70.2 | 70.4–93.8 | Norm | |
C3 | 1854.4 | 1686 | 110.0 | 73.2 | 42.2–84.3 | Norm | 58.9 | 56.2–74.9 | Norm | |
C4 | 1205.2 | 1163 | 103.6 | 44.2 | 29.1–58.2 | Norm | 42.5 | 38.8–51.7 | Norm | |
C5 | 1255.8 | 1419 | 88.5 | 41.3 | 35.5–71.0 | Norm | 40.4 | 47.3–63.1 | Under | |
C6 | 2027.4 | 2255 | 89.9 | 92.5 | 56.4–112.8 | Norm | 75.2 | 75.2–100.2 | Norm | |
C7 | 1519.8 | 2384 | 63.8 | 65.3 | 59.6–119.2 | Norm | 50.3 | 79.5–106.0 | Under | |
C8 | 2158.8 | 1620 | 133.3 | 85.2 | 40.5–81.0 | Norm | 78.3 | 54.0–72.0 | Norm | |
C9 | 1746.6 | 1934 | 90.3 | 65.5 | 48.4–96.7 | Norm | 50.0 | 64.5–86.0 | Under | |
C10 | 1260.8 | 1088 | 115.9 | 57.0 | 27.2–54.4 | Norm | 40.4 | 36.3–48.4 | Norm | |
AVG | 1800.9 A ± 494.4 | – | – | 74.4 A ± 27.8 | – | – | 59.6 A ± 17.8 | – | – | |
No | SFA (g) | Carbohydrates (g) | Dietary Fibre (g) | Phe (mg) | ||||||
Mean Daily Intake | 6% of EER | Compliance with the Standard | Mean Daily Intake | 45–65% of EER (g) | Compliance with the Standard | Mean Daily Intake | AI (g) | Compliance with the Standard | Mean Daily Intake | |
C1 | 44.1 | 19.6 | Above | 326.3 | 330.0–476.6 | Norm | 35.9 | 21 | Enough intake | 5134.4 |
C2 | 28.1 | 14.1 | Above | 361.1 | 237.5–343.0 | Norm | 35.8 | 19 | Enough intake | 3799.6 |
C3 | 23.8 | 11.2 | Above | 267.3 | 189.7–274.0 | Norm | 20.2 | 16 | Enough intake | 3061.4 |
C4 | 12.1 | 7.8 | Above | 165.6 | 130.8–189.0 | Norm | 8.3 | 10 | Deficiency | 1896.0 |
C5 | 17.8 | 9.5 | Above | 187.2 | 159.6–230.6 | Norm | 14.3 | 14 | Enough intake | 1752.8 |
C6 | 35.6 | 15.0 | Above | 263.1 | 253.7–366.4 | Norm | 33.0 | 21 | Enough intake | 4048.9 |
C7 | 15.4 | 15.9 | Norm | 211.7 | 268.2–387.4 | Under | 19.2 | 19 | Enough intake | 2913.8 |
C8 | 41.2 | 10.8 | Above | 288.5 | 182.3–263.3 | Norm | 19.9 | 14 | Enough intake | 3626.7 |
C9 | 19.9 | 12.9 | Above | 266.2 | 217.6–314.3 | Norm | 13.4 | 16 | Deficiency | 2992.1 |
C10 | 17.1 | 7.3 | Above | 175.8 | 122.4–176.8 | Norm | 19.9 | 10 | Enough intake | 2498.3 |
AVG | 25.5 A ± 11.3 | – | – | 251.3 A ± 65.3 | – | – | 22.0 A ± 9.7 | – | – | 3172.4 A ± 1023.5 |
No | Energy (kcal) | Protein (g) | Fats (g) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean Daily Intake | EER | Compliance with the Standard (%) | Mean Daily Intake | 10–20% of EER (g) | Compliance with the Standard | Mean Daily Intake | 30–40% of EER (g) | Compliance with the Standard | ||
PKU1 | 2149.4 | 2933 | 136.5 | 84.2 | 73.3–146.7 | Norm | 85.2 | 97.8–130.4 | Under | |
PKU2 | 1232.8 | 1088 | 88.3 | 43.5 | 27.2–54.4 | Norm | 25.2 | 36.3–48.4 | Under | |
PKU3 | 939.4 | 712 | 75.8 | 31.5 | 17.8–35.6 | Norm | 46.2 | 23.7–31.6 | Above | |
PKU4 | 2752.9 | 2384 | 86.6 | 75.2 | 59.6–119.2 | Norm | 90.9 | 79.5–106.0 | Norm | |
PKU5 | 1843.6 | 1620 | 87.9 | 50.5 | 40.5–81.0 | Norm | 65.4 | 54.0–72.0 | Norm | |
PKU6 | 1854.5 | 2255 | 121.6 | 53.2 | 56.4–112.8 | Norm | 43.6 | 75.2–100.2 | Under | |
PKU7 | 1045.9 | 1096 | 104.8 | 28.0 | 27.4–54.8 | Norm | 19.9 | 36.5–48.7 | Under | |
PKU8 | 755.3 | 1096 | 145.1 | 18.0 | 27.4–54.8 | Under | 25.2 | 36.5–48.7 | Under | |
PKU9 | 1654.4 | 2016 | 121.9 | 61.5 | 50.4–100.8 | Norm | 41.7 | 67.2–89.6 | Under | |
PKU10 | 1205.1 | 1790 | 148.5 | 55.8 | 44.8–89.5 | Norm | 28.8 | 59.7–79.6 | Under | |
AVG | 1543.3 A ± 621.3 | – | – | 50.1 B ± 20.8 | – | – | 47.2 A ± 25.3 | – | – | |
No | SFA (g) | Carbohydrates (g) | Dietary Fibre (g) | Phe (mg) | ||||||
Mean Daily Intake | 6% of EER | Compliance with the Standard | Mean Daily Intake | 45–65% of EER (g) | Compliance with the Standard | Mean Daily Intake | AI (g) | Compliance with the Standard | Mean Daily Intake | |
PKU1 | 27.7 | 19.6 | Above | 272.2 | 330.0–476.6 | Under | 21.2 | 21 | Enough intake | 3211.4 |
PKU2 | 8.2 | 7.3 | Above | 213.2 | 122.4–176.8 | Above | 10.5 | 10 | Enough intake | 365.1 |
PKU3 | 6.3 | 4.7 | Above | 108.3 | 80.1–115.7 | Norm | 18.0 | 10 | Enough intake | 266.8 |
PKU4 | 43.7 | 15.9 | Above | 422.2 | 268.2–387.4 | Norm | 30.4 | 19 | Enough intake | 1150.0 |
PKU5 | 25.8 | 10.8 | Above | 271.8 | 182.3–263.3 | Norm | 17.7 | 14 | Enough intake | 777.0 |
PKU6 | 20.4 | 15.0 | Above | 329.5 | 253.7–366.4 | Norm | 35.3 | 21 | Enough intake | 471.7 |
PKU7 | 5.0 | 7.3 | Norm | 194.8 | 123.3–178.1 | Norm | 13.5 | 10 | Enough intake | 455.1 |
PKU8 | 7.8 | 7.3 | Norm | 116.7 | 123.3–178.1 | Norm | 5.6 | 10 | Deficiency | 255.5 |
PKU9 | 14.4 | 13.4 | Norm | 267.2 | 226.8–327.6 | Norm | 18.7 | 19 | Enough intake | 439.7 |
PKU10 | 10.4 | 11.9 | Norm | 192.6 | 201.4–290.9 | Norm | 23.8 | 16 | Enough intake | 358.9 |
AVG | 17.0 A ± 12.4 | – | – | 238.9 A ± 95.2 | – | – | 19.5 A ± 8.9 | – | 775.1 B ± 897.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostrowska, M.; Komoń-Janczara, E.; Mikoluc, B.; Iłowiecka, K.; Jarczak, J.; Zagórska, J.; Zambrzycka, P.; Turroni, S.; Szczerba, H. The Gut Mycobiome and Nutritional Status in Paediatric Phenylketonuria: A Cross-Sectional Pilot Study. Nutrients 2025, 17, 2405. https://doi.org/10.3390/nu17152405
Ostrowska M, Komoń-Janczara E, Mikoluc B, Iłowiecka K, Jarczak J, Zagórska J, Zambrzycka P, Turroni S, Szczerba H. The Gut Mycobiome and Nutritional Status in Paediatric Phenylketonuria: A Cross-Sectional Pilot Study. Nutrients. 2025; 17(15):2405. https://doi.org/10.3390/nu17152405
Chicago/Turabian StyleOstrowska, Malgorzata, Elwira Komoń-Janczara, Bozena Mikoluc, Katarzyna Iłowiecka, Justyna Jarczak, Justyna Zagórska, Paulina Zambrzycka, Silvia Turroni, and Hubert Szczerba. 2025. "The Gut Mycobiome and Nutritional Status in Paediatric Phenylketonuria: A Cross-Sectional Pilot Study" Nutrients 17, no. 15: 2405. https://doi.org/10.3390/nu17152405
APA StyleOstrowska, M., Komoń-Janczara, E., Mikoluc, B., Iłowiecka, K., Jarczak, J., Zagórska, J., Zambrzycka, P., Turroni, S., & Szczerba, H. (2025). The Gut Mycobiome and Nutritional Status in Paediatric Phenylketonuria: A Cross-Sectional Pilot Study. Nutrients, 17(15), 2405. https://doi.org/10.3390/nu17152405