High-Fat Diet with Normal Caloric Intake Elevates TMA and TMAO Production and Reduces Microbial Diversity in Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. 16 rRNA Library Preparation and Sequencing
2.3. Bioinformatic and Statistics
2.4. Biochemicals and Metabolites Panel Analysis
2.5. Statistical Analysis
3. Results
3.1. Gut Microbiota Composition in Rats Receiving Normal Chow vs. An HFD for 12 Weeks
3.1.1. Start of the Experiment
3.1.2. Dietary Interventions Altered the Microbiomes
3.1.3. The HDD Enhanced Microbial Diversity, Whereas the HFD Resulted in Its Decline
3.1.4. LDA Score
3.2. The HFD Increased Urine Metabolite Levels
3.3. Daily Urinary Excretion
3.4. HDD Increased Plasma Betaine Levels
3.5. Correlation Analysis Between Bacterial Taxonomic Groups (Based on LDA Scores) and the Concentrations of Various Metabolites in Urine
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALT | alanine transaminase |
AST | aspartate aminotransferase |
CVD | cardiovascular diseases |
HFD | high-fat diet |
HDD | high-disaccharides diet |
LDA | Linear discriminant analysis |
OTUs | Operational taxonomic units |
SD | Sprague Dawley rats |
TMA | trimethylamine |
TMAO | trimethylamine-N-oxide |
References
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; Dugar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.M.; et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.; Wang, Z.; Levison, B.S.; Koeth, R.A.; Britt, E.B.; Fu, X.; Wu, Y.; Hazen, S.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013, 368, 1575–1584. [Google Scholar] [CrossRef] [PubMed]
- Khan, Q.A.; Asad, M.; Ali, A.H.; Farrukh, A.M.; Naseem, U.; Semakieh, B.; Levin Carrion, Y.; Afzal, M. Gut microbiota metabolites and risk of major adverse cardiovascular events and death: A systematic review and meta-analysis. Medicine 2024, 103, e37825. [Google Scholar] [CrossRef]
- Chen, Y.R.; Zhou, L.Z.; Fang, S.T.; Long, H.Y.; Chen, J.Y.; Zhang, G.X. Isolation of Desulfovibrio spp. from human gut microbiota using a next-generation sequencing directed culture method. Lett. Appl. Microbiol. 2019, 68, 553–561. [Google Scholar] [CrossRef]
- Rath, S.; Heidrich, B.; Pieper, D.H.; Vital, M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome 2017, 5, 54. [Google Scholar] [CrossRef]
- Yoo, W.; Zieba, J.K.; Foegeding, N.J.; Torres, T.P.; Shelton, C.D.; Shealy, N.G.; Byndloss, A.J.; Cevallos, S.A.; Gertz, E.; Tiffany, C.R.; et al. High-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide. Science 2021, 373, 813–818. [Google Scholar] [CrossRef]
- Szudzik, M.; Hutsch, T.; Chabowski, D.; Zajdel, M.; Ufnal, M. Normal caloric intake with high-fat diet induces metabolic dysfunction-associated steatotic liver disease and dyslipidemia without obesity in rats. Sci. Rep. 2024, 14, 22796. [Google Scholar] [CrossRef]
- National Research Council (US) Subcommittee on Laboratory Animal Nutrition. Nutrient Requirements of Laboratory Animals: Fourth Revised Edition, 1995; National Academies Press: Washington, DC, USA, 1995. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 1 July 2025).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Bushnell, B.; Rood, J.; Singer, E. BBMerge—Accurate paired shotgun read merging via overlap. PLoS ONE 2017, 12, e0185056. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Haas, B.J.; Gevers, D.; Earl, A.M.; Feldgarden, M.; Ward, D.V.; Giannoukos, G.; Ciulla, D.; Tabbaa, D.; Highlander, S.K.; Sodergren, E.; et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011, 21, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Paulson, J.N.; Stine, O.C.; Bravo, H.C.; Pop, M. Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 2013, 10, 1200–1202. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed]
- Dabdoub, S.M.; Fellows, M.L.; Paropkari, A.D.; Mason, M.R.; Huja, S.S.; Tsigarida, A.A.; Kumar, P.S. PhyloToAST: Bioinformatics tools for species-level analysis and visualization of complex microbial datasets. Sci. Rep. 2016, 6, 29123. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Jaworska, K.; Huc, T.; Samborowska, E.; Dobrowolski, L.; Bielinska, K.; Gawlak, M.; Ufnal, M. Hypertension in rats is associated with an increased permeability of the colon to TMA, a gut bacteria metabolite. PLoS ONE 2017, 12, e0189310. [Google Scholar] [CrossRef]
- Rinninella, E.; Cintoni, M.; Raoul, P.; Lopetuso, L.R.; Scaldaferri, F.; Pulcini, G.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients 2019, 11, 2393. [Google Scholar] [CrossRef]
- Ruiz-Ojeda, F.J.; Plaza-Díaz, J.; Sáez-Lara, M.J.; Gil, A. Effects of Sweeteners on the Gut Microbiota: A Review of Experimental Studies and Clinical Trials. Adv. Nutr. 2019, 10, S31–S48. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, M.; Pang, X.; Zhao, Y.; Wang, L.; Zhao, L. Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J. 2012, 6, 1848–1857. [Google Scholar] [CrossRef] [PubMed]
- Cândido, F.G.; Valente, F.X.; Grześkowiak, Ł.M.; Moreira, A.P.B.; Rocha, D.; Alfenas, R.C.G. Impact of dietary fat on gut microbiota and low-grade systemic inflammation: Mechanisms and clinical implications on obesity. Int. J. Food Sci. Nutr. 2018, 69, 125–143. [Google Scholar] [CrossRef] [PubMed]
- Do, M.H.; Lee, E.; Oh, M.J.; Kim, Y.; Park, H.Y. High-Glucose or -Fructose Diet Cause Changes of the Gut Microbiota and Metabolic Disorders in Mice without Body Weight Change. Nutrients 2018, 10, 761. [Google Scholar] [CrossRef] [PubMed]
- Missailidis, C.; Hällqvist, J.; Qureshi, A.R.; Barany, P.; Heimbürger, O.; Lindholm, B.; Stenvinkel, P.; Bergman, P. Serum Trimethylamine-N-Oxide Is Strongly Related to Renal Function and Predicts Outcome in Chronic Kidney Disease. PLoS ONE 2016, 11, e0141738. [Google Scholar] [CrossRef]
- Kim, R.B.; Morse, B.L.; Djurdjev, O.; Tang, M.; Muirhead, N.; Barrett, B.; Holmes, D.T.; Madore, F.; Clase, C.M.; Rigatto, C.; et al. Advanced chronic kidney disease populations have elevated trimethylamine N-oxide levels associated with increased cardiovascular events. Kidney Int. 2016, 89, 1144–1152. [Google Scholar] [CrossRef]
- Pelletier, C.C.; Croyal, M.; Ene, L.; Aguesse, A.; Billon-Crossouard, S.; Krempf, M.; Lemoine, S.; Guebre-Egziabher, F.; Juillard, L.; Soulage, C.O. Elevation of Trimethylamine-N-Oxide in Chronic Kidney Disease: Contribution of Decreased Glomerular Filtration Rate. Toxins 2019, 11, 635. [Google Scholar] [CrossRef]
Control Diet | HDD | HFD | |
---|---|---|---|
Metabolized energy [kcal/kg] | 3514 | 3772 | 4497 |
fat [%] | 10 | 12 | 45 |
protein [%] | 24 | 18 | 18 |
carbohydrates [%] | 66 | 70 | 37 |
moisture [%] | 7.9 | 5.0 | 3.9 |
crude ash [%] | 4.3 | 4.2 | 3.9 |
crude fiber [%] | 3.1 | 1.5 | 5.6 |
crude fat [%] | 4.0 | 5.0 | 22.6 |
crude protein [%] | 20.7 | 17.1 | 20.8 |
Nitrogen free extractives [%] | 60 | 67.2 | 43.2 |
Controls | HDD | HFD | ANOVA | |
---|---|---|---|---|
TMA (µM) | 0.5321 ± 0.059 | 0.6771 # ± 0.067 | 0.9702 *** ± 0.09 | p = 0.0004 |
TMAO (µM) | 187.22 ± 14.14 | 191.57 # ± 15.21 | 253.41 ** ± 17.59 | p = 0.006 |
betaine (ng/mL) | 28,566.60 ± 3019.83 | 33,927.60 ## ± 3347.51 | 72,751.20 *** ± 10,674.89 | p < 0.0001 |
choline (ng/mL) | 10,420.80 ± 1339.84 | 10,535.90 ± 1755.04 | 10,716.20 ± 1956.70 | p = 0.94 |
carnitine (ng/mL) | 31,979.62 ± 3031.68 | 30,233.11 ### ± 3117.92 | 63,532.91 *** ± 4741.20 | p < 0.0001 |
GPC (ng/mL) | 13,207.2 ± 2416.60 | 10,455 ± 1765.87 | 10,030.6 ± 1825.31 | p = 0.63 |
Controls | HDD | HFD | ANOVA | |
---|---|---|---|---|
TMA (µM) | 5.03 ± 0.47 | 4.06 ## ± 0.28 | 7.15 * ± 0.86 | p = 0.0028 |
TMAO (µM) | 1691.00 ± 91.07 | 1241.54 *## ± 135.63 | 1801.00 ± 136.85 | p = 0.0064 |
betaine (ng/mL) | 269,715.00 ± 26,738.18 | 206,823.00 ### ± 20,958.44 | 515,994.88 *** ± 68,415.18 | p < 0.0001 |
choline (ng/mL) | 97,859.03 ± 14,579.89 | 69,866.68 ± 13,900.51 | 77,331.77 ± 14,645.93 | p = 0.36 |
carnitine (ng/mL) | 318,281.70 ± 36,763.11 | 192,099.90 *### ± 23,948.72 | 458,937.54 * ± 38,512.07 | p < 0.0001 |
GPC (ng/mL) | 136,672.30 ± 31,934.2 | 67,552.85 ± 13,125.88 | 71,405.41 ± 13,139.23 | p = 0.08 |
Controls | HDD | HFD | ANOVA | |
---|---|---|---|---|
TMA (µM) | 0.00639 ± 0.00044 | 0.00866 ± 0.00144 | 0.07204 ± 0.04179 | p = 0.15 |
TMAO (µM) | 1.09 ± 0.10 | 0.93 ± 0.10 | 1.01 ± 0.07 | p = 0.50 |
betaine (ng/mL) | 4512.00 ± 179.17 | 5992.23 ** ± 280.54 | 5211.65 ± 358.98 | p = 0.002 |
choline (ng/mL) | 515.63 ± 35.02 | 628.64 ± 56.41 | 575.82 ± 47.60 | p = 0.26 |
carnitine (ng/mL) | 3365.42 ± 395.09 | 3706.53 ± 488.86 | 3141.81 ± 321.34 | p = 0.60 |
GPC (ng/mL) | 1205.41 ± 84.72 | 1385.37 ± 136.01 | 1150.16 ± 141.75 | p = 0.36 |
Taxonomy | HFD | HDD | ||||
---|---|---|---|---|---|---|
Choline | GPC | TMA | TMAO | TMA | ||
Phylum | k__Bacteria;p__Tenericutes | −0.7235 (p = 0.0457) | ||||
Class | ||||||
Order | k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales | 0.8105 (p = 0.0137) | 0.7746 (p = 0.0420) | 0.7746 (p = 0.0420) | ||
k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Bifidobacteriales | 0.8122 (p = 0.0129) | |||||
Family | k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae | 0.8105 (p = 0.0273) | 0.7746 (p = 0.0420) | |||
k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__S24-7 | 0.7813 (p = 0.0420) | |||||
k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Bifidobacteriales;f__Bifidobacteriaceae | 0.8122 (p = 0.0257) | |||||
Genus | k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Bifidobacteriales;f__Bifidobacteriaceae;g__Bifidobacterium | 0.8122 (p = 0.0484) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szudzik, M.; Zajdel, M.; Samborowska, E.; Perlejewski, K.; Radkowski, M.; Ufnal, M. High-Fat Diet with Normal Caloric Intake Elevates TMA and TMAO Production and Reduces Microbial Diversity in Rats. Nutrients 2025, 17, 2230. https://doi.org/10.3390/nu17132230
Szudzik M, Zajdel M, Samborowska E, Perlejewski K, Radkowski M, Ufnal M. High-Fat Diet with Normal Caloric Intake Elevates TMA and TMAO Production and Reduces Microbial Diversity in Rats. Nutrients. 2025; 17(13):2230. https://doi.org/10.3390/nu17132230
Chicago/Turabian StyleSzudzik, Mateusz, Mikołaj Zajdel, Emilia Samborowska, Karol Perlejewski, Marek Radkowski, and Marcin Ufnal. 2025. "High-Fat Diet with Normal Caloric Intake Elevates TMA and TMAO Production and Reduces Microbial Diversity in Rats" Nutrients 17, no. 13: 2230. https://doi.org/10.3390/nu17132230
APA StyleSzudzik, M., Zajdel, M., Samborowska, E., Perlejewski, K., Radkowski, M., & Ufnal, M. (2025). High-Fat Diet with Normal Caloric Intake Elevates TMA and TMAO Production and Reduces Microbial Diversity in Rats. Nutrients, 17(13), 2230. https://doi.org/10.3390/nu17132230