Determinants of the Association Between Maternal Anemia and Neonatal Hemoglobin
Abstract
1. Background
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muckenthaler, M.U.; Galy, B.; Hentze, M.W. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu. Rev. Nutr. 2008, 28, 197–213. [Google Scholar] [CrossRef] [PubMed]
- Stoffel, N.U.; Cepeda-López, A.C.; Zeder, C.; Herter-Aeberli, I.; Zimmermann, M.B. Measurement of iron absorption and iron gains from birth to 6 months in breastfed and formula-fed infants using iron isotope dilution. Sci. Adv. 2024, 10, eado4262. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.; Georgieff, M.K. Iron in fetal and neonatal nutrition. Semin. Fetal Neonatal. Med. 2007, 12, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.B. Biomarkers of Brain Dysfunction in Perinatal Iron Deficiency. Nutrients 2024, 16, 1092. [Google Scholar] [CrossRef]
- Siddappa, A.M.; Rao, R.; Long, J.D.; Widness, J.A.; Georgieff, M.K. The assessment of newborn iron stores at birth: A review of the literature and standards for ferritin concentrations. Neonatology 2007, 92, 73–82. [Google Scholar] [CrossRef]
- Coe, C.L.; Lubach, G.R.; Shirtcliff, E.A. Maternal stress during pregnancy predisposes for iron deficiency in infant monkeys impacting innate immunity. Pediatr. Res. 2007, 61, 520–524. [Google Scholar] [CrossRef]
- Jorgenson, L.A.; Wobken, J.D.; Georgieff, M.K. Perinatal iron deficiency alters apical dendritic growth in hippocampal CA1 pyramidal neurons. Dev. Neurosci. 2003, 25, 412–420. [Google Scholar] [CrossRef]
- Rao, R.; Tkac, I.; Townsend, E.L.; Gruetter, R.; Georgieff, M.K. Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus. J. Nutr. 2003, 133, 3215–3221. [Google Scholar] [CrossRef]
- Siddappa, A.J.; Rao, R.B.; Wobken, J.D.; Casperson, K.; Leibold, E.A.; Connor, J.R.; Georgieff, M.K. Iron deficiency alters iron regulatory protein and iron transport protein expression in the perinatal rat brain. Pediatr. Res. 2003, 53, 800–807. [Google Scholar] [CrossRef]
- Gomez, H.M.; Pillar, A.L.; Brown, A.C.; Kim, R.Y.; Ali, M.K.; Essilfie, A.T.; Vanders, R.L.; Frazer, D.M.; Anderson, G.J.; Hansbro, P.M.; et al. Investigating the Links between Lower Iron Status in Pregnancy and Respiratory Disease in Offspring Using Murine Models. Nutrients 2021, 13, 4461. [Google Scholar] [CrossRef]
- Quezada-Pinedo, H.G.; van Meel, E.R.; Reiss, I.K.; Jaddoe, V.; Vermeulen, M.J.; Duijts, L. Maternal hemoglobin and iron status in early pregnancy and risk of respiratory tract infections in childhood: A population-based prospective cohort study. Pediatr. Allergy Immunol. 2023, 34, e14025. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; O’Brien, K.O. Pregnancy and iron homeostasis: An update. Nutr. Rev. 2013, 71, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Le, C.H. The Prevalence of Anemia and Moderate-Severe Anemia in the US Population (NHANES 2003–2012). PLoS ONE 2016, 11, e0166635. [Google Scholar] [CrossRef] [PubMed]
- Kassebaum, N.J.; Collaborators, G.B.D.A. The Global Burden of Anemia. Hematol. Oncol. Clin. N. Am. 2016, 30, 247–308. [Google Scholar] [CrossRef]
- Gupta, P.M.; Hamner, H.C.; Suchdev, P.S.; Flores-Ayala, R.; Mei, Z. Iron status of toddlers, nonpregnant females, and pregnant females in the United States. Am. J. Clin. Nutr. 2017, 106, 1640S–1646S. [Google Scholar] [CrossRef]
- Igbinosa, I.I.; Leonard, S.A.; Noelette, F.; Davies-Balch, S.; Carmichael, S.L.; Main, E.; Lyell, D.J. Racial and Ethnic Disparities in Anemia and Severe Maternal Morbidity. Obstet. Gynecol. 2023, 142, 845–854. [Google Scholar] [CrossRef]
- Kanu, F.A.; Hamner, H.C.; Scanlon, K.S.; Sharma, A.J. Anemia Among Pregnant Women Participating in the Special Supplemental Nutrition Program for Women, Infants, and Children—United States, 2008–2018. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 813–819. [Google Scholar] [CrossRef]
- Allen, L.H. Anemia and iron deficiency: Effects on pregnancy outcome. Am. J. Clin. Nutr. 2000, 71, 1280S–1284S. [Google Scholar] [CrossRef]
- U.S. Preventive Services Task Force. Screening and Supplementation for Iron Deficiency and Iron Deficiency Anemia During Pregnancy: US Preventive Services Task Force Recommendation Statement. JAMA 2024, 332, 906–913. [Google Scholar] [CrossRef]
- Anemia in Pregnancy: ACOG Practice Bulletin, Number 233. Obstet. Gynecol. 2021, 138, e55–e64. [CrossRef]
- Kranke, P.; Weiniger, C.F.; Sultan, P.; Achebe, M.O.; Filipescu, D.; Brogly, N.; Surbek, D.; Lasocki, S.; Guasch, E.; Meybohm, P. Iron deficiency and anemia in pregnancy: A call to action!: –“If you don’t take a temperature, you can’t find a fever”–. Int. J. Obstet. Anesth. 2024, 62, 104298. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Sun, M.; Wu, T.; Li, J.; Shi, H.; Wei, Y. The association between maternal anemia and neonatal anemia: A systematic review and meta-analysis. BMC Pregnancy Childbirth 2024, 24, 677. [Google Scholar] [CrossRef] [PubMed]
- Campbell, R.K.; Buhimschi, C.S.; Zhao, G.; Dela Rosa, C.; Stetson, B.T.; Backes, C.H.; Buhimschi, I.A. Prevalence of and Risk Factors for Iron Deficiency in Twin and Singleton Newborns. Nutrients 2022, 14, 3854. [Google Scholar] [CrossRef] [PubMed]
- MacQueen, B.C.; Christensen, R.D.; Baer, V.L.; Ward, D.M.; Snow, G.L. Screening umbilical cord blood for congenital Iron deficiency. Blood Cells Mol. Dis. 2019, 77, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Ru, Y.; Pressman, E.K.; Guillet, R.; Katzman, P.J.; Bacak, S.J.; O’Brien, K.O. Predictors of anemia and iron status at birth in neonates born to women carrying multiple fetuses. Pediatr. Res. 2018, 84, 199–204. [Google Scholar] [CrossRef]
- Campbell, R.K.; Tamayo-Ortiz, M.; Cantoral, A.; Schnaas, L.; Osorio-Valencia, E.; Wright, R.J.; Tellez-Rojo, M.M.; Wright, R.O. Maternal Prenatal Psychosocial Stress and Prepregnancy BMI Associations with Fetal Iron Status. Curr. Dev. Nutr. 2020, 4, nzaa018. [Google Scholar] [CrossRef]
- Marell, P.S.; Blohowiak, S.E.; Evans, M.D.; Georgieff, M.K.; Kling, P.J.; Tran, P.V. Cord Blood-Derived Exosomal CNTN2 and BDNF: Potential Molecular Markers for Brain Health of Neonates at Risk for Iron Deficiency. Nutrients 2019, 11, 2478. [Google Scholar] [CrossRef]
- Petry, C.D.; Eaton, M.A.; Wobken, J.D.; Mills, M.M.; Johnson, D.E.; Georgieff, M.K. Iron deficiency of liver, heart, and brain in newborn infants of diabetic mothers. J. Pediatr. 1992, 121, 109–114. [Google Scholar] [CrossRef]
- Korlesky, C.; Kling, P.J.; Pham, D.Q.D.; Ovasapyan, A.A.; Leyns, C.E.G.; Weber, M.B.; Coe, C.L. Cord blood erythropoietin and hepcidin reflect lower newborn iron stores due to maternal obesity during pregnancy. Am. J. Perinatol. 2019, 36, 511–516. [Google Scholar] [CrossRef]
- Siddappa, A.M.; Georgieff, M.K.; Wewerka, S.; Worwa, C.; Nelson, C.A.; Deregnier, R.A. Iron deficiency alters auditory recognition memory in newborn infants of diabetic mothers. Pediatr. Res. 2004, 55, 1034–1041. [Google Scholar] [CrossRef]
- Evanchuk, J.L.; Kozyrskyj, A.; Hanas, N.; Goruk, S.; Vaghef-Mehrabani, E.; Archundia-Herrera, C.M.; O’Brien, K.O.; Letourneau, N.L.; Giesbrecht, G.F.; Bell, R.C.; et al. Maternal iron status is dynamic throughout pregnancy and might predict birth outcomes in a sex-dependent manner: Results from the APrON cohort study. J. Nutr. 2023, 153, 2585–2597. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, E.K.; Schneck, D.; Basu, S.; Xenopoulos-Oddsson, A.; McCarthy, F.P.; Kiely, M.E.; Georgieff, M.K. Longitudinal evaluation of iron status during pregnancy: A prospective cohort study in a high-resource setting. Am. J. Clin. Nutr. 2024, 120, 1259–1268. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.; Wang, Y. The Placenta: A Maternofetal Interface. Annu. Rev. Nutr. 2023, 43, 301–325. [Google Scholar] [CrossRef] [PubMed]
- Sangkhae, V.; Fisher, A.L.; Wong, S.; Koenig, M.D.; Tussing-Humphreys, L.; Chu, A.; Lelic, M.; Ganz, T.; Nemeth, E. Effects of maternal iron status on placental and fetal iron homeostasis. J. Clin. Investig. 2020, 130, 625–640. [Google Scholar] [CrossRef]
- Fisher, A.L.; Sangkhae, V.; Presicce, P.; Chougnet, C.A.; Jobe, A.H.; Kallapur, S.G.; Tabbah, S.; Buhimschi, C.S.; Buhimschi, I.A.; Ganz, T.; et al. Fetal and amniotic fluid iron homeostasis in healthy and complicated murine, macaque, and human pregnancy. JCI Insight 2020, 5, e135321. [Google Scholar] [CrossRef]
- Barad, A.; Guillet, R.; Pressman, E.K.; Katzman, P.J.; Ganz, T.; Nemeth, E.; O’Brien, K.O. Placental ferroportin protein abundance is associated with neonatal erythropoietic activity and iron status in newborns at high risk for iron deficiency and anemia. Am. J. Clin. Nutr. 2024, 119, 76–86. [Google Scholar] [CrossRef]
- Geng, X.; Geng, L.; Zhang, Y.; Lu, H.; Shen, Y.; Chen, R.; Fang, P.; Tao, M.; Wang, C.; Jia, W. Fetal sex influences maternal fasting plasma glucose levels and basal beta-cell function in pregnant women with normal glucose tolerance. Acta Diabetol. 2017, 54, 1131–1138. [Google Scholar] [CrossRef]
- Seneviratne, S.N.; Derraik, J.G.B.; Jiang, Y.; McCowan, L.M.E.; Gusso, S.; Cutfield, W.S.; Hofman, P.L. The sex of the foetus affects maternal blood glucose concentrations in overweight and obese pregnant women. J. Obstet. Gynaecol. 2017, 37, 667–669. [Google Scholar] [CrossRef]
- Bosquet Enlow, M.; Sideridis, G.; Bollati, V.; Hoxha, M.; Hacker, M.R.; Wright, R.J. Maternal cortisol output in pregnancy and newborn telomere length: Evidence for sex-specific effects. Psychoneuroendocrinology 2019, 102, 225–235. [Google Scholar] [CrossRef]
- DiPietro, J.A.; Costigan, K.A.; Kivlighan, K.T.; Chen, P.; Laudenslager, M.L. Maternal salivary cortisol differs by fetal sex during the second half of pregnancy. Psychoneuroendocrinology 2011, 36, 588–591. [Google Scholar] [CrossRef]
- Eriksson, J.G.; Kajantie, E.; Osmond, C.; Thornburg, K.; Barker, D.J. Boys live dangerously in the womb. Am. J. Hum. Biol. 2010, 22, 330–335. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.O. Maternal, fetal and placental regulation of placental iron trafficking. Placenta 2022, 125, 47–53. [Google Scholar] [CrossRef]
- Zimmermann, P.; Antonelli, M.C.; Sharma, R.; Müller, A.; Zelgert, C.; Fabre, B.; Wenzel, N.; Wu, H.T.; Frasch, M.G.; Lobmaier, S.M. Prenatal stress perturbs fetal iron homeostasis in a sex specific manner. Sci. Rep. 2022, 12, 9341. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Recommendations to prevent and control iron deficiency in the United States. Morb. Mortal. Wkly. Rep. 1998, 47, 1–29. [Google Scholar]
- Gallagher, P.G. The neonatal erythrocyte and its disorders. In Nathan and Oski’s Hematology and Oncology of Infancy and Childhood, 8th ed.; Orkin, S.H., Fisher, D.E., Look, T., Lux, S.E., Ginsburg, D., Nathan, D.G., Eds.; WB Saunders: Philadelphia, PA, USA, 2015. [Google Scholar]
- McDonald, S.J.; Middleton, P.; Dowswell, T.; Morris, P.S. Effect of timing of umbilical cord clamping of term infants on maternal and neonatal outcomes. Cochrane Database Syst. Rev. 2013, 2013, Cd004074. [Google Scholar] [CrossRef]
- Rabe, H.; Gyte, G.M.; Díaz-Rossello, J.L.; Duley, L. Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes. Cochrane Database Syst. Rev. 2019, 9, Cd003248. [Google Scholar] [CrossRef]
- Arya, S.; Akbari-Moghaddam, M.; Liu, Y.; Press, E.; Muraca, G.M.; VanderMeulen, H.; Barrett, J.; Zeller, M.P.; Hacker, M.R.; Callum, J. Anemia Near Delivery is Prevalent, Pernicious, and Associated with Lower Neighbourhood Income: An Analysis of Over 50 000 Pregnancies. J. Obstet. Gynaecol. Can. 2024, 47, 102721. [Google Scholar] [CrossRef]
- Kang, W.; Irvine, C.; Pressman, E.; O’Brien, K. Prevalence of Anemia Across Trimesters in Multiethnic Pregnant Women. Curr. Dev. Nutr. 2021, 5, 765. [Google Scholar] [CrossRef]
- Campbell, R.K.; Dewage, B.G.; Cordero, C.; Maldonado, L.E.; Sotres-Alvarez, D.; Daviglus, M.L.; Argos, M. Prevalence and risk factors of iron deficiency and anemia in women of reproductive age in the Hispanic Community Health Study/Study of Latinos. Curr. Dev. Nutr. 2024, 8, 104419. [Google Scholar] [CrossRef]
Characteristic | n | n (%) or Median (IQR) |
---|---|---|
Maternal and Pregnancy | ||
Age (years), median (IQR) | 238 | 30 (26, 35) |
Race and ethnicity | 235 | |
Asian | 5 (2.1) | |
Black | 163 (69.4) | |
Hispanic | 52 (22.1) | |
Other | 1 (0.4) | |
White | 14 (6.0) | |
Any HDP | 238 | |
No | 140 (58.8) | |
Yes | 98 (41.2) | |
Mode of delivery | 238 | |
Cesarean | 114 (47.9) | |
Vaginal | 124 (52.1) | |
GA at delivery (days), median (IQR) | 237 | 264 (249, 273) |
Number of CBCs | 236 | |
Zero | 12 (5.1) | |
One | 28 (11.9) | |
Two | 57 (24.2) | |
Three or more | 139 (58.9) | |
Lowest prenatal Hb (g/dL), median (IQR) | 225 | 10.7 (10, 11.6) |
Prenatal anemia | 223 | |
No | 102 (45.7) | |
Yes | 121 (54.3) | |
Delivery Hb (g/dL), median (IQR) | 230 | 11.1 (10.4, 12.1) |
Delivery anemia | 230 | |
No | 127 (55.2) | |
Yes | 103 (44.8) | |
Neonate | ||
Sex | 228 | |
Male | 119 (52.2) | |
Female | 109 (47.8) | |
Hb (g/dL), median (IQR) | 113 | 16.7 (14.9, 18) |
Lowest Prenatal Hb | Prenatal Anemia | Delivery Hb | Delivery Anemia | |||||
---|---|---|---|---|---|---|---|---|
n | Median (IQR) | n (%) | RR (95% CI) | n | Median (IQR) | n (%) | RR (95% CI) | |
Age, years | ||||||||
18–24 | 41 | 10.5 (10, 11.1) | 27 (65.9) | 1.00 (Reference) | 42 | 11 (10.2, 11.9) | 21 (50) | 1.00 (Reference) |
25–34 | 117 | 10.9 (10.1, 11.6) | 57 (49.6) | 0.75 (0.56, 1.00) | 120 | 11.1 (10.4, 11.9) | 53 (44.2) | 0.88 (0.61, 1.27) |
35+ | 67 | 10.6 (9.6, 11.7) | 37 (55.2) | 0.84 (0.62, 1.14) | 68 | 11.3 (10.6, 12.2) | 29 (42.7) | 0.85 (0.57, 1.28) |
p-Value | 0.567 | 0.153 | 0.736 | 0.724 | ||||
Race and ethnicity | ||||||||
Black | 152 | 10.6 (9.9, 11.2) | 91 (60.3) | 1.71 (1.15, 2.53) | 157 | 11 (10.3, 11.8) | 78 (49.7) | 1.41 (0.94, 2.11) |
Hispanic | 51 | 11.5 (10.4, 12.1) | 18 (35.3) | 1.00 (Reference) | 51 | 11.6 (10.7, 12.5) | 18 (35.3) | 1.00 (Reference) |
Other | 18 | 10.7 (10.1, 12.1) | 9 (52.9) | 1.5 (0.84, 2.68) | 18 | 11.6 (10.9, 12.5) | 5 (27.8) | 0.79 (0.34, 1.81) |
p-Value | 0.003 | 0.027 | 0.006 | 0.0989 | ||||
Any HDP | ||||||||
No | 131 | 10.7 (10.0, 11.7) | 68 (52.3) | 1.00 (Reference) | 134 | 11.0 (10.3, 11.9) | 64 (47.8) | 1.00 (Reference) |
Yes | 94 | 10.7 (9.9, 11.6) | 53 (57.0) | 1.09 (0.86, 1.39) | 96 | 11.3 (10.5, 12.3) | 39 (40.6) | 0.85 (0.63, 1.15) |
p-Value | 0.906 | 0.486 | 0.025 | 0.29 | ||||
Mode of delivery | ||||||||
Cesarian | 104 | 10.8 (10.1, 11.7) | 52 (50.5) | 0.88 (0.69, 1.12) | 109 | 11.3 (10.6, 12.3) | 42 (38.5) | 0.76 (0.57, 1.03) |
Vaginal | 121 | 10.6 (9.9, 11.5) | 69 (57.5) | 1.00 (Reference) | 121 | 10.9 (10.2, 11.9) | 61 (50.4) | 1.00 (Reference) |
p-Value | 0.832 | 0.299 | 0.043 | 0.075 | ||||
Infant sex | ||||||||
Male | 114 | 10.7 (10.1, 11.6) | 61 (53.5) | 1.00 (Reference) | 117 | 11.2 (10.6, 12.2) | 46 (39.3) | 1.00 (Reference) |
Female | 102 | 10.7 (9.9, 11.7) | 55 (54.5) | 1.02 (0.79, 1.30) | 106 | 11.0 (10.4, 12) | 51 (48.1) | 1.22 (0.91, 1.65) |
p-Value | 0.404 | 0.889 | 0.098 | 0.232 | ||||
GA at delivery | ||||||||
Early preterm | 30 | 10.5 (9.7, 11.7) | 17 (56.7) | 1.08 (0.74, 1.6) | 32 | 11.4 (10.1, 12.9) | 14 (43.8) | 0.91 (0.58, 1.45) |
Late preterm | 49 | 11.1 (9.9, 11.9) | 23 (46.9) | 0.9 (0.62, 1.31) | 47 | 11.3 (10.5, 12.3) | 19 (40.4) | 0.84 (0.55, 1.29) |
Early term | 77 | 10.6 (9.9, 11.5) | 46 (60.5) | 1.16 (0.87, 1.55) | 78 | 11.1 (10.3, 11.8) | 35 (44.9) | 0.94 (0.66, 1.32) |
Full term | 68 | 10.8 (10.4, 11.5) | 35 (52.2) | 1.00 (Reference) | 73 | 11 (10.4, 11.7) | 35 (48.0) | 1.00 (Reference) |
p-Value | 0.633 | 0.498 | 0.136 | 0.883 | ||||
CBCs | ||||||||
Zero | 0 | 0 | N/A | N/A | 12 | 10.6 (9.5, 11.1) | 9 (75.0) | 1.69 (0.99, 2.88) |
One | 27 | 11.5 (10.4, 12.7) | 8 (30.8) | 1.00 (Reference) | 27 | 11.4 (10.3, 12.8) | 12 (44.4) | 1.00 (Reference) |
Two | 57 | 11 (10.5, 11.8) | 23 (40.4) | 1.31 (0.68, 2.53) | 55 | 11.3 (10.7, 12.3) | 20 (36.4) | 0.82 (0.47, 1.41) |
Three or more | 139 | 10.4 (9.6, 11.4) | 88 (63.8) | 2.07 (1.15, 3.74) | 134 | 11.1 (10.4, 11.9) | 60 (44.8) | 1.01 (0.63, 1.60) |
p-Value | 0.000 | 0.003 | 0.158 | 0.017 |
All | Male | Female | |||||
---|---|---|---|---|---|---|---|
Missing, n (%) | Hb, Median (IQR) | p-Value a | Hb, Median (IQR) | p-Value a | Hb, Median (IQR) | p-Value a | |
Age | 0.974 | 0.722 | 0.743 | ||||
18–24 y | 24 (57.1) | 16.6 (14.9, 17.4) | 16.7 (16.2, 17.3) | 15.7 (14.8, 18.3) | |||
25–34 y | 70 (55.1) | 16.2 (14.9, 17.7) | 15.9 (14.7, 17.5) | 16.7 (15.7, 18.2) | |||
35+ y | 31 (44.9) | 17.0 (15, 18.4) | 18.0 (15.1, 18.6) | 16.8 (13.8, 18.1) | |||
Race and ethnicity | 0.003 | 0.001 | 0.541 | ||||
Black | 88 (54.0) | 16.0 (14.7, 17.5) | 15.4 (14.5, 17.3) | 16.2 (14.9, 18) | |||
Hispanic | 25 (48.1) | 17.9 (16.4, 20.0) | 17.9 (16.5, 20) | 17.6 (16.4, 18.3) | |||
Other | 11 (57.0) | 17.0 (15.9, 18.0) | 17.3 (16.7, 17.4) | 16.7 (15, 18.6) | |||
HDP | 0.484 | 0.82 | 0.273 | ||||
No | 89 (62.9) b | 16.7 (14.9, 18.1) | 16.8 (15.0, 18.0) | 16.6 (14.8, 18.2) | |||
Yes | 37 (37.8) | 16.7 (15.0, 18.0) | 16.5 (14.8, 17.8) | 17.1 (15.7, 18.1) | |||
Prenatal anemia | 0.135 | 0.153 | 0.487 | ||||
No | 51 (50.0) | 17.1 (15.0, 18.2) | 17.2 (14.8, 18.1) | 17.1 (15.6, 18.3) | |||
Yes | 65 (53.7) | 15.9 (14.8, 17.5) | 16.2 (14.9, 17.5) | 16.1 (15.7, 18.1) | |||
Delivery anemia | 0.032 | 0.017 | 0.462 | ||||
No | 63 (49.6) | 17.1(14.9, 18.2) | 17.2 (14.9, 18.4) | 17.0 (15.7, 18.2) | |||
Yes | 57 (55.3) | 15.85(14.8, 17.5) | 15.5 (14.5, 16.8) | 16.0 (15.0, 17.9) | |||
Mode of delivery | 0.3 | 0.24 | 0.752 | ||||
Cesarian | 45 (39.5) b | 16.4 (14.9, 18) | 16.3 (14.9, 18.0) | 16.6 (15.0, 18.1) | |||
Vaginal | 80 (64.5) | 17.1 (15.2, 18.0) | 17.0 (14.8, 17.9) | 17.1 (15.7, 18.2) | |||
Infant sex | 0.805 | ||||||
Male | 60 (50.4) | 16.7 (14.8, 17.9) | |||||
Female | 55 (50.5) | 16.7 (15, 18.2) | |||||
GA at birth | 0.392 | 0.246 | 0.835 | ||||
Early preterm | 4 (11.8) b | 16.8 (13.8, 18) | 16.5 (13.8, 17.7) | 17.1 (15.4, 18.1) | |||
Late preterm | 9 (18.4) | 16.7 (15, 18.4) | 16.4 (15, 17.3) | 17.1 (16.1, 18.8) | |||
Early term | 54 (67.5) | 17.4 (15.2, 18.3) | 17.9 (15.2, 19.0) | 16.9 (14.9, 18.2) | |||
Full term | 57 (77.0) | 15.9 (15, 17.1) | 16.5 (15.2, 17.4) | 15.9 (15, 16.6) |
n | B (95% CI) | p-Value | |
---|---|---|---|
Overall | 107 | ||
Delivery anemia | 0.027 | ||
No | 0.00 (Reference) | ||
Yes | −1.07 (−2.02, −0.13) | ||
Race and ethnicity | 0.004 | ||
Black | −1.84 (−2.93, −0.75) | ||
Hispanic | 0.00 (Reference) | ||
Other | −0.74 (−2.66, 1.18) | ||
Infant sex | 0.663 | ||
Male | 0.23 (−0.71, 1.17) | ||
Female | 0.00 (Reference) | ||
Male infants | 55 | ||
Delivery anemia | 0.064 | ||
No | 0.00 (Reference) | ||
Yes | −1.19 (−2.45, 0.07) | ||
Race and ethnicity | 0.005 | ||
Black | −2.26 (−3.59, −0.94) | ||
Hispanic | 0.00 (Reference) | ||
Other | −1.05 (−3.23, 1.14) | ||
Female infants | 52 | ||
Delivery anemia | 0.274 | ||
No | 0.00 (Reference) | ||
Yes | −0.83 (−2.34, 0.68) | ||
Race and ethnicity | 0.429 | ||
Black | −1.19 (−3.12, 0.73) | ||
Hispanic | 0.00 (Reference) | ||
Other | −0.27 (−3.82, 3.29) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campbell, R.K.; Tanna, N.K.; Hartwig, J.; Buhimschi, C.S.; Buhimschi, I.A. Determinants of the Association Between Maternal Anemia and Neonatal Hemoglobin. Nutrients 2025, 17, 2292. https://doi.org/10.3390/nu17142292
Campbell RK, Tanna NK, Hartwig J, Buhimschi CS, Buhimschi IA. Determinants of the Association Between Maternal Anemia and Neonatal Hemoglobin. Nutrients. 2025; 17(14):2292. https://doi.org/10.3390/nu17142292
Chicago/Turabian StyleCampbell, Rebecca K., Nicole K. Tanna, Julie Hartwig, Catalin S. Buhimschi, and Irina A. Buhimschi. 2025. "Determinants of the Association Between Maternal Anemia and Neonatal Hemoglobin" Nutrients 17, no. 14: 2292. https://doi.org/10.3390/nu17142292
APA StyleCampbell, R. K., Tanna, N. K., Hartwig, J., Buhimschi, C. S., & Buhimschi, I. A. (2025). Determinants of the Association Between Maternal Anemia and Neonatal Hemoglobin. Nutrients, 17(14), 2292. https://doi.org/10.3390/nu17142292