Sucralose: A Review of Environmental, Oxidative and Genomic Stress
Abstract
1. Introduction
2. Materials and Methods
3. Sucralose Environmental Stress Overview
3.1. Oxidative Stress of Sucralose
3.1.1. Cellular and Molecular Effects
3.1.2. Systemic and Organ-Specific Toxicity
3.1.3. Interactions with Gut Microbiota and Immune System
3.1.4. Neurotoxicity and Behavioral Outcomes
3.1.5. Environmental and Thermal Degradation
3.1.6. Dietary Context and Mitigation Strategies
3.2. Genomic Stress Induced by Sucralose
3.3. Environmental Stress of Sucralose
4. Discussion
4.1. Oxidative Stress Induced by Sucralose and Its Alleviation
4.2. State on Genomic Stress Induced by Sucralose
4.3. Environmental Stress and the Need for Sucralose Substitution
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DMT1 | Diabetes mellitus type 1 |
DMT2 | Diabetes mellitus type 2 |
MODY | Maturity-Onset Diabetes of the Young |
NSAID | Non-Steroid Anti-Inflammatory Drugs |
References
- Escudeiro Casarin, D.; Donadel, G.; Dalmagro, M.; de Oliveira, P.C.; de Cássia Faglioni Boleta Ceranto, D.; Zardeto, G. Diabetes Mellitus: Causas, Tratamento e Prevenção. Braz. J. Dev. 2022, 8, 10062–10075. (In Portuguese) [Google Scholar] [CrossRef]
- Tomic, D.; Shaw, J.E.; Magliano, D.J. The Burden and Risks of Emerging Complications of Diabetes Mellitus. Nat. Rev. Endocrinol. 2022, 18, 525–539. [Google Scholar] [CrossRef]
- Yedjou, C.G.; Grigsby, J.; Mbemi, A.; Nelson, D.; Mildort, B.; Latinwo, L.; Tchounwou, P.B. The Management of Diabetes Mellitus Using Medicinal Plants and Vitamins. Int. J. Mol. Sci. 2023, 24, 9085. [Google Scholar] [CrossRef]
- Modzelewski, R.; Stefanowicz-Rutkowska, M.M.; Matuszewski, W.; Bandurska-Stankiewicz, E.M. Gestational Diabetes Mellitus—Recent Literature Review. J. Clin. Med. 2022, 11, 5736. [Google Scholar] [CrossRef] [PubMed]
- Bakay, M.; Pandei, R.; Hakonarson, H. Genes Involved in Type 1 Diabetes: An Update. Genes 2013, 4, 499–521. [Google Scholar] [CrossRef]
- Laakso, M.; Fernandes Silva, L. Genetics of Type 2 Diabetes: Past, Present and Future. Nutrients 2022, 14, 3201. [Google Scholar] [CrossRef]
- Liguori, F.; Mascolo, E.; Verni, F. The Genetics of Diabetes: What we Can Learn from Drosophila. Int. J. Mol. Sci. 2021, 22, 11295. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Liu, W.; Zhang, Y.; Tan, Q.; Song, J.; Fan, L.; You, X.; Zhou, M.; Wang, B.; Chen, W. Styrene and Ethylbenzene Exposure and Type 2 Diabetes Mellitus: A Longitudinal Gene-Environment Study. Eco-Environ. Health 2024, 3, 452–457. [Google Scholar] [CrossRef]
- Minuri Kumarasiri, I.; Jebaseeli Hoole, T.; Wadu Akila Nimanthi, M.; Jayasundara, I.; Balasubramaniam, R.; Atapattu, N. Clinical and Genetic Characteristics and Outcome in Patients with Neonatal Diabetes Mellitus from a Low Middle-Income Country. J. Clin. Res. Pediatr. Endocrinol. 2024, 16, 507–513. [Google Scholar] [CrossRef]
- Gupta, M. Sugar Substitutes: Mechanism, Availability, Current Use and Safety Concerns—Na Update. Open Access Maced. J. Med. Sci. 2018, 19, 1888–1894. [Google Scholar] [CrossRef]
- Méndez-García, L.A.; Bueno-Hernández, N.; Cid-Soto, M.A.; De León, K.L.; Mendoza-Martínez, V.M.; Espinosa-Flores, A.J.; Carrero-Aguirre, M.; Esquivel-Velázquez, M.; León-Hernández, M.; Viurcos-Sanabria, R.; et al. Ten-Week Sucralose Consumption Induces Gut Dysbiosis and Altered Glucose and Insulin Levels in Healthy Young Adults. Microorganisms 2022, 10, 434. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Liu, S.; Peng, Z.; Wang, B.; Zhan, S.; Huang, S.; Li, W.; Liu, D.; Yang, X.; Zhu, Y.; et al. Comparative effects of different sugar substitutes: Mogroside V, stevioside, sucralose, and erythritol on intestinal health in a type 2 diabetes mellitus mouse. Food Funct. 2025, 16, 2108–2123. [Google Scholar] [CrossRef] [PubMed]
- Ashwell, M.; Gibson, S.; Bellisle, F.; Buttriss, J.; Drewnowski, A.; Fantino, M.; Gallagher, A.M.; de Graaf, K.; Goscinny, S.; Hardman, C.A.; et al. Expert consensus on low-calorie sweeteners: Facts, research gaps and suggested actions. Nutr. Res. Rev. 2020, 33, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Diaz, J.; Pastor-Villaescusa, B.; Rueda-Robles, A.; Abadia-Molina, F.; Ruiz-Ojeda, F.J. Plausible Biological Interactions of Low- and Non-Calorie Sweeteners with the Intestinal Microbiota: An Update of Recent Studies. Nutrients 2020, 12, 1153. [Google Scholar] [CrossRef]
- Mattoli, L.; Fodaroni, G.; Proietti, G.; Flamini, E.; Paoli, B.; Massa, L.; Ferrara, G.C.; Giovagnoni, E.; Gianni, M. Biodegradability of dietary supplements: Advanced analytical methods to study the environmental fate of artificial sweeteners and dyes. J. Pharm. Biomed. Anal. 2024, 255, 116575. [Google Scholar] [CrossRef]
- del Pozo, S.; Gómez-Martínez, S.; Díaz, L.E.; Nova, E.; Urrialde, R.; Marcos, A. Potential Effects of Sucralose and Saccharin on Gut Microbiota: A Review. Nutrients 2022, 14, 1682. [Google Scholar] [CrossRef]
- Tilg, H.; Adolph, T.E. Sucralose and Erythritol—Not Too Sweet. N. Engl. J. Med. 2023, 389, 859–861. [Google Scholar] [CrossRef]
- Tkach, V.V.; Morozova, T.V.; O’Neill de Mascarenhas Gaivão, I.; Ivanushko, Y.G.; Martins, J.I.F.P.; Barros, A.N. Advancement and Challenges in Sucralose Determination: A Comparative Review of Chromatographic, Electrochemical and Spectrophotometric Methods. Foods 2025, 14, 1267. [Google Scholar] [CrossRef]
- Aguayo-Guerrero, J.A.; Méndez-García, L.A.; Manjarrez-Reyna, A.N.; Esquivel-Velázquez, M.; León-Cabrera, S.; Meléndez, G.; Zambrano, E.; Ramos-Martínez, E.; Fragoso, J.M.; Briones-Garduño, J.C.; et al. Newborns from Mothers Who Intensely Consumed Sucralose during Pregnancy Are Heavier and Exhibit Markers of Metabolic Alteration and Low-Grade Systemic Inflammation: A Cross-Sectional, Prospective Study. Biomedicines 2023, 11, 650. [Google Scholar] [CrossRef]
- Stampe, S.; Leth-Møller, M.; Greibe, E.; Hoffmann-Lücke, E.; Pedersen, M.; Ovesen, P. Artificial Sweeteners in Breast Milk: A Clinical Investigation with a Kinetic Perspective. Nutrients 2022, 14, 2635. [Google Scholar] [CrossRef]
- Langevin, B.; Gopalakrishnan, M.; Kuttamperoor, J.; van den Anker, J.; Murphy, J.; Arcaro, K.F.; Daines, D.; Sylvetsky, A.C. The MILK Study: Investigating Intergenerational Transmission of Low-Calorie Sweeteners in Breast Milk. Cont. Clin. Trials Commun. 2023, 36, 101212. [Google Scholar] [CrossRef] [PubMed]
- Concha, F.; Sambra, V.; Cáceres, P.; López-Arana, S.; Carvajal, B.; Gotteland, M. Maternal Consumption and Perinatal Exposure to Non-Nutritive Sweeteners: Should We Be Concerned? Front. Ped. 2023, 11, 1200990. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, Z.; Zheng, H.; Zhu, S.; Zhang, K.; Li, X.; Ma, X.; Dietrich, A.M. Sucralose, a persistent artificial sweetener in the urban water cycle: Insights into occurrence, chlorinated byproducts formation, and human exposure. J. Environ. Chem. Eng. 2021, 9, 105293. [Google Scholar] [CrossRef]
- Fu, K.; Wang, L.; Wei, C.; Li, J.; Zhang, J.; Zhou, Z.; Liang, Y. Sucralose and Acesulfame as an Indicator of Domestic Wastewater Contasmination in Wuhan Surface Water. Ecotoxicol. Env. Saf. 2020, 189, 109980. [Google Scholar] [CrossRef] [PubMed]
- Giovagnoni, E.; Mattoli, E.; Cossu, A.; Murgia, V. Integrating Environmental Effects in the Benefit-Risk Assessment of Therapeutic Products: A Proposal and Example for Sustainable Health and Healthcare. Front Drug Safe Reg. 2024, 4, 1519142. [Google Scholar] [CrossRef]
- Lee, T.H.Y.; Duangnamon, D.; Boontha, T.; Webster, R.D.; Ziegler, A.D. Emerging and Persistent Contaminants in a Remote Coastal Stream System: Five Priority Compounds in Southeast Asia. Sustainability 2025, 17, 581. [Google Scholar] [CrossRef]
- Schiffman, S.S.; Scholl, E.H.; Furey, T.S.; Nagle, H.T. Toxicological and pharmacokinetic properties of sucralose-6-acetate and its parent sucralose: In vitro screening assays. J. Toxicol. Environ. Health Part B 2023, 26, 307–341. [Google Scholar] [CrossRef]
- Concepta Goveas, L. Artificial Sweeteners and the One Health Crisis: Toxicity Effects and Ecological Consequences. Disc. Appl. Sci. 2025, 7, 535. [Google Scholar] [CrossRef]
- Dietrich, A.M.; Pang, Z.; Zheng, H.; Ma, X. Mini Review: Will Artificial Sweeteners Discharged to the Aqueous Environment Unintentionally “Sweeten” the Taste of Tap Water? Chem. Eng. Adv. 2021, 6, 100100. [Google Scholar] [CrossRef]
- Bornemann, V.; Werness, S.C.; Buslinger, L.; Schiffman, S.S. Intestinal Metabolism and Bioaccumulation of Sucralose in Adipose Tissue in the Rat. J. Toxicol. Environ. Health Part A 2018, 81, 913–923. [Google Scholar] [CrossRef]
- Measurements of Sucralose in the Swedish Screening Program 2007, Part I. Sucralose in Surface Waters and STP Samples. Available online: https://www.diva-portal.org/smash/get/diva2:658036/FULLTEXT01.pdf&lang=en (accessed on 26 June 2025).
- Haalck, I.; Szekely, Z.; Ramne, S.; Sonestedt, E.; von Bromssen, C.; Eriksson, E.; Lai, F.Y. Are we Using More Sugar Substitutes? Wastewater Analysis Reveals Differences and Rising Trends in Artificial Sweetener Usage in Swedish Urban Catchments. Env. Int. 2024, 190, 108814. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.B.A.R.; Pinheiro-Castro, N.; Novaes, G.M.; Pascoal, G.d.F.L.; Ong, T.P. Bioactive food compounds, epigenetics and chronic disease prevention: Focus on early-life interventions with polyphenols. Food Res. Int. 2019, 125, 108646. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T.; Moreno-Rojas, J. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods 2021, 10, 839. [Google Scholar] [CrossRef] [PubMed]
- Câmara, J.S.; Albuquerque, B.R.; Aguiar, J.; Corrêa, R.C.G.; Gonçalves, J.L.; Granato, D.; Pereira, J.A.M.; Barros, L.; Ferreira, I.C.F.R. Food Bioactive Compounds and Emerging Techniques for Their Extraction: Polyphenols as a Case Study. Foods 2020, 10, 37. [Google Scholar] [CrossRef]
- Vignesh, A.; Amal, T.C.; Sarvalingam, A.; Vasanth, K. A review on the influence of nutraceuticals and functional foods on health. Food Chem. Adv. 2024, 5, 100749. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; Etherton, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002, 113, 71–88. [Google Scholar] [CrossRef]
- Sorrenti, V.; Burò, I.; Consoli, V.; Vanella, L. Recent Advances in Health Benefits of Bioactive Compounds from Food Wastes and By-Products: Biochemical Aspects. Int. J. Mol. Sci. 2023, 24, 2019. [Google Scholar] [CrossRef]
- Knezovic, Z.; Jurcevic Zidar, B.; Pribisalic, A.; Luetic, S.; Jurcic, K.; Knezovic, N.; Sutlovic, D. Artificial Sweeteners in Food Products: Concentration Analysis, Label Practices and Cumulative Intake Assessment in Croatia. Nutrients 2025, 17, 1110. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Wang, L.Z.; Lin, Y.-F.; Lin, C.-Y.; Hsu, S.-Y.; Nacis, J.S.; Hsieh, R.-H. Aspartame Consumption Linked to Delayed Puberty and Mitochondrial Disfunction: Evidence from Human and Animal Studies. J. Nutr. Biochem. 2025, 140, 109889. [Google Scholar] [CrossRef]
- Griebsch, L.V.; Theiss, E.L.; Janitschke, D.; Erhardt, V.K.J.; Erhardt, T.; Haas, E.C.; Kuppler, K.N.; Radermacher, J.; Walzer, O.; Lauer, A.A.; et al. Aspartame and Its Metabolites Cause Oxidative Stress and Mitochondrial and Lipid Alterations in SH-SY5Y Cells. Nutrients 2023, 15, 1467. [Google Scholar] [CrossRef]
- Hasan, H.M.; Alkass, S.Y.; de Oliveira, D.S.P. Impact of Long-Term Cyclamate and Saccharin Consumption on Biochemical Parameters in Healthy Individuals and Type 2 Diabetes Mellitus Patients. Medicina 2023, 59, 698. [Google Scholar] [CrossRef] [PubMed]
- Aboukhezam, B.; Ahmed, F.A. The Effects of Ubiquinone on the Antioxidant System in Male Rats Exposed to Saccharin-Induced Hepatic Toxicity. Sebha Univ. J. Pure Appl. Sci. 2024, 23, 95–99. [Google Scholar] [CrossRef]
- Azeez, O.H.; Alkass, S.Y.; Persike, D.S. Long-Term Saccharin Consumption and Increased Risk of Obesity, Diabetes, Hepatic Dysfunction and Renal Impairment in Rats. Medicina 2019, 55, 681. [Google Scholar] [CrossRef] [PubMed]
- Kundu, N.; Domingues, C.C.; Patel, J.; Aljishi, M.; Ahmadi, N.; Fakhri, M.; Sylvetsky, A.C.; Sen, S. Sucralose Promotes Accumulation of Reactive Oxygen Species (ROS) and Adipogenesis in Mesenchymal Stromal Cells. Stem Cell Res. Ther. 2020, 11, 250. [Google Scholar] [CrossRef]
- Colín-García, K.; Elizalde-Velázquez, G.A.; Gómez-Oliván, L.M.; Islas-Flores, H.; García-Medina, S.; Galar-Martínez, M. Acute exposure to environmentally relevant concentrations of sucralose disrupts embryonic development and leads to an oxidative stress response in Danio rerio. Sci. Total. Environ. 2022, 829, 154689. [Google Scholar] [CrossRef]
- Hacioglu, C. Long-Term Exposure of Sucralose Induced Neuroinflammation and Ferroptosis in Human Microglia Cells via SIRT1/NLRP3/IL-1β/GPx4 Signaling Pathways. Food Sci. Nutr. 2024, 12, 9094–9107. [Google Scholar] [CrossRef]
- Singh, A.S.; Singh, S.; Begum, R.F.; Vijayan, S.; Vellapandian, C. Unveiling the Profound Influence of Sucralose on Metabolism and Its Role in Shaping Obesity Trends. Front. Nutr. 2024, 11, 1387646. [Google Scholar] [CrossRef]
- Mohammed, D.M.; Abdelgawad, M.A.; Ghoneim, M.M.; Alhossan, A.; Al-Serwi, R.H.; Farouk, A. Impact of Some Natural and Artificial Sweeteners Consumption on Different Hormonal Levels and Inflammatory Cytokines in Male Rats: In Vivo and In Silico Studies. ACS Omega 2024, 9, 30364–30380. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Feng, J.; Bai, Y.; Yao, Z.-S.; Wu, X.-Y.; Hong, X.-Y.; Lu, G.D.; Xue, K. Sucralose Promotes Benzo(a)Pyrene-Induced Renal Toxicity in Mice by Regulating P-Glycoprotein. Antioxidants 2025, 14, 474. [Google Scholar] [CrossRef]
- Shil, A.; Olusanya, O.; Ghufoor, Z.; Forson, B.; Marks, J.; Chichger, H. Artificial Sweeteners Disrupt Tight Junctions and Barrier Function in the Intestinal Epithelium through Activation of the Sweet Taste Receptor, T1R3. Nutrients 2020, 12, 1862. [Google Scholar] [CrossRef]
- Elveren, M. Effects of artificial sweeteners on antioxidant enzymes and physiological parameters in Triticum aestivum (Poaceae). Act. Bot. Croat. 2024, 83, 69–75. [Google Scholar] [CrossRef]
- Eisenreich, A.; Gurtler, R.; Schafer, B. Heating of food containing sucralose might result in the generation of potentially toxic chlorinated compounds. Food Chem. 2020, 321, 126700. [Google Scholar] [CrossRef] [PubMed]
- Zafrilla, P.; Masoodi, H.; Cerda, B.; Garcia-Viguera, C.; Villano, D. Biological effects of stevia, sucralose and sucrose in citrus–maqui juices on overweight subjects. Food Funct. 2021, 12, 8535–8543. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kohli, A.; Trivedi, S.; Kanagala, S.G.; Anamika, F.N.S.; Gard, N.; Patel, M.A.; Munjal, R.S.; Jain, R. The contentious relationship between artificial sweeteners and cardiovascular health. Egypt. J. Int. Med. 2023, 35, 43. [Google Scholar] [CrossRef]
- Basson, A.R.; Rodríguez-Palacios, A.; Cominelli, F. Artificial Sweeteners: History and New Concepts on Inflammation. Front. Nutr. 2021, 8, 746247. [Google Scholar] [CrossRef]
- Haq, N.; Saqib, S.; Tafweez, R.; Ali, I.; Syami, A.F. Effects of Artificial Sweeteners Aspartame and Sucralose on the Size of Hepatocytes in Rat Liver. Pak. J. Med. Health Sci. 2022, 16, 359–362. [Google Scholar] [CrossRef]
- Wu, H.-T.; Lin, C.-H.; Pai, H.-L.; Chen, Y.-C.; Cheng, K.-P.; Kuo, H.-Y.; Li, C.-H.; Ou, H.-Y. Sucralose, a Non-nutritive Artificial Sweetener Exacerbates High Fat Diet-Induced Hepatic Steatosis Through Taste Receptor Type 1 Member 3. Front. Nutr. 2022, 9, 823723. [Google Scholar] [CrossRef] [PubMed]
- Borquez, J.C.; Hidalgo, M.; Rodriguez, J.M.; Montaña, A.; Porras, O.; Troncoso, R.; Bravo-Sagua, R. Sucralose Stimulates Mitochondrial Bioenergetics in Caco-2 Cells. Front. Nutr. 2021, 7, 585484. [Google Scholar] [CrossRef]
- Colin-Garcia, K.; Elizalde-Velazquez, G.A.; Gomez-Olivan, L.M.; Garcia-Medina, S. Influence of sucralose, acesulfame-k, and their mixture on brain’s fish: A study of behavior, oxidative damage, and acetylcholinesterase activity in Danio rerio. Chemosphere 2023, 340, 139928. [Google Scholar] [CrossRef]
- Saad, S. A Histological Study of the Effect of Aspartame Versus Sucralose on the Spleen of Adult Male Albino Rats. Egypt. J. Anatom 2017, 40, 107–119. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Y.; Henderson, I.R.; Guo, J. Artificial sweeteners stimulate horizontal transfer of extracellular antibiotic resistance genes through natural transformation. ISME J. 2022, 16, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, S.; Dai, Y.; Duan, T.; Xu, Y.; Li, X.; Yang, J.; Zhu, X. Aspartame and sucralose extend the lifespan and improve the health status of C. elegans. Food Funct. 2021, 12, 9912–9921. [Google Scholar] [CrossRef]
- Jarmakiewicz-Czaja, S.; Sokal-Dembowska, A.; Filip, R. Effects of Selected Food Additives on the Gut Microbiome and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Medicina 2025, 61, 192. [Google Scholar] [CrossRef] [PubMed]
- El-Haddad, G.; Farid, A.; El amir, A.; Madbouly, N. Hazard Effects of Chronic consumption of Sucralose and Saccharin-Sodium Cyclamate Mixture in Murine Model. Egypt. J. Chem. 2022, 65, 279–289. [Google Scholar] [CrossRef]
- Heredia-García, G.; Gómez-Oliván, L.M.; Orozco-Hernández, J.M.; Luja-Mondragón, M.; Islas-Flores, H.; SanJuan-Reyes, N.; Galar-Martínez, M.; García-Medina, S.; Dublán-García, O. Alterations to DNA, apoptosis and oxidative damage induced by sucralose in blood cells of Cyprinus carpio. Sci. Total Environ. 2019, 692, 411–421. [Google Scholar] [CrossRef]
- El-Tahan, H.M.; Elmasry, M.E.; Madian, H.A.; Alhimaidi, A.R.; Kim, I.H.; Park, J.H.; El-Tahan, H.M. Sucralose Influences the Productive Performance, Carcass Traits, Blood Components, and Gut Microflora Using 16S rRNA Sequencing of Growing APRI-Line Rabbits. Animals 2024, 14, 1925. [Google Scholar] [CrossRef]
- Zhai, Y.; Bai, D.; Yang, H.; Li, X.; Zhu, D.; Cao, X.; Ma, H.; Li, X.; Zheng, X. Hazardous Effects of Sucralose and Its Disinfection Byproducts Identified from an E. coli Whole-Cell Array Analysis. Front. Environm. Sci. 2021, 9, 724685. [Google Scholar] [CrossRef]
- Wiklund, A.-K.E.; Guo, X.; Gorokhova, E. Cardiotoxic and neurobehavioral effects of sucralose and acesulfame in Daphnia: Toward understanding ecological impacts of artificial sweeteners. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 273, 109733. [Google Scholar] [CrossRef]
- Choudhary, A.K. Artificial Sweeteners on Brain Health: Neurovascular Changes and Cognitive Decline in Indian Population. Med. Res. Arch. 2025, 13, 1. [Google Scholar] [CrossRef]
- Brusick, D.; Grotz, V.L.; Slesinski, R.; Kruger, C.L.; Hayes, A.W. The absence of genotoxicity of Sucralose. Food Chem. Toxicol. 2010, 48, 3067–3072. [Google Scholar] [CrossRef]
- Lea, I.A.; Chappel, G.A.; Wikoff, D.S. Overall lack of genotoxic activity among five common low- and no-calorie sweeteners: A contemporary review of the collective evidence. Mutat. Res. 2021, 868–869, 503389. [Google Scholar] [CrossRef]
- Pasqualli, T.; Chaves, P.E.E.; Pereira, L.V.; Serpa, E.A.; Souza de Oliveira, L.F.; Mansur Machado, M. Sucralose causes non-selective CD4 and CD8 lymphotoxicity via probable regulation of the MAPK8/APTX/EID1 genes: An in vitro/in silico study. Clin. Exp. Pharmacol. Physiol. 2020, 47, 1751–1757. [Google Scholar] [CrossRef] [PubMed]
- Arulanandam, C.D.; Babu, V.; Soorni, V.; Prathiviraj, R. Mutagenicity and Carcinogenicity Prediction of Sugar Substitutes: An In Silico Approach with Coupound-Gene Interactions Network. Toxicol. Res. 2025, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Rizk, R.M.; Soliman, M.I.; Rashed, A.A. Potential Mutagenicity of Some Artificial Sweeteners Using Allium Test. Asian J. Adv. Basic Sci. 2016, 4, 27–40. [Google Scholar]
- Samoilov, A.V.; Suraeva, N.M.; Zaitseva, M.V.; Kurbanova, M.N.; Stolbova, V.V. Comparative Assessment of Artificial Sweeteners Toxicity via Express Biotest. Health Risk Anal. 2019, 2019, 83–90. [Google Scholar] [CrossRef]
- Soffritti, M.; Padovani, M.; Tibaldi, E.; Falcioni, L.; Manservisi, F.; Lauriola, M.; Bua, L.; Manservigi, M.; Belpoggi, F. Sucralose administered in feed, beginning prenatally through lifespan, induces hematopoietic neoplasias in male swiss mice. Int. J. Occup. Environ. Health 2016, 22, 7–17. [Google Scholar] [CrossRef]
- El-Hage, R.; El-Hellani, A.; Haddad, C.; Salman, R.; Talih, S.; Shihadeh, A.; Eissenberg, T.; Saliba, N.A. Toxic emissions resulting from sucralose added to electronic cigarette liquids. Aerosol Sci. Technol. 2019, 53, 1197–1203. [Google Scholar] [CrossRef]
- van Eyk, A.D. The effect of five artificial sweeteners on Caco-2, HT-29 and HEK-293 cells. Drug Chem. Toxicol. 2015, 38, 318–327. [Google Scholar] [CrossRef]
- Dhurandhar, D.; Bharihoke, V.; Kalra, S. A histological assessment of effects of sucralose on liver of albino rats. Morphologie 2018, 102, 197–204. [Google Scholar] [CrossRef]
- Shahriar, S.; Ahsan, T.; Khan, A.; Akhteruzzaman, S.; Shehreen, S.; Sajib, A.A. Aspartame, acesulfame K and sucralose- influence on the metabolism of Escherichia coli. Metabol. Open 2020, 8, 100072. [Google Scholar] [CrossRef]
- Sylvetsky, A.C.; Sen, S.; Merkel, P.; Dore, F.; Stern, D.F.; Henry, C.J.; Cai, H.; Walter, P.J.; Crandall, K.A.; Rother, K.I.; et al. Consumption of Diet Soda Sweetened with Sucralose and Acesulfame-Potassium Alters Inflammatory Transcriptome Pathways in Females with Overweight and Obesity. Mol. Nutr. Food Res. 2020, 64, e1901166. [Google Scholar] [CrossRef] [PubMed]
- Van Stichelen, S.O.; Rother, K.; Hanover, J.A. Maternal Exposure to Non-nutritive Sweeteners Impacts Progeny’s Metabolism and Microbiome. Front. Microbiol. 2019, 10, 1360. [Google Scholar] [CrossRef]
- Danner, L.; Malard, F.; Valdes, R.; Olivier-Van Stichelen, S. Non-Nutritive Sweeteners Acesulfame Potassium and Sucralose Are Competitive Inhibitors of the Human P-glycoprotein/Multidrug Resistance Protein 1 (PGP/MDR1). Nutrients 2023, 15, 1118. [Google Scholar] [CrossRef]
- More, T.A.; Shaikh, Z.; Ali, A. Artificial Sweetenera and Their Health Implications: A Review. Biosci. Biotechnol. Res. Asia 2021, 18, 227–237. [Google Scholar] [CrossRef]
- Posta, E.; Fekete, I.; Gyarmati, E.; Stündl, L.; Zold, E.; Barta, Z. The Effects of Artificial Sweeteners on Intestinal Nutrient-Sensing Receptors: Dr. Jekyll or Mr. Hyde? Life 2024, 14, 10. [Google Scholar] [CrossRef]
- Mitlander, K.; Henseler, J.; Rullo, F.; Nathrath, P.; Geisselbrecht, M.; Wasserscheid, P.; Schuhle, P. Continuous (Hydro-)Dechlorination of Aromatic Chloride Compounds in Benzyltoluene. Int. J. Hydrog. Energy 2025, 15, 674–683. [Google Scholar] [CrossRef]
- Komorowicz, M.; Janiszewska-Latterini, D.; Przybylska-Balcerek, A.; Stuper-Szablewska, K. Fungal Biotransformation of Hazardous Organic Compounds in Wood Waste. Molecules 2023, 28, 4823. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.C.V.; Serbent, M.P.; Skoronski, E. Application of immobilized mycelium-based pelletsfor the removal of organochlorine compounds: A review. Water Sci. Technol. 2021, 83, 1781–1796. [Google Scholar] [CrossRef]
- Li, B.; Wang, X.; Xia, Z.; Zhou, W.; Wu, Y.; Zhu, G. Co-pyrolysis of waste polyester enameled wires and polyvinyl chloride: Evolved products and pyrolysis mechanism analysis. J. Anal. Appl. Pyrolysis 2023, 169, 105816. [Google Scholar] [CrossRef]
- Kumar, V.; Verma, P. A critical review on environmental risk and toxic hazards of refractory pollutants discharged in chlorolignin waste of pulp and paper mills and their remediation approaches for environmental safety. Env. Res. 2023, 236, 116728. [Google Scholar] [CrossRef]
- Kusmierek, K.; Doczekalska, B.; Bartkowiak, M.; Swiatkowski, A.; Cherbanski, R.; Kotkowski, T. KOH-activated tire pyrolysis char as an adsorbent for chloroorganic water pollutants. Chem. Process Eng. New Front. 2024, 45, e79. [Google Scholar] [CrossRef]
- Schluep, S.M.; Buckner, E.A. Metabolic Resistance in Permethrin-Resistant Florida Aedes aegypti (Diptera: Culicidae). Insects 2021, 12, 866. [Google Scholar] [CrossRef]
- Shifrovitch, A.; Madmon, M.; Shamai Yamin, T.; Weissberg, A. Simple and Selective Determination of Free Chlorine in Aqueous Solutions by an Electrophilic Aromatic Substitution Reaction Followed by Liquid Chromatography Coupled with Mass Spectrometry. Organics 2024, 5, 614–622. [Google Scholar] [CrossRef]
- Zhou, K.; Ye, S.; Yu, Q.; Chen, J.; Yong, P.; Ma, X.; Li, Q.; Dietrich, A.M. Derivates variation of phenylalanine as a model disinfection by-product precursor during long term chlorination and chloramination. Sci. Total Env. 2021, 771, 144885. [Google Scholar] [CrossRef] [PubMed]
- Kolling, D.; Stierhof, M.; Lasch, C.; Myronovskyi, M.; Luzhetskyy, A. A Promiscuous Halogenase for the Derivatization of Flavonoids. Molecules 2021, 26, 6220. [Google Scholar] [CrossRef] [PubMed]
- Guven, B.; Durakli-velioglu, S.; Boyaci, I.H. Rapid identification of some sweeteners and sugars by attenuated total reflectance-fourier transform infrared (ATR-FTIR), near-infrared (NIR) and raman spectroscopy. GIDA/J. Food 2019, 44, 274–290. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, Q.; Cao, M.; Wu, L.; Cao, J.; Fang, F.; Li, C.; Xue, Z.; Feng, Q. Ecotoxicity and environmental fates of newly recognized contaminants-artificial sweeteners: A review. Sci. Total. Environ. 2019, 653, 1149–1160. [Google Scholar] [CrossRef]
- Ferrer, I.; Zweigenbaum, J.A.; Thurman, E.M. Analytical Methodologies for the Detection of Sucralose in Water. Anal. Chem. 2013, 85, 9581–9587. [Google Scholar] [CrossRef]
- Rong, S.; Shao, N.; Zou, P.; Zhu, D.; Zhang, C.; Zhu, X. Optimization and validation of an analytical method for the determination of fifteen sweeteners in diabetic foods by HPLC–MS/MS. Microchem. J. 2025, 209, 112803. [Google Scholar] [CrossRef]
- Lessard, O.; Laine, D.; Giguere, D. Polyhalogenated Carbohydrates: Synthesis and Applications of Sugar Halides from Fluorine to Iodine. Eur. J. Org. Chem. 2024, 27, e202400120. [Google Scholar] [CrossRef]
- Blenkley, E.; Suckling, J.; Morse, S.; Murphy, R.; Raats, M.; Astley, S.; Halford, J.C.G.; Harrold, J.A.; Le-Bail, A.; Koukouna, E.; et al. Environmental life cycle assessment of production of the non-nutritive sweetener sucralose (E955) derived from cane sugar produced in the United States of America: The SWEET project. Int. J. Life Cycle Assess. 2023, 28, 1689–1704. [Google Scholar] [CrossRef]
- Scott, C.E.; Stamataki, N.; Harold, J.A.; Raben, A.; Halford, J.C.G. Health Impact Database Development for Sweeteners and Sweetness Enhancers: The SWEET Project. Nutr. Bull. 2025, 10, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Young, N.; Welch, J.; Hill, T.; Sees, M.; Beazley, M.; Heider, E.C. Longitudinal Analysis of Sucralose at a Water Treatment Wetland. Environments 2022, 9, 111. [Google Scholar] [CrossRef]
- Islam, M.; Thompson, K.; Dickenson, E.; Quiñones, O.; Steinle-Darling, E.; Westerhoff, P. Sucralose and Predicted De Facto Wastewater Reuse Levels Correlate with PFAS Levels in Surface Waters. Environ. Sci. Technol. Lett. 2023, 10, 431–438. [Google Scholar] [CrossRef]
- Whitall, D.; Curtis, M.; Mason, A. Use of sucralose and caffeine as tracers of human waste in a coral reef ecosystem. Reg. Stud. Mar. Sci. 2021, 44, 101740. [Google Scholar] [CrossRef]
- Serville-Tertullien, M.; McDermott, K.; Majury, A.; Liang, T.; Sultana, T.; Metcalfe, C.D. Sucralose and caffeine as chemical indicators of domestic wastewater contamination in the Laurentian Great Lakes Basin. Environ. Monit. Assess. 2024, 196, 1085. [Google Scholar] [CrossRef] [PubMed]
- Westmoreland, A.G.; Schafer, T.B.; Breland, K.E.; Beard, A.R.; Osborne, T.Z. Sucralose (C12H19Cl3O8) impact on microbial activity in estuarine and freshwater marsh soils. Environ. Monit. Assess. 2024, 196, 451. [Google Scholar] [CrossRef] [PubMed]
- Kerberová, V.; Gargošová, H.Z.; Čáslavský, J. Occurrence and ecotoxicity of selected artificial sweeteners in the Brno city waste water. Int. J. Environ. Sci. Technol. 2021, 19, 9055–9066. [Google Scholar] [CrossRef]
- de Oliveira, D.N.; de Menezes, M.; Catharino, R.R. Thermal degradation of sucralose: A combination of analytical methods to determine stability and chlorinated byproducts. Sci. Rep. 2015, 5, 9598. [Google Scholar] [CrossRef]
- Sandoval-González, A.; Álvarez-Gallegos, A.; Hernández, J.A.; Silva-Martínez, S. Degradation of sucralose present in Splenda® sweetener by TiO2 photocatalysis assisted with photo-Fenton. Rev. Mex. Ing. Quim. 2020, 20, 215–228. [Google Scholar] [CrossRef]
- Khmeliar, I.; Kushnir, L.; Tkach, V. Study of Sucralose Content in Carbonated Drinks of Different Manufacturers. Sci. Issue Ternopil Volodymyr Hnatiuk Natl. Pedagog. Univ. Ser. Biol. 2025, 84, 21–29. [Google Scholar] [CrossRef]
- Tkach, V.V.; Kushnir, M.V.; Storoshchuk, N.M.; de Oliveira, S.C.; Luganska, O.V.; Kopiika, V.V.; Novosad, N.V.; Lukanova, S.M.; Ivanushko, Y.G.; Ostapchuk, V.G.; et al. O Uso do Hidróxido de Vanádio Bivalente para a Eliminação da Sucralose das Águas Naturais e de Esgoto da Indústria Alimentar e Farmacêutica. Uma Avaliação Teórica. Rev. Colomb. Ciên. Quím. Farm. 2023, 52, 955–968. [Google Scholar] [CrossRef]
- Duan, W.; Baez-Gaxiola, M.R.; Gich, M.; Fernandez-Sanchez, C. Detection of Chlorinated Organic Pollutants with an Integrated Screen-Printed Electrochemical Sensor, Based on a Carbon Nanocomposite Derived from Bread Waste. Electrochim. Acta 2022, 436, 141459. [Google Scholar] [CrossRef]
- Ma, X.; Quan, R.; Cao, W.; Zhang, W.; Jiang, S.; Feng, J.; Wang, J.; Giannakis, S. Novel MIL-53(Fe)@C Magnetic Composite Electrode for Efficient Dechlorination of Disinfection By-Product Trichloroacetic Acid in Water Treatment. Water 2025, 17, 1309. [Google Scholar] [CrossRef]
- Bigott, Y.; Gallego, S.; Montemuro, N.; Breuil, M.-C.; Perez, S.; Michas, A.; Martin-Laurent, F.; Schroder, P. Fate and Impact of Wastewater-Borne Micropollutants in Lettuce and the Root-Associated Bacteria. Sci. Total Env. 2022, 831, 154674. [Google Scholar] [CrossRef]
- Venditti, S.; Salmeron, I.; Tafalla, P.N.; Hobus, I.; Kolisch, G.; Hansen, J. Biochar from Recovered Cellulose as New Admixture in Constructed Wetlands for Micropollutant Removal: A Circular Approach. Sci. Total Env. 2024, 927, 172055. [Google Scholar] [CrossRef]
- Voss, S.; Newman, E.; Miller-Schulze, J.P. Quantification of sucralose in groundwater well drinking water by silylation derivatization and gas chromatography-mass spectrometry. Anal. Methods 2019, 11, 2790–2799. [Google Scholar] [CrossRef]
- Gvozdić, E.; Bujagić, I.M.; Đurkić, T.; Grujić, S. Artificial sweeteners acesulfame and sucralose: From wastewater constituents to groundwater contaminants. In Proceedings of the 37th International Congress on Process Industry, Belgrade, Serbia, 29–31 May 2024. [Google Scholar] [CrossRef]
- Cárdenas-Soracá, D.M.; Haile, H.; Nazdrajic, E.; Pawliszyn, J. Development and Validation of a Retracted Thin Film Solid Phase Microextraction Device for Time Weighted Average Monitoring of Artificial Sweeteners Concentration in Surface Waters. Green Anal. Chem. 2025, 13, 100282. [Google Scholar] [CrossRef]
- Gaivão, I.; Santos, R.A.; Morozova, T.V.; Tkach, V.V. Biological and Behavioural Effects of Bisphenol A (BPA) Exposure: An In Vivo Study in Drosophila Melanogaster. Appl. Sci. 2025, 15, 5588. [Google Scholar] [CrossRef]
- Branco, A.T.; Lemos, B. Interaction between Bisphenol A and Dietary Sugar Affects Global Gene Transcription in Drosophila melanogaster. Genom. Data 2022, 2, 308–311. [Google Scholar] [CrossRef]
- Morales, M.; de la Fuente, M.; Folgar, R.M. BPA and its analogues (BPS and BPF) modify the expression of genes involved in the endocrine pathway and apoptosis and a multi drug resistance gene of the aquatic midge Chironomus riparius (Diptera). Environ. Pollut. 2020, 265, 114806. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, C.; Zhang, X.; Song, Y.; Wang, B.; Zhang, K.; Sun, M. Developmental Neurotoxic Effects of Bisphenol A and its Derivatives in Drosophila melanogaster. Ecotoxicol. Environ. Saf. 2023, 260, 115098. [Google Scholar] [CrossRef] [PubMed]
- Adesanoye, O.A.; Abolaji, O.A.; Faloye, T.R.; Olaoye, H.O.; Adedara, A.O. Luteolin/Supplemented Diets Ameliorates Bisphenol A-Induced Toxicity in Drosophila melanogaster. Food. Chem. Toxicol. 2020, 142, 111478. [Google Scholar] [CrossRef] [PubMed]
- Maczka, W.; Grabarczyk, M.; Winska, K. Can Antioxidants Reduce the Toxicity of Bisphenol? Antioxidants 2022, 11, 413. [Google Scholar] [CrossRef]
- Sarkar, A.; Mahendran, T.S.; Meenakshisundaram, A.; Christopher, R.V.; Dan, P.; Sundararajan, V.; Jana, N.; Venkatasubbu, D.; Mohideen, S.S. Role of Cerium Oxide Nanoparticles in Improving Oxidative Stress and Developmental Delays in Drosophila melanogaster as an In Vivo Model for Bisphenol A Toxicity. Chemosphere 2021, 284, 131363. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, Y.; You, Y.; Liang, Y. Genotoxicity of chlorinated hydrophobic organic compounds extracted from a source of drinking water. Ecotoxicol. Env. Saf. 2023, 267, 115598. [Google Scholar] [CrossRef]
- dos Santos, M.M.; Cheriaux, C.; Jia, S.; Thomas, M.; Gallard, H.; Croue, J.-P.; Carato, P.; Snyder, S.A. Genotoxic effects of chlorinated disinfection by-products of 1,3-diphenylguanidine (DPG): Cell-based in-vitro testing and formation potential during water disinfection. J. Haz. Mater. 2022, 436, 129114. [Google Scholar] [CrossRef]
- Witczak, A.; Harada, D.; Aftyka, A.; Cybulski, J. Endocrine-disrupting organochlorine xenobiotics in fish products imported from Asia—An assessment of human health risk. Env. Monit. Ass. 2021, 193, 132. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Huang, H.; Li, S.-A.; Lin, J.; Luo, K.; Cao, X.; Cui, F.; Zhou, Z.; Ma, H. Revealing Molecular Connections between Dissolved Organic Matter in Surface Water Sources and Their Cytotoxicity Influenced by Chlorination Disinfection. Env. Sci. Technol. 2025, 59, 2754–2764. [Google Scholar] [CrossRef]
- Rampanelli, J.C.; Zuchello, F.; Mores, R. Analysis of cytotoxicity and genotoxicity of sweeteners using Allium cepa bioassays. Acta Sci. 2024, 46, e68303. [Google Scholar] [CrossRef]
- Mateo-Fernández, M.; González-Jiménez, M.J.; Celestino, M.D.R.; Font, R.; Alonso-Moraga, Á.; Merinas-Amo, T. Toxicological and Nutraceutical Screening Assays of Some Artificial Sweeteners. Processes 2022, 10, 410. [Google Scholar] [CrossRef]
- Das, T.; Hazra, S.; Sengupta, S.; Hazra, P.; Chattopadhyay, D. Genotoxic effect of saccharin on Allium cepa root tips. Biologia 2021, 76, 3191–3199. [Google Scholar] [CrossRef]
- Shen, G.; Lei, S.; Li, H.; Yu, Q.; Wu, G.; Shi, Y.; Xu, K.; Ren, H.; Geng, J. Occurrence and removal of four artificial sweeteners in wastewater treatment plants of China. Environ. Sci. Process. Impacts 2023, 25, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Pereira Caixeta, M. Contaminants of Emerging Concern a Review of Risk Assessment and Treatment Strategies. U. Porto J. Eng. 2023, 9, 191–228. [Google Scholar] [CrossRef]
- Lewis, K.; Tzilivakis, J. Review and synthesis of data on the potential environmental impact of artificial sweeteners. EFSA Support. Publ. 2021, 18, 6918E. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, Q.; Lv, G.; Dou, Z.; Zhang, T. Turning waste into Wealth: Collaborative enhancement of sucralose degradation and ilmenite aeration purification. Chem. Eng. J. 2024, 499, 155964. [Google Scholar] [CrossRef]
- Stewart, S.; Yu, H.; Andaluri, G.; Choudhary, M.; Bordoloi, A.; Suri, B.P.S. Application of anthropogenic chemical and biological markers to characterize receiving urban waterways for untreated sanitary waste. J. Water Process Eng. 2025, 71, 107207. [Google Scholar] [CrossRef]
- Zeng, L.; Gao, J.; Cui, Y.; Zhao, Y.; Guo, Y.; Yuan, Y.; Xu, H. Response of nitrification system to co-exposure of sucralose and single or combined disinfectants: Reducing damage to nitrification performance and aggravating the spread of intracellular resistance genes. Chem. Eng. J. 2024, 489, 151469. [Google Scholar] [CrossRef]
- Gutiérrez-Magaña, S.-M.; García-Díaz, N.; Soriano-Equigua, L.; Mata-López, W.A.; García-Virgen, J.; Brizuela-Ramírez, J.-E. Neuro-Fuzzy System to Predict Timely Harvest in Stevia Crops. Agriculture 2025, 15, 840. [Google Scholar] [CrossRef]
- Chen, R.-Y.; Shi, J.-J.; Liu, Y.-J.; Yu, J.; Li, C.-Y.; Tao, F.; Cao, J.-F.; Yang, G.-J.; Chen, J. The State-of-the-Art Antibacterial Activities of Glycyrrhizin: A Comprehensive Review. Microorganisms 2024, 12, 1155. [Google Scholar] [CrossRef]
- Juárez, G.; Sanz-Novo, M.; Alonso, J.L.; Alonso, E.R.; León, I. Rotational Spectrum and Conformational Analysis of Perillartine: Insights into the Structure–Sweetness Relationship. Molecules 2022, 27, 1924. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.d.C.; Fideles, S.O.M.; Reis, C.H.B.; Pagani, B.T.; Bueno, L.M.M.; Moscatel, M.B.M.; Buchaim, R.L.; Buchaim, D.V. D-Tagatose: A Rare Sugar with Functional Properties and Antimicrobial Potential against Oral Species. Nutrients 2024, 16, 1943. [Google Scholar] [CrossRef] [PubMed]
- Martins-Loução, M.A.; Correia, P.J.; Romano, A. Carob: A Mediterranean Resource for the Future. Plants 2024, 13, 1188. [Google Scholar] [CrossRef] [PubMed]
- López-Plaza, B.; Álvarez-Mercado, A.I.; Arcos-Castellanos, L.; Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Brandimonte-Hernández, M.; Feliú-Batlle, J.; Hummel, T.; Gil, Á.; Palma-Milla, S. Efficacy and Safety of Habitual Consumption of a Food Supplement Containing Miraculin in Malnourished Cancer Patients: The CLINMIR Pilot Study. Nutrients 2024, 16, 1905. [Google Scholar] [CrossRef]
- Ortiz, A.d.C.; Fideles, S.O.M.; Reis, C.H.B.; Bellini, M.Z.; Pereira, E.d.S.B.M.; Pilon, J.P.G.; de Marchi, M.Â.; Detregiachi, C.R.P.; Flato, U.A.P.; Trazzi, B.F.d.M.; et al. Therapeutic Effects of Citrus Flavonoids Neohesperidin, Hesperidin and Its Aglycone, Hesperetin on Bone Health. Biomolecules 2022, 12, 626. [Google Scholar] [CrossRef]
Experimental Model | Dose/Concentration | Observed Effects | Reference |
---|---|---|---|
Mesenchymal stromal cells | 1–5 mM | ↑ ROS, acute inflammation, adipogenic differentiation | [45] |
Danio rerio embryos | 0.5–5 mg/L | ↑ ROS, malformations, ↑ Nrf1, CASP3, apoptosis | [46] |
Human microglial HMC3 cells | 0.5–10 mM | ↓ viability, ↑ caspase-3, oxidative imbalance via SIRT/NLRP3/GPx4 pathway | [47] |
Mice exposed to benzo(a)pyrene | 0.5 mg/kg | ↑ renal toxicity, PGP inhibition, ↑ ROS | [50] |
Intestinal epithelial Caco-2 cells | 1–5 mM | ↓ Claudin-3, ↑ permeability, apoptosis at high doses | [51] |
Triticum aestivum (plant) | 50–200 ppm | ↑ peroxidase activity, ↓ growth, oxidative damage | [52] |
Mice with NAFLD | 1.5–5% in diet | ↑ T1R3, ↑ ROS, exacerbated hepatic steatosis | [58] |
Mouse liver and heart | 5 mg/kg/day for 12 weeks | ↑ PPAR-α expression, structural alterations, lipid imbalance | [55] |
Mouse hepatocytes | 15–60 mg/kg | Histological damage, inflammation, oxidative stress | [57,65] |
Gut microbiota in rats | 0.1–1% in diet | Dysbiosis, ↑ inflammation, hepatic metabolic changes | [64] |
Gut bacteria (in vitro) | 0.01–1 mM | ↑ Horizontal gene transfer via ROS-induced SOS response | [62] |
Daphnia magna (crustacean) | 0.1–2 mg/L | Behavioral, cardiac, and AChE changes | [69] |
Cyprinus carpio (fish) | 5–20 mg/L for 21 days | ↑ ROS, DNA damage, apoptosis in erythrocytes | [66] |
C. elegans (nematode) | 0.1–1% in diet | ↑ lifespan at low doses; ↓ lifespan and ↑ oxidative stress at high doses | [63] |
Heated sucralose-containing foods | 120–180 °C | Formation of dioxins and chlorinated byproducts → ↑ oxidative stress | [53] |
Sucralose + UV (aquatic exposure) | 0.1–10 mg/L + UV | Genotoxic chlorinated byproducts, bacterial DNA damage | [68] |
Humans (epidemiological data) | Dietary consumption | Association with neurovascular changes and inflammation in diabetic/obese individuals | [70] |
Rats with polyphenol-rich diet | Sucralose + polyphenols | Polyphenols mitigate sucralose-induced oxidative stress and inflammation | [52,54,55] |
Stevia comparison | Equivalent dietary doses | Stevia showed superior anti-inflammatory profile | [54] |
Model/System | Type of Analysis | Key Findings | Reference |
---|---|---|---|
S. typhimurium, E. coli, human lymphocytes, mouse lymphoma cells, rodents | Ames, chromosomal aberrations, micronucleus test | Concluded absence of genotoxicity, though without long-term/high-dose or co-exposure analyses. | [71] |
Multiple sweeteners (including sucralose) | Various genotoxicity tests | Mostly negative results for sucralose, but some referenced data suggest inconsistencies. | [72] |
Human lymphocytes (in vitro), in silico | Cyto-, geno-, immunotoxicity; gene expression | Dose-dependent DNA/chromosomal damage; modulation of MAPK8, APTX, EID1. | [73] |
In silico (LAZAR, pKCSM, Toxtree) | Mutagenicity and carcinogenicity prediction | Sucralose predicted to be mutagenic; glucin and 5-nitro-2-propoxyaniline carcinogenic. | [74] |
Allium cepa | Chromosomal abnormalities | Induction of micronuclei and mitotic abnormalities by sucralose. | [75] |
Allium cepa | Genotoxicity (single and combined exposure) | Confirmed synergistic genotoxicity of sucralose and aspartame. | [76] |
Male Swiss mice (prenatal to adulthood) | Long-term exposure, tumor incidence | Increased hematopoietic neoplasms at high doses of sucralose and 6-CF. | [77] |
E-liquids with sucralose | Thermal degradation analysis | Sucralose degradation products identified as carcinogenic/genotoxic. | [78] |
Caco-2, HT-29, HEK-293 cells | DNA fragmentation | Sucralose showed highest DNA damage along with saccharin. | [79] |
Hepatic cells from albino rats | ROS levels, genomic analysis | Genomic and oxidative stress induced in liver tissue. | [80] |
E. coli | Transcriptomics, metabolic pathways | Sucralose modulated expression of metabolic genes; less disruptive than aspartame. | [81] |
Human (overweight/obese women) | Transcriptomic analysis | Upregulation of 828 genes post-soda ingestion; inflammatory/metabolic gene activation. | [82] |
Pregnant and lactating mice; rats | Gene expression (e.g., PGP) | Sucralose/acesulfame-K altered intestinal gene expression and transport activity. | [83,84] |
Sweetener | Natural Source | Relative Sweetness | Reference |
---|---|---|---|
Steviol glycosides | Stevia rebaudiana | ~195 × sweeter than sucrose | [141] |
Glycyrrhizin | Glycyrrhiza glabra | 30–50× | [142] |
Perillartine | Perilla frutescens | ~2000× | [143] |
Tagatose | Dairy-derived (e.g., lactose) | 0.75 × (slightly less sweet) | [144] |
Carob gum + tannin adducts | Ceratonia siliqua, Prosopis glandulosa | 0.75× | [145] |
Miraculin | Synsepalum dulcificum | Not sweet itself; modifies sour taste to sweet | [146] |
Neohesperidin dihydrochalcone | Citrus-derived flavonoid | ~3000× | [147] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tkach, V.V.; Morozova, T.V.; Gaivão, I.O.d.M.; Miranda, N.G.d.; Ivanushko, Y.G.; Martins, J.I.F.d.P.; Barros, A.N. Sucralose: A Review of Environmental, Oxidative and Genomic Stress. Nutrients 2025, 17, 2199. https://doi.org/10.3390/nu17132199
Tkach VV, Morozova TV, Gaivão IOdM, Miranda NGd, Ivanushko YG, Martins JIFdP, Barros AN. Sucralose: A Review of Environmental, Oxidative and Genomic Stress. Nutrients. 2025; 17(13):2199. https://doi.org/10.3390/nu17132199
Chicago/Turabian StyleTkach, Volodymyr V., Tetiana V. Morozova, Isabel O’Neill de Mascarenhas Gaivão, Natasha Gomes de Miranda, Yana G. Ivanushko, José Inácio Ferrão de Paiva Martins, and Ana Novo Barros. 2025. "Sucralose: A Review of Environmental, Oxidative and Genomic Stress" Nutrients 17, no. 13: 2199. https://doi.org/10.3390/nu17132199
APA StyleTkach, V. V., Morozova, T. V., Gaivão, I. O. d. M., Miranda, N. G. d., Ivanushko, Y. G., Martins, J. I. F. d. P., & Barros, A. N. (2025). Sucralose: A Review of Environmental, Oxidative and Genomic Stress. Nutrients, 17(13), 2199. https://doi.org/10.3390/nu17132199