Impact of Hypocaloric Dietary Intervention on Phenotypic Presentations of Polycystic Ovary Syndrome (PCOS)
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Hypocaloric Dietary Intervention and Data Collection
2.3. PCOS Phenotype Definitions
2.4. Biochemical Analysis
2.5. Statistical Analysis
2.6. Ethics Statement
3. Results
3.1. Participant Characteristics at Baseline, Post-Intervention, and Follow-Up
3.2. PCOS Phenotypes at Pre-Intervention, Post-Intervention, and Follow-Up
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J.; International PCOS Network. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 2018, 33, 1602–1618. [Google Scholar] [CrossRef]
- Teede, H.J.; Tay, C.T.; Laven, J.J.E.; Dokras, A.; Moran, L.J.; Piltonen, T.T.; Costello, M.F.; Boivin, J.; Redman, L.M.; Boyle, J.A.; et al. Recommendations from the 2023 international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Eur. J. Endocrinol. 2023, 189, G43–G64. [Google Scholar] [CrossRef]
- Ezeh, U.; Yildiz, B.O.; Azziz, R. Referral Bias in Defining the Phenotype and Prevalence of Obesity in Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2013, 98, E1088–E1096. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Dunaif, A. Insulin Resistance and the Polycystic Ovary Syndrome Revisited: An Update on Mechanisms and Implications. Endocr. Rev. 2012, 33, 981–1030. [Google Scholar] [CrossRef]
- Escobar-Morreale, H.F.; Millán, J.L.S. Abdominal adiposity and the polycystic ovary syndrome. Trends Endocrinol. Metab. 2007, 18, 266–272. [Google Scholar] [CrossRef]
- Fauser, B.C.J.M.; Tarlatzis, B.C.; Rebar, R.W.; Legro, R.S.; Balen, A.H.; Lobo, R.; Carmina, E.; Chang, J.; Yildiz, B.O.; Laven, J.S.; et al. Consensus on womens health aspects of polycystic ovary syndrome (PCOS): The Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil. Steril. 2012, 97, 28–38.e25. [Google Scholar] [CrossRef]
- Apridonidze, T.; Essah, P.A.; Iuorno, M.J.; Nestler, J.E. Prevalence and characteristics of the metabolic syndrome in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2005, 90, 1929–1935. [Google Scholar] [CrossRef]
- The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004, 81, 19–25. [Google Scholar] [CrossRef]
- Rojas, J.; Chávez, M.; Olivar, L.; Rojas, M.; Morillo, J.; Mejías, J.; Calvo, M.; Bermúdez, V. Polycystic ovary syndrome, insulin resistance, and obesity: Navigating the pathophysiologic labyrinth. Int. J. Reprod. Med. 2014, 2014, 719050. [Google Scholar] [CrossRef]
- Lim, S.S.; Norman, R.J.; Davies, M.J.; Moran, L.J. The effect of obesity on polycystic ovary syndrome: A systematic review and meta-analysis. Obes. Rev. 2013, 14, 95–109. [Google Scholar] [CrossRef]
- Lizneva, D.; Suturina, L.; Walker, W.; Brakta, S.; Gavrilova-Jordan, L.; Azziz, R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil. Steril. 2016, 106, 6–15. [Google Scholar] [CrossRef]
- Kim, J.J.; Hwang, K.R.; Choi, Y.M.; Moon, S.Y.; Chae, S.J.; Park, C.W.; Kim, H.O.; Choi, D.S.; Kwon, H.C.; Kang, B.M.; et al. Complete phenotypic and metabolic profiles of a large consecutive cohort of untreated Korean women with polycystic ovary syndrome. Fertil. Steril. 2014, 101, 1424–1430.e3. [Google Scholar] [CrossRef]
- Azziz, R.; Carmina, E.; Dewailly, D.; Diamanti-Kandarakis, E.; Escobar-Morreale, H.F.; Futterweit, W.; Janssen, O.E.; Legro, R.S.; Norman, R.J.; Taylor, A.E.; et al. Positions statement: Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: An Androgen Excess Society guideline. J. Clin. Endocrinol. Metab. 2006, 91, 4237–4245. [Google Scholar] [CrossRef]
- Goverde, A.J.; van Koert, A.J.B.; Eijkemans, M.J.; Knauff, E.A.; Westerveld, H.E.; Fauser, B.C.; Broekmans, F.J. Indicators for metabolic disturbances in anovulatory women with polycystic ovary syndrome diagnosed according to the Rotterdam consensus criteria. Hum. Reprod. 2009, 24, 710–717. [Google Scholar] [CrossRef]
- Yilmaz, M.; Isaoglu, U.; Delibas, I.B.; Kadanali, S. Anthropometric, clinical and laboratory comparison of four phenotypes of polycystic ovary syndrome based on Rotterdam criteria. J. Obstet. Gynaecol. Res. 2011, 37, 1020–1026. [Google Scholar] [CrossRef]
- Pehlivanov, B.; Orbetzova, M. Characteristics of different phenotypes of polycystic ovary syndrome in a Bulgarian population. Gynecol. Endocrinol. 2007, 23, 604–609. [Google Scholar] [CrossRef]
- Jamil, A.S.; Alalaf, S.K.; Al-Tawil, N.G.; Al-Shawaf, T. Comparison of clinical and hormonal characteristics among four phenotypes of polycystic ovary syndrome based on the Rotterdam criteria. Arch. Gynecol. Obstet. 2016, 293, 447–456. [Google Scholar] [CrossRef]
- Barber, T.M.; Wass, J.A.H.; McCarthy, M.I.; Franks, S. Metabolic characteristics of women with polycystic ovaries and oligo-amenorrhoea but normal androgen levels: Implications for the management of polycystic ovary syndrome. Clin. Endocrinol. 2007, 66, 513–517. [Google Scholar] [CrossRef]
- Shroff, R.; Syrop, C.H.; Davis, W.; Van Voorhis, B.J.; Dokras, A. Risk of metabolic complications in the new PCOS phenotypes based on the Rotterdam criteria. Fertil. Steril. 2007, 88, 1389–1395. [Google Scholar] [CrossRef]
- Clark, N.M.; Podolski, A.J.; Brooks, E.D.; Chizen, D.R.; Pierson, R.A.; Lehotay, D.C.; Lujan, M.E. Prevalence of Polycystic Ovary Syndrome Phenotypes Using Updated Criteria for Polycystic Ovarian Morphology: An Assessment of Over 100 Consecutive Women Self-reporting Features of Polycystic Ovary Syndrome. Reprod. Sci. 2014, 21, 1034–1043. [Google Scholar] [CrossRef]
- Dewailly, D.; Catteau-Jonard, S.; Reyss, A.C.; Leroy, M.; Pigny, P. Oligoanovulation with Polycystic Ovaries but Not Overt Hyperandrogenism. J. Clin. Endocrinol. Metab. 2006, 91, 3922–3927. [Google Scholar] [CrossRef]
- Piouka, A.; Farmakiotis, D.; Katsikis, I.; Macut, D.; Gerou, S.; Panidis, D. Anti-Mullerian hormone levels reflect severity of PCOS but are negatively influenced by obesity: Relationship with increased luteinizing hormone levels. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E238–E243. [Google Scholar] [CrossRef]
- Azziz, R.; Carmina, E.; Dewailly, D.; Diamanti-Kandarakis, E.; Escobar-Morreale, H.F.; Futterweit, W.; Janssen, O.E.; Legro, R.S.; Norman, R.J.; Taylor, A.E.; et al. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: The complete task force report. Fertil. Steril. 2009, 91, 456–488. [Google Scholar] [CrossRef]
- Moran, L.J.; Misso, M.L.; Wild, R.A.; Norman, R.J. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. Update 2010, 16, 347–363. [Google Scholar] [CrossRef]
- Meyer, C.; McGrath, B.P.; Teede, H.J. Overweight women with polycystic ovary syndrome have evidence of subclinical cardiovascular disease. J. Clin. Endocrinol. Metab. 2005, 90, 5711–5716. [Google Scholar] [CrossRef]
- Lim, S.S.; Kakoly, N.S.; Tan, J.W.J.; Fitzgerald, G.; Bahri Khomami, M.; Joham, A.E.; Cooray, S.D.; Misso, M.L.; Norman, R.J.; Harrison, C.L.; et al. Metabolic syndrome in polycystic ovary syndrome: A systematic review, meta-analysis and meta-regression. Obes. Rev. 2019, 20, 339–352. [Google Scholar] [CrossRef]
- Mousa, A.; Tay, C.T.; Teede, H. Technical Report for the 2023 International Evidence-Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome; Monash University: Melbourne, VIC, Australia, 2023. [Google Scholar] [CrossRef]
- Pasquali, R.; Gambineri, A.; Cavazza, C.; Ibarra Gasparini, D.; Ciampaglia, W.; Cognigni, G.E.; Pagotto, U. Heterogeneity in the responsiveness to long-term lifestyle intervention and predictability in obese women with polycystic ovary syndrome. Eur. J. Endocrinol. 2011, 164, 53–60. [Google Scholar] [CrossRef]
- Dietz de Loos, A.L.P.; Jiskoot, G.; Timman, R.; Beerthuizen, A.; Busschbach, J.J.V.; Laven, J.S.E. Improvements in PCOS characteristics and phenotype severity during a randomized controlled lifestyle intervention. Reprod. Biomed. Online 2021, 43, 298–309. [Google Scholar] [CrossRef]
- Duyff, R. (Ed.) American Dietetic Association Complete Food and Nutrition Guide, 3rd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Snetselaar, L.G.; de Jesus, J.M.; DeSilva, D.M.; Stoody, E.E. Dietary Guidelines for Americans, 2020–2025: Understanding the Scientific Process, Guidelines, and Key Recommendations. Nutr. Today 2021, 56, 287–295. [Google Scholar] [CrossRef]
- Lujan, M.E.; Brooks, E.D.; Kepley, A.L.; Chizen, D.R.; Pierson, R.A.; Peppin, A.K. Grid analysis improves reliability in follicle counts made by ultrasonography in women with polycystic ovary syndrome. Ultrasound Med. Biol. 2010, 36, 712–718. [Google Scholar] [CrossRef]
- Dewailly, D.; Lujan, M.E.; Carmina, E.; Cedars, M.I.; Laven, J.; Norman, R.J.; Escobar-Morreale, H.F. Definition and significance of polycystic ovarian morphology: A task force report from the androgen excess and polycystic ovary syndrome society. Hum. Reprod. Update 2014, 20, 334–352. [Google Scholar] [CrossRef]
- Vesper, H.W.; Botelho, J.C.; Wang, Y. Challenges and improvements in testosterone and estradiol testing. Asian J. Androl. 2014, 16, 178–184. [Google Scholar] [CrossRef]
- Vermeulen, A.; Verdonck, L.; Kaufman, J.M. A critical evaluation of simple methods for the estimation of free testosterone in serum. J. Clin. Endocrinol. Metab. 1999, 84, 3666–3672. [Google Scholar] [CrossRef]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of HOMA modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef]
- Piqueras, P.; Ballester, A.; Durá-Gil, J.V.; Martinez-Hervas, S.; Redón, J.; Real, J.T. Anthropometric Indicators as a Tool for Diagnosis of Obesity and Other Health Risk Factors: A Literature Review. Front. Psychol. 2021, 12, 631179. [Google Scholar] [CrossRef]
- Valdez, R. A simple model-based index of abdominal adiposity. J. Clin. Epidemiol. 1991, 44, 955–956. [Google Scholar] [CrossRef]
- Cowan, S.; Lim, S.; Alycia, C.; Pirotta, S.; Thomson, R.; Gibson-Helm, M.; Blackmore, R.; Naderpoor, N.; Bennett, C.; Ee, C.; et al. Lifestyle management in polycystic ovary syndrome—Beyond diet and physical activity. BMC Endocr. Disord. 2023, 23, 14. [Google Scholar] [CrossRef]
- Moran, L.J.; Noakes, M.; Clifton, P.M.; Tomlinson, L.; Galletly, C.; Norman, R.J. Dietary composition in restoring reproductive and metabolic physiology in overweight women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2003, 88, 812–819. [Google Scholar] [CrossRef]
- Kazemi, M.; Pierson, R.A.; McBreairty, L.E.; Chilibeck, P.D.; Zello, G.A.; Chizen, D.R. A randomized controlled trial of a lifestyle intervention with longitudinal follow-up on ovarian dysmorphology in women with polycystic ovary syndrome. Clin. Endocrinol. 2020, 92, 525–535. [Google Scholar] [CrossRef]
- Palomba, S.; Falbo, A.; Giallauria, F.; Russo, T.; Rocca, M.; Tolino, A.; Zullo, F.; Orio, F. Six weeks of structured exercise training and hypocaloric diet increases the probability of ovulation after clomiphene citrate in overweight and obese patients with polycystic ovary syndrome: A randomized controlled trial. Hum. Reprod. 2010, 25, 2783–2791. [Google Scholar] [CrossRef]
- Lim, S.S.; Hutchison, S.K.; Ryswyk, E.V.; Norman, R.J.; Teede, H.J.; Moran, L.J. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst. Rev. 2019, 2019, CD007506. [Google Scholar] [CrossRef]
- Nybacka, Å.; Carlström, K.; Ståhle, A.; Nyrén, S.; Hellström, P.M.; Hirschberg, A.L. Randomized comparison of the influence of dietary management and/or physical exercise on ovarian function and metabolic parameters in overweight women with polycystic ovary syndrome. Fertil. Steril. 2011, 96, 1508–1513. [Google Scholar] [CrossRef]
- Hoeger, K.M.; Kochman, L.; Wixom, N.; Craig, K.; Miller, R.K.; Guzick, D.S. A randomized, 48-week, placebo-controlled trial of intensive lifestyle modification and/or metformin therapy in overweight women with polycystic ovary syndrome: A pilot study. Fertil. Steril. 2004, 82, 421–429. [Google Scholar] [CrossRef]
- Jarrett, B.Y.; Vanden Brink, H.; Oldfield, A.L.; Lujan, M.E. Ultrasound Characterization of Disordered Antral Follicle Development in Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2020, 105, e3847–e3861. [Google Scholar] [CrossRef]
- Franks, S.; Stark, J.; Hardy, K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum. Reprod. Update 2008, 14, 367–378. [Google Scholar] [CrossRef]
- Maciel, G.A.R.; Baracat, E.C.; Benda, J.A.; Markham, S.M.; Hensinger, K.; Chang, R.J.; Erickson, G.F. Stockpiling of transitional and classic primary follicles in ovaries of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2004, 89, 5321–5327. [Google Scholar] [CrossRef]
- Jonard, S.; Dewailly, D. The follicular excess in polycystic ovaries, due to intra-ovarian hyperandrogenism, may be the main culprit for the follicular arrest. Hum. Reprod. Update 2004, 10, 107–117. [Google Scholar] [CrossRef]
- Redman, L.M.; Elkind-Hirsch, K.; Ravussin, E. Aerobic Exercise in Women with Polycystic Ovary Syndrome Improves Ovarian Morpholgy Independent of Changes in Body Composition. Fertil. Steril. 2011, 95, 2696–2699. [Google Scholar] [CrossRef]
- Christ, J.P.; Falcone, T. Bariatric Surgery Improves Hyperandrogenism, Menstrual Irregularities, and Metabolic Dysfunction Among Women with Polycystic Ovary Syndrome (PCOS). Obes. Surg. 2018, 28, 2171–2177. [Google Scholar] [CrossRef]
- Moini, A.; Arabipoor, A.; Hemat, M.; Ahmadi, J.; Salman-Yazdi, R.; Zolfaghari, Z. The effect of weight loss program on serum anti-Müllerian hormone level in obese and overweight infertile women with polycystic ovary syndrome. Gynecol. Endocrinol. 2019, 35, 119–123. [Google Scholar] [CrossRef]
- Thomson, R.L.; Buckley, J.D.; Moran, L.J.; Noakes, M.; Clifton, P.M.; Norman, R.J.; Brinkworth, G.D. The effect of weight loss on anti-Müllerian hormone levels in overweight and obese women with polycystic ovary syndrome and reproductive impairment. Hum. Reprod. 2009, 24, 1976–1981. [Google Scholar] [CrossRef]
- Vigorito, C.; Giallauria, F.; Palomba, S.; Cascella, T.; Manguso, F.; Lucci, R.; De Lorenzo, A.; Tafuri, D.; Lombardi, G.; Colao, A.; et al. Beneficial Effects of a Three-Month Structured Exercise Training Program on Cardiopulmonary Functional Capacity in Young Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2007, 92, 1379–1384. [Google Scholar] [CrossRef]
- Hoeger, K.; Davidson, K.; Kochman, L.; Cherry, T.; Kopin, L.; Guzick, D.S. The impact of metformin, oral contraceptives, and lifestyle modification on polycystic ovary syndrome in obese adolescent women in two randomized, placebo-controlled clinical trials. J. Clin. Endocrinol. Metab. 2008, 93, 4299–4306. [Google Scholar] [CrossRef]
- Jedel, E.; Labrie, F.; Odén, A.; Holm, G.; Nilsson, L.; Janson, P.O.; Lind, A.K.; Ohlsson, C.; Stener-Victorin, E. Impact of electro-acupuncture and physical exercise on hyperandrogenism and oligo/amenorrhea in women with polycystic ovary syndrome: A randomized controlled trial. Am. J. Physiol. Endocrinol. Metab. 2011, 300, E37–E45. [Google Scholar] [CrossRef]
- Azziz, R. The evaluation and management of hirsutism. Obstet. Gynecol. 2003, 101 Pt 1, 995–1007. [Google Scholar] [CrossRef]
- Guzick, D.S.; Wing, R.; Smith, D.; Berga, S.L.; Winters, S.J. Endocrine consequences of weight loss in obese, hyperandrogenic, anovulatory women. Fertil. Steril. 1994, 61, 598–604. [Google Scholar] [CrossRef]
- Azadi-Yazdi, M.; Karimi-Zarchi, M.; Salehi-Abargouei, A.; Fallahzadeh, H.; Nadjarzadeh, A. Effects of Dietary Approach to Stop Hypertension diet on androgens, antioxidant status and body composition in overweight and obese women with polycystic ovary syndrome: A randomised controlled trial. J. Hum. Nutr. Diet. 2017, 30, 275–283. [Google Scholar] [CrossRef]
- Thomson, R.L.; Buckley, J.D.; Noakes, M.; Clifton, P.M.; Norman, R.J.; Brinkworth, G.D. The effect of a hypocaloric diet with and without exercise training on body composition, cardiometabolic risk profile, and reproductive function in overweight and obese women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2008, 93, 3373–3380. [Google Scholar] [CrossRef]
- Van Dam, E.W.; Roelfsema, F.; Veldhuis, J.D.; Hogendoorn, S.; Westenberg, J.; Helmerhorst, F.M.; Frölich, M.; Krans, H.M.; Meinders, A.E.; Pijl, H. Retention of estradiol negative feedback relationship to LH predicts ovulation in response to caloric restriction and weight loss in obese patients with polycystic ovary syndrome. Am. J. Physiol. Endocrinol. Metab. 2004, 286, E615–E620. [Google Scholar] [CrossRef]
- Bhandari, M.; Kosta, S.; Bhandari, M.; Reddy, M.; Mathur, W.; Gupta, M. Effects of bariatric surgery on people with obesity and polycystic ovary syndrome: A large single center study from India. Obes. Surg. 2022, 32, 3305–3312. [Google Scholar] [CrossRef]
- Li, S.; Ke, J.; Cheng, J.; Zhao, D.; Yu, K. Effect of Sleeve Gastric Surgery on Body Weight and Hypothalamic-Pituitary Axis Hormone Levels in Patients with Polycystic Ovary Syndrome. Obes. Surg. 2024, 34, 2375–2382. [Google Scholar] [CrossRef]
Pre-Intervention (N = 20) | Post-Intervention (N = 20) | % Change Pre vs. Post | Follow-Up (N = 12) | % Change Post vs. Follow-Up | |
---|---|---|---|---|---|
Weight (kg) | 100.7 ± 21.2 a | 92.5 ± 18.7 b | −8 ± 3 | 93.9 ± 23.1 c | 6 ± 3 |
BMI (kg/m2) | 37.5 ± 6.0 a | 34.5 ± 5.4 b | −8 ± 3 | 34.6 ± 5.9 c | 6 ± 3 |
Waist Circumference (cm) | 108 ± 18 a | 96 ± 15 b | −10 ± 4 | 97 ± 16 c | 7 ± 7 |
Hips Circumference (cm) | 120 ± 13 a | 112 ± 12 b | −7 ± 4 | 114 ± 13 a | 6 ± 4 |
Waist-to-Hips Ratio | 0.88 ± 0.07 a | 0.86 ± 0.06 b | −3 ± 5 | 0.84 ± 0.06 b | 0 ± 5 |
Total Percent Fat (%) | 42 ± 5 a | 41 ± 4 b | −3 ± 2 | 39 ± 7 ab | 2 ± 8 |
Lean-to-Fat Ratio | 1.3 ± 0.3 a | 1.4 ± 0.3 b | 6 ± 5 | 1.5 ± 0.3 b | −2 ± 5 |
Lean Mass (kg) | 55.7 ± 8.7 a | 53.1 ± 8.1 b | −6 ± 3 | 54.6 ± 9.9 a | 5 ± 3 |
Trunk Fat Mass (kg) | 21.9 ± 7.5 a | 20.2 ± 6.4 b | −10 ± 7 | 18.7 ± 8.2 ab | 7 ± 8 |
Systolic Pressure (mmHg) | 123 ± 11 a | 117 ± 8 a | −4 ± 9 | 122 ± 6 a | 8 ± 14 |
Diastolic Pressure (mmHg) | 82 ± 8 a | 78 ± 6 a | −4 ± 9 | 82 ± 5 a | 6 ± 10 |
Fasting Glucose (mg/dL) | 96 ± 6 a | 94 ± 7 a | −2 ± 7 | 95 ± 7 a | 2 ± 12 |
2 h Glucose (mg/dL) | 113 ± 23 a | 104 ± 20 a | −7 ± 21 | 112 ± 36 a | 2 ± 19 |
Fasting Insulin (ulU/mL) | 19.6 ± 15.5 a | 14.6 ± 7.1 a | −10 ± 36 | 15.6 ± 7.3 a | 29 ± 50 |
2 h Insulin (ulU/mL) | 109.0 ± 110.6 a | 73.7 ± 40.3 a | −12 ± 45 | 87.2 ± 59.9 a | 27 ± 66 |
HOMA-IR | 4.8 ± 3.9 a | 3.4 ± 1.7 a | −11 ± 37 | 3.7 ± 1.7 a | 30 ± 48 |
Pre-Intervention (N = 20) | Post-Intervention (N = 20) | % Change Pre vs. Post | Follow-Up (N = 12) | % Change Post vs. Follow-Up | |
---|---|---|---|---|---|
Menstrual Cycle Length (d) | 99 ± 77 a | 58 ± 32 b | −20 ± 53 | 64 ± 26 ab | 38 ± 79 |
Regular (21–35 d) | 0 (0%) | 6 (30%) | - | 1 (8.33%) | - |
Mild Oligomenorrhea (36–59 d) | 6 (30%) | 7 (35%) | - | 4 (33.33% | - |
Oligomenorrhea (60–90 d) | 8 (40%) | 4 (20%) | - | 5 (41.67%) | - |
Amenorrhea (>90 d) | 6 (30%) | 3 (15%) | - | 2 (16.57%) | - |
LH (mlU/mL) | 6.76 ± 3.29 a | 9.19 ± 4.12 b | 65 ± 114 | 6.77 ± 2.81 ab | −9 ± 58 |
FSH (mlU/mL) | 6.3 ± 1.9 a | 6.7 ± 1.9 a | 10 ± 27 | 6.3 ± 3.0 a | −11 ± 36 |
LH: FSH ratio | 1.1 ± 0.6 a | 1.4 ± 0.6 a | 44 ± 82 | 1.3 ± 0.9 a | 22 ± 110 |
Hirsutism Score | 7 ± 4 a | 7 ± 4 a | −3 ± 33 | 5 ± 3 a | −6 ± 25 |
Total Testosterone (ng/dL) | 49.8 ± 21.4 a | 83.3 ± 51.5 b | 105 ± 197 | 71.3 ± 18.5 b | 11 ± 37 |
SHBG (nmol/L) | 24.2 ± 9.8 a | 28.5 ± 11.9 b | 23 ± 43 | 29.3 ± 12.9 ab | −10 ± 14 |
Free Androgen Index | 9 ± 6 a | 12 ± 11 a | 82 ± 199 | 11 ± 6 a | 27 ± 41 |
AMH (ng/mL) | 8.7 ± 3.1 a | 9.2 ± 2.8 a | 10 ± 24 | 9.3 ± 3.0 a | −0 ± 26 |
Mean FNPO | 45 ± 33 a | 35 ± 20 b | −10 ± 37 | 48 ± 31 ab | 32 ± 41 |
Mean OV (mL) | 11.85 ± 4.36 a | 11.28 ± 3.83 a | −3 ± 16 | 11.77 ± 7.10 a | −5 ± 33 |
Pre-Intervention Markers | Favorable (N = 8) | Unfavorable (N = 12) | p-Value |
---|---|---|---|
Age (y) | 27 ± 4 | 28 ± 5 | 0.588 |
Baseline MCL | 114 ± 111 | 89 ± 46 | 0.565 |
Weight (kg) | 102.2 ± 25.3 | 99.6 ± 19.1 | 0.616 |
BMI (kg/m2) | 37.7 ± 6.5 | 37.4 ± 5.9 | 0.925 |
Waist Circumference (cm) | 107 ± 24 | 108 ± 14 | 0.728 |
Hips Circumference (cm) | 119 ± 14 | 121 ± 12 | 0.761 |
Waist-to-hips Ratio | 0.89 ± 0.10 | 0.89 ± 0.05 | 0.512 |
Systolic Pressure (mmHg) | 123 ± 10 | 123 ± 11 | 0.898 |
Diastolic Pressure (mmHg) | 81 ± 8 | 84 ± 8 | 0.434 |
Fasting Glucose (mg/dL) | 94 ± 6 | 98 ± 6 | 0.232 |
2 h Glucose (mg/dL) | 113 ± 28 | 114 ± 22 | 0.958 |
Fasting insulin (ulU/mL) | 17.6 ± 13.4 | 21.0 ± 17.3 | 0.908 |
2 h insulin (ulU/mL) | 84.7 ± 45.8 | 125.2 ± 138.2 | 0.362 |
HOMA IR | 4.1 ± 3.1 | 5.1 ± 4.4 | 0.787 |
Lean: Fat Ratio | 1.4 ± 0.4 | 1.3 ± 0.3 | 0.784 |
Total Percent fat (%) | 42 ± 6 | 42 ± 4 | 0.932 |
Lean Mass (kg) | 56.4 ± 10.4 | 55.3 ± 7.9 | 0.806 |
Trunk Fat Mass (kg) | 21.8 ± 9.7 | 22.0 ± 6.2 | 0.967 |
LH (mlU/mL) | 5.7 ± 3.3 | 7.5 ± 3.2 | 0.256 |
FSH (mlU/mL) | 6.4 ± 2.5 | 6.3 ± 1.4 | 0.909 |
LH: FSH ratio | 0.9 ± 0.5 | 1.3 ± 0.6 | 0.184 |
Hirsutism | 6 ± 5 | 8 ± 4 | 0.533 |
Free Androgen Index | 7 ± 4 | 9 ± 7 | 0.563 |
Total Testosterone (ng/dL) | 49.9 ± 16.1 | 49.8 ± 25.1 | 0.440 |
SHBG (nmol/L) | 26.0 ± 8.3 | 22.9 ± 10.8 | 0.483 |
AMH (ng/mL) | 7.7 ± 3.9 | 9.5 ± 2.2 | 0.251 |
Mean OV (mL) | 11 ± 4 | 13 ± 5 | 0.596 |
Mean FNPO (2–9 mm) | 43 ± 29 | 46 ± 36 | 0.847 |
Pre-Intervention | % Change | |||||
---|---|---|---|---|---|---|
Variable | β | Odds Ratio | 95% CI | β | Odds Ratio | 95% CI |
Age (y) | −0.056 | 0.946 | [0.776, 1.153] | - | - | - |
Menstrual Cycle Length (d) | 0.004 | 1.004 | [0.992, 1.017] | −0.009 | 0.991 | [0.972, 1.011] |
Weight (kg) | 0.006 | 1.006 | [0.964, 1.050] | 0.140 | 1.151 | [0.833, 1.589] |
BMI (kg/m2) | 0.008 | 1.008 | [0.865, 1.175] | 0.147 | 1.159 | [0.832, 1.612] |
Waist Circumference (cm) | −0.004 | 0.996 | [0.947, 1.048] | 0.099 | 1.104 | [0.869, 1.403] |
Hips Circumference (cm) | −0.013 | 0.987 | [0.917, 1.063] | 0.204 | 1.227 | [0.918, 1.639] |
Waist-to-hips Ratio | −0.493 | 0.611 | [2.07 × 10−6, 180,252.8] | −0.051 | 0.950 | [0.775, 1.164] |
Systolic Pressure (mmHg) | 0.006 | 1.006 | [0.922, 1.097] | −0.040 | 0.961 | [0.863, 1.070] |
Diastolic Pressure (mmHg) | −0.050 | 0.951 | [0.845, 1.070] | 0.022 | 1.022 | [0.923, 1.133] |
Fasting Glucose (mg/dL) | −0.100 | 0.905 | [0.767, 1.067] | 0.023 | 1.023 | [0.893, 1.172] |
2 h Glucose (mg/dL) | −0.001 | 0.998 | [0.961, 1.039] | 0.055 | 1.056 | [0.995, 1.121] |
Fasting Insulin (ulU/mL) | −0.016 | 0.985 | [0.925, 1.048] | 0.026 | 1.026 | [0.996, 1.058] |
2 h Insulin (ulU/mL) | −0.004 | 0.995 | [0.984, 1.007] | 0.025 | 1.026 | [0.992, 1.060] |
HOMA IR | −0.076 | 0.927 | [0.715, 1.201] | 0.023 | 1.024 | [0.995, 1.053] |
Lean: Fat Ratio | 0.327 | 1.387 | [0.070, 27.452] | 0.197 | 1.218 | [0.945, 1.570] |
Total Percent Fat (%) | −0.009 | 0.991 | [0.821, 1.195] | −0.367 | 0.693 | [0.429, 1.120] |
Lean Mass (kg) | 0.000 | 1.000 | [1.000, 1.000] | 0.392 | 1.480 | [0.959, 2.282] |
Fat Mass (kg) | −0.000 | 1.000 | [1.000, 1.000] | −0.030 | 0.971 | [0.847, 1.112] |
LH | −0.186 | 0.830 | [0.607, 1.134] | 0.010 | 1.010 | [0.996, 1.025] |
FSH | 0.035 | 1.036 | [0.631, 1.701] | 0.028 | 1.028 | [0.983, 1.075] |
LH: FSH ratio | −1.230 | 0.292 | [0.042, 2.032] | 0.013 | 1.013 | [0.992, 1.034] |
Hirsutism | −0.075 | 0.928 | [0.745, 1.156] | −0.011 | 0.989 | [0.960, 1.019] |
Free Androgen Index | −0.066 | 0.936 | [0.786, 1.114] | −0.004 | 0.996 | [0.986, 1.005] |
Total Testosterone (ng/dL) | 0.000 | 1.000 | [0.959, 1.004] | −0.010 | 0.991 | [0.975, 1.007] |
SHBG (nmol/L) | 0.034 | 1.035 | [0.940, 1.389] | −0.039 | 0.962 | [0.907, 1.019] |
AMH_PICO | −0.000 | 1.000 | [1.000, 1.000] | 0.023 | 1.023 | [0.980, 1.068] |
Mean FNPS | 0.066 | 1.069 | [0.887, 1.287] | −0.007 | 0.993 | [0.979, 1.008] |
Mean OV (mL) | −0.055 | 0.947 | [0.776, 1.155] | 0.008 | 1.008 | [0.951, 1.069] |
Mean FNPO (2–9 mm) | −0.004 | 0.996 | [0.968, 1.026] | −0.008 | 0.992 | [0.966, 1.019] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carter, F.E.; Jarrett, B.Y.; Oldfield, A.L.; Vanden Brink, H.; Kim, J.Y.; Lujan, M.E. Impact of Hypocaloric Dietary Intervention on Phenotypic Presentations of Polycystic Ovary Syndrome (PCOS). Nutrients 2025, 17, 2223. https://doi.org/10.3390/nu17132223
Carter FE, Jarrett BY, Oldfield AL, Vanden Brink H, Kim JY, Lujan ME. Impact of Hypocaloric Dietary Intervention on Phenotypic Presentations of Polycystic Ovary Syndrome (PCOS). Nutrients. 2025; 17(13):2223. https://doi.org/10.3390/nu17132223
Chicago/Turabian StyleCarter, Faith E., Brittany Y. Jarrett, Alexis L. Oldfield, Heidi Vanden Brink, Joy Y. Kim, and Marla E. Lujan. 2025. "Impact of Hypocaloric Dietary Intervention on Phenotypic Presentations of Polycystic Ovary Syndrome (PCOS)" Nutrients 17, no. 13: 2223. https://doi.org/10.3390/nu17132223
APA StyleCarter, F. E., Jarrett, B. Y., Oldfield, A. L., Vanden Brink, H., Kim, J. Y., & Lujan, M. E. (2025). Impact of Hypocaloric Dietary Intervention on Phenotypic Presentations of Polycystic Ovary Syndrome (PCOS). Nutrients, 17(13), 2223. https://doi.org/10.3390/nu17132223