White Mulberry Plant Extracts in Cardiovascular Prevention: An Update
Abstract
1. Introduction
2. Phytochemistry
3. Flavonoids
4. Alkaloids
5. Anthocyanins
6. Polysaccharides
7. Amino Acids
8. Pharmacological Activities of Mulberry Leaves
8.1. Antioxidant Activity
8.2. Anti-Metabolic Disorder Activity
8.3. Anti-Inflammatory Activity
9. Animal Studies
9.1. Antidiabetic Effects
9.2. Anti-Hyperlipidemia Effects
9.3. Anti-Atherosclerosis Effects
9.4. Anti-Obesity Effects
9.5. Hepatoprotective Effects
10. Clinical Trials
10.1. Hypoglycemic Effects
10.2. Hypolipidemic Effects
11. Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AMPK | AMP-activated protein kinase |
CCl4 | Carbon tetrachloride |
HbA1c | Glycated hemoglobin |
GPAT | Glycerol-3-phosphate acyltransferase |
HDL-C | High-density lipoprotein cholesterol |
HCD | High-cholesterol diet |
HOMA-IR | Homeostasis model–insulin resistance index |
ICAM-1 | Intracellular adhesion molecule-1 |
LDL-C | Low-density lipoprotein cholesterol |
MDA | Malondialdehyde |
ox-LDL | Oxidized low-density lipoprotein |
PAI-1 | Plasminogen activator inhibitor-1 |
PPG | Postprandial plasma glucose |
TG | Serum triglyceride |
STZ | Streptozotocin |
SREBP1 | Sterol regulatory element-binding protein 1 |
T2D | Type-2 diabetic |
VCAM-1 | Vascular cell adhesion molecule-1 |
1-DNJ | 1-deoxynojirimycin |
HMG-CoA | 3-hydroxy-3-methylglutaryl-Coenzyme A |
References
- Rashidi, A.A.; Mirhashemi, S.M.; Taghizadeh, M.; Sarkhail, P. Iranian medicinal plants for diabetes mellitus: A systematic review. Pak. J. Biol. Sci. 2013, 16, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Asemi, Z.; Alizadeh, S.A.; Ahmad, K.; Goli, M.; Esmaillzadeh, A. Effects of beta-carotene fortified synbiotic food on metabolic control of patients with type 2 diabetes mellitus: A double-blind randomized cross-over controlled clinical trial. Clin. Nutr. 2016, 35, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Mittal, A.; Babu, D.; Mittal, A. Herbal Medicines for Diabetes Management and its Secondary Complications. Curr. Diabetes Rev. 2021, 17, 437–456. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Bong, H.Y.; Jeong, H.I.; Kim, Y.K.; Kim, J.Y.; Kwon, O. Postprandial hypoglycemic effect of mulberry leaf in Goto-Kakizaki rats and counterpart control Wistar rats. Nutr. Res. Pract. 2009, 3, 272–278. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, F.; Nakashima, N.; Kimura, I.; Kimura, M. Hypoglycemic activity and mechanisms of extracts from mulberry leaves (Folium mori) and cortex mori radicis in streptozotocin-induced diabetic mice. Yakugaku Zasshi 1995, 115, 476–482. (In Japanese) [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Ruan, J.; Huang, P.; Sun, F.; Zheng, D.; Zhang, Y.; Wang, T. The structure-activity relationship review of the main bioactive constituents of Morus genus plants. J. Nat. Med. 2020, 74, 331–340, Erratum in J. Nat. Med. 2020, 74, 617. https://doi.org/10.1007/s11418-020-01406-9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Batiha, G.E.; Al-Snafi, A.E.; Thuwaini, M.M.; Teibo, J.O.; Shaheen, H.M.; Akomolafe, A.P.; Teibo, T.K.A.; Al-Kuraishy, H.M.; Al-Garbeeb, A.I.; Alexiou, A.; et al. Morus alba: A comprehensive phytochemical and pharmacological review. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 396, 1399–1413. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Katsube, T.; Yamasaki, M.; Shiwaku, K.; Ishijima, T.; Matsumoto, I.; Abe, K.; Yamasaki, Y. Effect of flavonol glycoside in mulberry (Morus alba L.) leaf on glucose metabolism and oxidative stress in liver in diet-induced obese mice. J. Sci. Food Agric. 2010, 90, 2386–2392. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.S.; Dong, P.H.; Shuai, X.X.; Chen, M.S. Evaluation of Different Black Mulberry Fruits (Morus nigra L.) Based on Phenolic Compounds and Antioxidant Activity. Foods 2022, 11, 1252. [Google Scholar] [CrossRef]
- Yang, H.J.; Kim, M.J.; Kang, E.S.; Kim, D.S.; Park, S. Red mulberry fruit aqueous extract and silk proteins accelerate acute ethanol metabolism and promote the anti-oxidant enzyme systems in rats. Mol. Med. Rep. 2018, 18, 1197–1205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, Q.; Zhu, S.; Liu, B.; Liu, F.; Xu, Y. Mulberry leaf (Morus alba L.): A review of its potential influences in mechanisms of action on metabolic diseases. Pharmacol. Res. 2022, 175, 106029. [Google Scholar] [CrossRef] [PubMed]
- Ntalouka, F.; Tsirivakou, A. Morus alba: Natural and valuable effects in weight loss management. Front. Clin. Diabetes Healthc. 2024, 5, 1395688. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Banjari, I.; Misir, A.; Pavlić, M.; Herath, P.N.; Waisundara, V.Y. Traditional Herbal Medicines for Diabetes Used in Europe and Asia: Remedies from Croatia and Sri Lanka. Altern. Ther. Health Med. 2019, 25, 40–52. [Google Scholar] [PubMed]
- Sánchez-Salcedo, E.M.; Tassotti, M.; Del Rio, D.; Hernández, F.; Martínez, J.J.; Mena, P. (Poly)phenolic fingerprint and chemometric analysis of white (Morus alba L.) and black (Morus nigra L.) mulberry leaves by using a non-targeted UHPLC-MS approach. Food Chem. 2016, 212, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.C.; Li, S.L.; Zhang, X.Q.; Ye, W.C.; Zhang, Q.W. Flavonoids with α-glucosidase inhibitory activities and their contents in the leaves of Morus atropurpurea. Chin. Med. 2013, 8, 19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Imran, M.; Saeed, F.; Hussain, G.; Imran, A.; Mehmood, Z.; Gondal, T.A.; El-Ghorab, A.; Ahmad, I.; Pezzani, R.; Arshad, M.U.; et al. Myricetin: A comprehensive review on its biological potentials. Food Sci. Nutr. 2021, 9, 5854–5868. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hansawasdi, C.; Kawabata, J. Alpha-glucosidase inhibitory effect of mulberry (Morus alba) leaves on Caco-2. Fitoterapia 2006, 77, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.Q.; Wang, L.; Yan, R.Y.; Tan, Y.X.; Chen, R.Y.; Yu, D.Q. A new Diels-Alder type adduct and two new flavones from the stem bark of Morus yunanensis Koidz. J. Asian Nat. Prod. Res. 2008, 10, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, E.L.; Marcelino, G.; Silva, G.T.; Figueiredo, P.S.; Garcez, W.S.; Corsino, J.; Guimarães, R.C.A.; Freitas, K.C. Nutraceutical and Medicinal Potential of the Morus Species in Metabolic Dysfunctions. Int. J. Mol. Sci. 2019, 20, 301. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.G.; Ji, D.F.; Zhong, S.; Lv, Z.Q.; Lin, T.B.; Chen, S.; Hu, G.Y. Hybrid of 1-deoxynojirimycin and polysaccharide from mulberry leaves treat diabetes mellitus by activating PDX-1/insulin-1 signaling pathway and regulating the expression of glucokinase, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in alloxan-induced diabetic mice. J. Ethnopharmacol. 2011, 134, 961–970. [Google Scholar] [CrossRef] [PubMed]
- Katayama, H.; Takano, R.; Sugimura, Y. Localization of mucilaginous polysaccharides in mulberry leaves. Protoplasma 2008, 233, 157–163. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Fang, J.; Ruan, Y.; Wang, X.; Sun, Y.; Wu, N.; Zhao, Z.; Chang, Y.; Ning, N.; Guo, H.; et al. Structures, bioactivities and future prospective of polysaccharides from Morus alba (white mulberry): A review. Food Chem. 2018, 245, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Zhumabayev, N.; Zhakipbekov, K.; Zhumabayev, N.; Datkhayev, U.; Tulemissov, S. Phytochemical studies of white mulberry fruits (Morus alba L.). Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Free radicals, reactive oxygen species and human disease: A critical evaluation with special reference to atherosclerosis. Br. J. Exp. Pathol. 1989, 70, 737–757. [Google Scholar] [PubMed] [PubMed Central]
- Chen, J.; Li, X. Hypolipidemic effect of flavonoids from mulberry leaves in triton WR-1339 induced hyperlipidemic mice. Asia Pac. J. Clin. Nutr. 2007, 16 (Suppl. 1), 290–294. [Google Scholar] [PubMed]
- Deepa, M.; Priya, S. Purification and characterization of a novel anti-proliferative lectin from Morus alba L. leaves. Protein Pept. Lett. 2012, 19, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Liu, C.; Chen, R. Phenolic constituents from stem bark of Morus wittiorum and their anti-inflammation and cytotoxicity. Zhongguo Zhong Yao Za Zhi. 2010, 35, 2700–2703. (In Chinese) [Google Scholar] [PubMed]
- Tian, J.; Fu, F.; Geng, M.; Jiang, Y.; Yang, J.; Jiang, W.; Wang, C.; Liu, K. Neuroprotective effect of 20(S)-ginsenoside Rg3 on cerebral ischemia in rats. Neurosci. Lett. 2005, 374, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Niidome, T.; Takahashi, K.; Goto, Y.; Goh, S.; Tanaka, N.; Kamei, K.; Ichida, M.; Hara, S.; Akaike, A.; Kihara, T.; et al. Mulberry leaf extract prevents amyloid beta-peptide fibril formation and neurotoxicity. Neuroreport. 2007, 18, 813–816. [Google Scholar] [CrossRef] [PubMed]
- Asano, N.; Yamashita, T.; Yasuda, K.; Ikeda, K.; Kizu, H.; Kameda, Y.; Kato, A.; Nash, R.J.; Lee, H.S.; Ryu, K.S. Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (Bombyx mori L.). J. Agric. Food Chem. 2001, 49, 4208–4213. [Google Scholar] [CrossRef] [PubMed]
- Dai, K.J.; Hou, L.B.; Luo, Q.Z. Quantitative determination of 1-deoxynojirimycin in mulberry leaves by high-performance liquid chromatographic-tandem mass/mass spectrometry. Zhong Yao Cai 2009, 32, 375–377. (In Chinese) [Google Scholar] [PubMed]
- Tian, J.L.; Zhao, M.; Xu, J.Y.; Lv, T.M.; Liu, X.C.; Sun, S.; Guan, Q.; Zhou, Z.C.; Wu, J.; Zhao, M.Y.; et al. Inhibitory Mechanism of Prenylated Flavonoids Isolated from Mulberry Leaves on α-Glucosidase by Multi-Spectroscopy and Molecular Dynamics Simulation. J. Agric. Food Chem. 2023, 71, 9135–9147. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Zhang, Y.; Wu, T.; Liu, R.; Sui, W.; Zhu, J.; Fang, S.; Geng, J.; Zhang, M. The antidiabetic effects of Bifidobacterium longum subsp. longum BL21 through regulating gut microbiota structure in type 2 diabetic mice. Food Funct. 2022, 13, 9947–9958. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ma, Z.F.; Luo, X.; Li, X. Effects of Mulberry Fruit (Morus alba L.) Consumption on Health Outcomes: A Mini-Review. Antioxidants 2018, 7, 69. [Google Scholar] [CrossRef]
- Jiang, Y.; Dai, M.; Nie, W.J.; Yang, X.R.; Zeng, X.C. Effects of the ethanol extract of black mulberry (Morus nigra L.) fruit on experimental atherosclerosis in rats. J. Ethnopharmacol. 2017, 200, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, L.; Zheng, H. Hypolipidemic and antioxidant effects of mulberry (Morus alba L.) fruit in hyperlipidaemia rats. Food Chem. Toxicol. 2010, 48, 2374–2379. [Google Scholar] [CrossRef] [PubMed]
- Eo, H.J.; Park, J.H.; Park, G.H.; Lee, M.H.; Lee, J.R.; Koo, J.S.; Jeong, J.B. Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark. BMC Complement. Altern. Med. 2014, 14, 200. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Y.C.; Tien, Y.J.; Chen, C.H.; Beltran, F.N.; Amor, E.C.; Wang, R.J.; Wu, D.J.; Mettling, C.; Lin, Y.L.; Yang, W.C. Morus alba and active compound oxyresveratrol exert anti-inflammatory activity via inhibition of leukocyte migration involving MEK/ERK signaling. BMC Complement. Altern. Med. 2013, 13, 45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singab, A.N.; El-Beshbishy, H.A.; Yonekawa, M.; Nomura, T.; Fukai, T. Hypoglycemic effect of Egyptian Morus alba root bark extract: Effect on diabetes and lipid peroxidation of streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2005, 100, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, J.; Naik, P.R. Evaluation of hypoglycemic effect of Morus alba in an animal model. Indian J. Pharmacol. 2008, 40, 15–18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hunyadi, A.; Martins, A.; Hsieh, T.J.; Seres, A.; Zupkó, I. Chlorogenic acid and rutin play a major role in the in vivo anti-diabetic activity of Morus alba leaf extract on type II diabetic rats. PLoS ONE. 2012, 7, e50619. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sarikaphuti, A.; Nararatwanchai, T.; Hashiguchi, T.; Ito, T.; Thaworanunta, S.; Kikuchi, K.; Oyama, Y.; Maruyama, I.; Tancharoen, S. Preventive effects of Morus alba L. anthocyanins on diabetes in Zucker diabetic fatty rats. Exp. Ther. Med. 2013, 6, 689–695. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Xiang, L.; Wang, C.; Tang, C.; He, X. Antidiabetic and antioxidant effects and phytochemicals of mulberry fruit (Morus alba L.) polyphenol enhanced extract. PLoS ONE 2013, 8, e71144. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rahman, M.S.; Hossain, K.S.; Das, S.; Kundu, S.; Adegoke, E.O.; Rahman, M.A.; Hannan, M.A.; Uddin, M.J.; Pang, M.G. Role of Insulin in Health and Disease: An Update. Int. J. Mol. Sci. 2021, 22, 6403. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ren, C.; Zhang, Y.; Cui, W.; Lu, G.; Wang, Y.; Gao, H.; Huang, L.; Mu, Z. A polysaccharide extract of mulberry leaf ameliorates hepatic glucose metabolism and insulin signaling in rats with type 2 diabetes induced by high fat-diet and streptozotocin. Int. J. Biol. Macromol. 2015, 72, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, X.; Li, C.; Zheng, Y.; Peng, G. 1-Deoxynojirimycin Alleviates Insulin Resistance via Activation of Insulin Signaling PI3K/AKT Pathway in Skeletal Muscle of db/db Mice. Molecules 2015, 20, 21700–21714. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cai, S.; Sun, W.; Fan, Y.; Guo, X.; Xu, G.; Xu, T.; Hou, Y.; Zhao, B.; Feng, X.; Liu, T. Effect of mulberry leaf (Folium mori) on insulin resistance via IRS-1/PI3K/Glut-4 signalling pathway in type 2 diabetes mellitus rats. Pharm. Biol. 2016, 54, 2685–2691. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Qi, X.; Chao, Y.; Chen, Q.; Cheng, P.; Yu, X.; Kuai, M.; Wu, J.; Li, W.; Zhang, Q.; et al. IRS1/PI3K/AKT pathway signal involved in the regulation of glycolipid metabolic abnormalities by Mulberry (Morus alba L.) leaf extracts in 3T3-L1 adipocytes. Chin. Med. 2020, 15, 1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meng, Q.; Qi, X.; Fu, Y.; Chen, Q.; Cheng, P.; Yu, X.; Sun, X.; Wu, J.; Li, W.; Zhang, Q.; et al. Flavonoids extracted from mulberry (Morus alba L.) leaf improve skeletal muscle mitochondrial function by activating AMPK in type 2 diabetes. J. Ethnopharmacol. 2020, 248, 112326. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.P.; Kim, J.K.; Lim, Y.H. Antihyperlipidemic effects of stilbenoids isolated from Morus alba in rats fed a high-cholesterol diet. Food Chem. Toxicol. 2014, 65, 213–218. [Google Scholar] [CrossRef] [PubMed]
- El-Beshbishy, H.A.; Singab, A.N.; Sinkkonen, J.; Pihlaja, K. Hypolipidemic and antioxidant effects of Morus alba L. (Egyptian mulberry) root bark fractions supplementation in cholesterol-fed rats. Life Sci. 2006, 78, 2724–2733. [Google Scholar] [CrossRef] [PubMed]
- Zeni, A.L.B.; Dall’Molin, M. Hypotriglyceridemic effect of Morus alba L., Moraceae, leaves in hyperlipidemic rats. Rev. Bras. De. Farmacogn. 2010, 20, 130–133. [Google Scholar]
- Harauma, A.; Murayama, T.; Ikeyama, K.; Sano, H.; Arai, H.; Takano, R.; Kita, T.; Hara, S.; Kamei, K.; Yokode, M. Mulberry leaf powder prevents atherosclerosis in apolipoprotein E-deficient mice. Biochem. Biophys. Res. Commun. 2007, 358, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Liu, L.K.; Hsu, J.D.; Yang, M.Y.; Wang, C.J. Mulberry extract inhibits the development of atherosclerosis in cholesterol-fed rabbits. Food Chem. 2005, 91, 601–607. [Google Scholar]
- Oh, K.S.; Ryu, S.Y.; Lee, S.; Seo, H.W.; Oh, B.K.; Kim, Y.S.; Lee, B.H. Melanin-concentrating hormone-1 receptor antagonism and anti-obesity effects of ethanolic extract from Morus alba leaves in diet-induced obese mice. J. Ethnopharmacol. 2009, 122, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.H.; Liu, L.K.; Chuang, C.M.; Chyau, C.C.; Huang, C.N.; Wang, C.J. Mulberry water extracts possess an anti-obesity effect and ability to inhibit hepatic lipogenesis and promote lipolysis. J. Agric. Food Chem. 2011, 59, 2663–2671. [Google Scholar] [CrossRef] [PubMed]
- Valacchi, G.; Belmonte, G.; Miracco, C.; Eo, H.; Lim, Y. Effect of combined mulberry leaf and fruit extract on liver and skin cholesterol transporters in high fat diet-induced obese mice. Nutr. Res. Pract. 2014, 8, 20–26. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, L.K.; Chou, F.P.; Chen, Y.C.; Chyau, C.C.; Ho, H.H.; Wang, C.J. Effects of mulberry (Morus alba L.) extracts on lipid homeostasis in vitro and in vivo. J. Agric. Food Chem. 2009, 57, 7605–7611. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C.; Yang, M.Y.; Chen, S.C.; Wang, C.J. Mulberry leaf polyphenol extract improves obesity by inducing adipocyte apoptosis and inhibiting preadipocyte differentiation and hepatic lipogenesis. J. Funct. Foods 2016, 21, 249–262. [Google Scholar]
- Kobayashi, Y.; Miyazawa, M.; Kamei, A.; Abe, K.; Kojima, T. Ameliorative effects of mulberry (Morus alba L.) leaves on hyperlipidemia in rats fed a high-fat diet: Induction of fatty acid oxidation, inhibition of lipogenesis, and suppression of oxidative stress. Biosci. Biotechnol. Biochem. 2010, 74, 2385–2395. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.Y.; Wu, Y.L.; Yu, M.H.; Hung, T.W.; Chan, K.C.; Wang, C.J. Mulberry Leaf and Neochlorogenic Acid Alleviates Glucolipotoxicity-Induced Oxidative Stress and Inhibits Proliferation/Migration via Downregulating Ras and FAK Signaling Pathway in Vascular Smooth Muscle Cell. Nutrients 2022, 14, 3006. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Metwally, F.M.; Rashad, H.; Mahmoud, A.A. Morus alba L. Diminishes visceral adiposity, insulin resistance, behavioral alterations via regulation of gene expression of leptin, resistin and adiponectin in rats fed a high-cholesterol diet. Physiol. Behav. 2019, 201, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Noh, D.J.; Yoon, G.A. Mulberry (Morus alba L.) ethanol extract attenuates lipid metabolic disturbance and adipokine imbalance in high-fat fed rats. Nutr. Res. Pract. 2022, 16, 716–728. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kalantari, H.; Aghel, N.; Bayati, M. Hepatoprotective effect of Morus alba L. in carbon tetrachloride-induced hepatotoxicity in mice. Saudi Pharm. J. 2009, 17, 90–94. [Google Scholar]
- Hsu, L.S.; Ho, H.H.; Lin, M.C.; Chyau, C.C.; Peng, J.S.; Wang, C.J. Mulberry water extracts (MWEs) ameliorated carbon tetrachloride-induced liver damages in rat. Food Chem. Toxicol. 2012, 50, 3086–3093. [Google Scholar] [CrossRef] [PubMed]
- Mudra, M.; Ercan-Fang, N.; Zhong, L.; Furne, J.; Levitt, M. Influence of mulberry leaf extract on the blood glucose and breath hydrogen response to ingestion of 75 g sucrose by type 2 diabetic and control subjects. Diabetes Care 2007, 30, 1272–1274. [Google Scholar] [CrossRef] [PubMed]
- Oku, T.; Yamada, M.; Nakamura, M.; Sadamori, N.; Nakamura, S. Inhibitory effects of extractives from leaves of Morus alba on human and rat small intestinal disaccharidase activity. Br. J. Nutr. 2006, 95, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Hashiguchi, M.; Yamaguchi, Y.; Oku, T. Hypoglycemic Effects of Morus alba Leaf Extract on Postprandial Glucose and Insulin Levels in Patients with Type 2 Diabetes Treated with Sulfonylurea Hypoglycemic Agents. J. Diabetes Metab. 2011, 2, 158. [Google Scholar] [CrossRef]
- Kimura, T.; Nakagawa, K.; Kubota, H.; Kojima, Y.; Goto, Y.; Yamagishi, K.; Oita, S.; Oikawa, S.; Miyazawa, T. Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans. J. Agric. Food Chem. 2007, 55, 5869–5874. [Google Scholar] [CrossRef] [PubMed]
- Phimarn, W.; Wichaiyo, K.; Silpsavikul, K.; Sungthong, B.; Saramunee, K. A meta-analysis of efficacy of Morus alba Linn. to improve blood glucose and lipid profile. Eur. J. Nutr. 2017, 56, 1509–1521. [Google Scholar] [CrossRef] [PubMed]
- Asai, A.; Nakagawa, K.; Higuchi, O.; Kimura, T.; Kojima, Y.; Kariya, J.; Miyazawa, T.; Oikawa, S. Effect of mulberry leaf extract with enriched 1-deoxynojirimycin content on postprandial glycemic control in subjects with impaired glucose metabolism. J. Diabetes Investig. 2011, 2, 318–323. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trimarco, V.; Izzo, R.; Stabile, E.; Rozza, F.; Santoro, M.; Manzi, M.V.; Serino, F.; Schiattarella, G.G.; Esposito, G.; Trimarco, B. Effects of a new combination of nutraceuticals with Morus alba on lipid profile, insulin sensitivity and endotelial function in dyslipidemic subjects. A cross-over, randomized, double-blind trial. High Blood Press. Cardiovasc. Prev. 2015, 22, 149–154. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, H.J.; Yoon, K.H.; Kang, M.J.; Yim, H.W.; Lee, K.S.; Vuksan, V.; Sung, M.K. A six-month supplementation of mulberry, korean red ginseng, and banaba decreases biomarkers of systemic low-grade inflammation in subjects with impaired glucose tolerance and type 2 diabetes. Evid. Based Complement. Alternat Med. 2012, 2012, 735191. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, M.; Zeng, W.; Tomlinson, B. Evaluation of a crataegus-based multiherb formula for dyslipidemia: A randomized, double-blind, placebo-controlled clinical trial. Evid. Based Complement. Alternat Med. 2014, 2014, 365742. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vichasilp, C.; Nakagawa, K.; Sookwong, P.; Higuchi, O.; Kimura, F.; Miyazawa, T. A novel gelatin crosslinking method retards release of mulberry 1-deoxynojirimycin providing a prolonged hypoglycaemic effect. Food Chem. 2012, 134, 1823–1830. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.I.; Kim, J.; Kim, J.Y.; Kwon, O. Acute intake of mulberry leaf aqueous extract affects postprandial glucose response after maltose loading: Randomized double-blind placebo-controlled pilot study. J. Funct. Foods 2013, 5, 1502–1506. [Google Scholar]
- Nakagawa, K. Studies targeting α-glucosidase inhibition, antiangiogenic effects, and lipid modification regulation: Background, evaluation, and challenges in the development of food ingredients for therapeutic purposes. Biosci. Biotechnol. Biochem. 2013, 77, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Lown, M.; Fuller, R.; Lightowler, H.; Fraser, A.; Gallagher, A.; Stuart, B.; Byrne, C.D.; Lewith, G. Mulberry extract to modULate Blood glucosE Responses in noRmoglYcaemic adults (MULBERRY): Study protocol for a randomised controlled trial. Trials 2015, 16, 486. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taghizadeh, M.; Mohammad Zadeh, A.; Asemi, Z.; Farrokhnezhad, A.H.; Memarzadeh, M.R.; Banikazemi, Z.; Shariat, M.; Shafabakhsh, R. Morus Alba leaf extract affects metabolic profiles, biomarkers inflammation and oxidative stress in patients with type 2 diabetes mellitus: A double-blind clinical trial. Clin. Nutr. ESPEN 2022, 49, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Andallu, B.; Suryakantham, V.; Lakshmi Srikanthi, B.; Reddy, G.K. Effect of mulberry (Morus indica L.) therapy on plasma and erythrocyte membrane lipids in patients with type 2 diabetes. Clin. Chim. Acta 2001, 314, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Kojima, Y.; Kimura, T.; Nakagawa, K.; Asai, A.; Hasumi, K.; Oikawa, S.; Miyazawa, T. Effects of mulberry leaf extract rich in 1-deoxynojirimycin on blood lipid profiles in humans. J. Clin. Biochem. Nutr. 2010, 47, 155–161. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aramwit, P.; Petcharat, K.; Supasyndh, O. Efficacy of mulberry leaf tablets in patients with mild dyslipidemia. Phytother. Res. 2011, 25, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Izzo, R.; de Simone, G.; Giudice, R.; Chinali, M.; Trimarco, V.; De Luca, N.; Trimarco, B. Effects of nutraceuticals on prevalence of metabolic syndrome and on calculated Framingham Risk Score in individuals with dyslipidemia. J. Hypertens. 2010, 28, 1482–1487. [Google Scholar] [CrossRef] [PubMed]
- Affuso, F.; Ruvolo, A.; Micillo, F.; Saccà, L.; Fazio, S. Effects of a nutraceutical combination (berberine, red yeast rice and policosanols) on lipid levels and endothelial function randomized, double-blind, placebo-controlled study. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Nathan, D.M.; Kuenen, J.; Borg, R.; Zheng, H.; Schoenfeld, D.; Heine, R.J.; A1c-Derived Average Glucose Study Group. Translating the A1C assay into estimated average glucose values. Diabetes Care 2008, 31, 1473–1478, Erratum in Diabetes Care 2009, 32, 207. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marciano, C.; Galderisi, M.; Gargiulo, P.; Acampa, W.; D’Amore, C.; Esposito, R.; Capasso, E.; Savarese, G.; Casaretti, L.; Lo Iudice, F.; et al. Effects of type 2 diabetes mellitus on coronary microvascular function and myocardial perfusion in patients without obstructive coronary artery disease. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Trimarco, V.; Battistoni, A.; Tocci, G.; Coluccia, R.; Manzi, M.V.; Izzo, R.; Volpe, M. Single blind, multicentre, randomized, controlled trial testing the effects of a novel nutraceutical compound on plasma lipid and cardiovascular risk factors: Results of the interim analysis. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Izzo, A.; Costanzo, R.; De Martino, L.; Napoli, S.D. Does EFSA statement on Monacolin content of nutraceutical combinations impair their lipid lowering effect? The LopiGLIK experience. Clin. Diabetes Endocrinol. 2024, 10, 38. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trimarco, V.; Rozza, F.; Izzo, R.; De Leo, V.; Cappelli, V.; Riccardi, C.; Di Carlo, C. Effects of a new combination of nutraceuticals on postmenopausal symptoms and metabolic profile: A crossover, randomized, double-blind trial. Int. J. Womens Health 2016, 8, 581–587. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parklak, W.; Chottidao, M.; Munkong, N.; Komindr, S.; Monkhai, S.; Wanikorn, B.; Makaje, N.; Kulprachakarn, K.; Chuljerm, H.; Somnuk, S. Nutraceutical Properties of Thai Mulberry (Morus alba L.) and Their Effects on Metabolic and Cardiovascular Risk Factors in Individuals with Obesity: A Randomized, Single-Blind Crossover Trial. Nutrients 2024, 16, 4336. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, G.; Dash, R.; Agrawal, S.; Ray, S.; Kumar Sahoo, P.; Ramadass, B. A Novel Nutraceutical Supplement Lowers Postprandial Glucose and Insulin Levels upon a Carbohydrate-Rich Meal or Sucrose Drink Intake in Healthy Individuals—A Randomized, Placebo-Controlled, Crossover Feeding Study. Nutrients 2024, 16, 2237. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Volpe, M.; Ferrera, A.; Piccinocchi, R.; Morisco, C. The Emerging Role of Prediabetes and Its Management: Focus on L-Arginine and a Survey in Clinical Practice. High. Blood Press. Cardiovasc. Prev. 2023, 30, 489–496. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Study Design | Individuals | Dose | Outcome | References |
---|---|---|---|---|
Randomized crossover study | 10 healthy + 10 type 2 diabetic patients | 1 g of Mulberry Leaf Extract or placebo | ↓ blood glucose level after sucrose tolerance test | [66] |
Single blinded, placebo-controlled study | 10 healthy and 10 type 2 diabetes patients treated with or without sulfonylurea | 3.3 g of mulberry leaf extract | ↓ postprandial blood glucose level ↓ insulin | [68] |
Randomized controlled study | 24 healthy | 6, 12, and 18 mg of 1-DNJ, or placebo | ↓ postprandial blood glucose level
↓ insulin after sucrose tolerance test | [69] |
Randomized double-blind cross over study | 12 individuals with impaired glucose tolerance | Mulberry leaf extract capsule(s) containing 3, 6 and 9 mg of 1-DNJ or placebo | ↓ postprandial glycemic control = glycated hemoglobin | [71] |
Randomized double blind cross-over study | 23 patients with hypercholesterolemia | Policosanol (10 mg), Red yeast rice (200 mg; 3 mg monacolin K), Berberine (500 mg), Astaxantine (0.5 mg), Folic Acid (200 mcg) and Coenzyme Q10 (2 mg) vs. Berberine (531.25 mg), Red yeast rice powder (220 mg; 3.3 mg monacolin K) and leaf extract of Morus alba (200 mg). | ↓ fasting plasma glucose ↓ fasting insulin ↓ HOMA index ↓ HbA1c | [72] |
Randomized, placebo-controlled, double-blind, parallel study | 94 individuals with impaired glucose tolerance or mild type 2 diabetes | Mixture of ginseng roots, mulberry leaf water extract, and banaba leaf water extract or placebo | = fasting glucose = fasting insulin = HOMA-IR ↓ ICAM-1 ↓ VCAM-1 ↓ ox-LDL | [73] |
Randomized, double-blind, placebo-controlled trial | 50 healthy | 4.5, 9, 18 mg of 1-DNJ or placebo | ↓ postprandial glucose during maltose tolerance test | [76] |
Randomized, double-blind, placebo-controlled trial | 60 patients with type 2 diabetes. | White Mulberry extract (300 mg) or placebo twice a day. | ↓ insulin ↑ HDL-C ↓ MDA | [79] |
Open-label, single-group study | 10 subjects with hypertriglyceridemia | 36 mg of 1-DNJ | = TG = LDL-C = HDL-C | [81] |
Open-label, single-group study | 23 subjects with mild dyslipidemia | 280 mg mulberry leaf three times a day | ↓ TG ↓ LDL-C ↑ HDL-C ↓ cholesterol | [82] |
Randomized, single-blind trial | 359 subjects with mild hypercholesterolemia | Policosanol (10 mg), Red yeast rice (200 mg; 3 mg monacolin K), Berberine (500 mg), Astaxantine (0.5 mg), Folic Acid (200 mcg) and Coenzyme Q10 (2 mg) vs. Berberine (531.25 mg), Red yeast rice powder (220 mg; 3.3 mg monacolin K) and leaf extract of Morus alba (200 mg). | ↓ TG ↓ LDL-C ↓ cholesterol ↓ systolic blood pressure ↓ diastolic blood pressure ↓ fasting insulin ↓ HOMA-IR | [88] |
Single-blind, randomized crossover study | 12 obese subjects | 100 g of concentrated mulberry drink or placebo | ↓ TG = LDL-C = HDL C = cholesterol ↓ systolic blood pressure ↓ diastolic blood pressure ↓ C-reactive protein | [91] |
Randomized, crossover, single-blinded clinical study | 166 healthy | 500 mg of aqueous extracts of White Mulberry and rind of Malus domestica, or placebo | ↓ area under the curve of postprandial glucose ↓ area under the curve of postprandial insulin | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trimarco, V.; Gallo, P.; Ghazihosseini, S.; Izzo, A.; Rozza, P.I.; Spinelli, A.; Cristiano, S.; De Rosa, C.; Rozza, F.; Morisco, C. White Mulberry Plant Extracts in Cardiovascular Prevention: An Update. Nutrients 2025, 17, 2262. https://doi.org/10.3390/nu17142262
Trimarco V, Gallo P, Ghazihosseini S, Izzo A, Rozza PI, Spinelli A, Cristiano S, De Rosa C, Rozza F, Morisco C. White Mulberry Plant Extracts in Cardiovascular Prevention: An Update. Nutrients. 2025; 17(14):2262. https://doi.org/10.3390/nu17142262
Chicago/Turabian StyleTrimarco, Valentina, Paola Gallo, Seyedali Ghazihosseini, Alessia Izzo, Paola Ida Rozza, Alessandra Spinelli, Stefano Cristiano, Carlo De Rosa, Felicia Rozza, and Carmine Morisco. 2025. "White Mulberry Plant Extracts in Cardiovascular Prevention: An Update" Nutrients 17, no. 14: 2262. https://doi.org/10.3390/nu17142262
APA StyleTrimarco, V., Gallo, P., Ghazihosseini, S., Izzo, A., Rozza, P. I., Spinelli, A., Cristiano, S., De Rosa, C., Rozza, F., & Morisco, C. (2025). White Mulberry Plant Extracts in Cardiovascular Prevention: An Update. Nutrients, 17(14), 2262. https://doi.org/10.3390/nu17142262