Use of Nutritional Strategies, Bioactive Compounds, and Dietary Supplements in Young Athletes: From Evidence to Potential Risks—A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Targeted Nutritional Requirements in Young Athletes
3.2. Bioactive Compounds in Young Athletes
Micronutrients of Key Interest for Prevention, Well-Being, and Performance
3.3. Supplements That May Assist with Training Capacity, Recovery, Muscle Soreness, and Injury
3.3.1. Omega-3
Effects of Omega-3 Fatty Acids
Mechanisms and Interactions
Recommendations and Conclusions
3.3.2. Vitamin C
Effect of Vitamin C
Interactions with Other Components
Recommendations and Conclusions
3.3.3. Curcumin
Effects of Curcumin
Mechanisms and Interactions
Recommendations and Conclusions
3.4. Ergogenic Supplements
3.4.1. Creatine
Effects of Creatine
Mechanisms and Interactions
Recommendations and Conclusions
3.4.2. Caffeine
Effects of Caffeine
Mechanisms and Interactions
Recommendations and Conclusions
3.4.3. Beet Nitrates
3.4.4. β-Alanine
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hannon, M.P.; Flueck, J.L.; Gremeaux, V.; Place, N.; Kayser, B.; Donnelly, C. Key Nutritional Considerations for Youth Winter Sports Athletes to Optimize Growth, Maturation and Sporting Development. Front. Sports Act. Living 2021, 3, 599118. [Google Scholar] [CrossRef] [PubMed]
- Purcell, L.K. Sport Nutrition for Young Athletes. Paediatr. Child Health 2013, 18, 200–202. [Google Scholar] [CrossRef] [PubMed]
- Diehl, K.; Thiel, A.; Zipfel, S.; Mayer, J.; Schnell, A.; Schneider, S. Elite Adolescent Athletes’ Use of Dietary Supplements: Characteristics, Opinions, and Sources of Supply and Information. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 165–174. [Google Scholar] [CrossRef]
- Mettler, S.; Lehner, G.; Morgan, G. Widespread Supplement Intake and Use of Poor Quality Information in Elite Adolescent Swiss Athletes. Int. J. Sport Nutr. Exerc. Metab. 2022, 32, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Graybeal, A.J.; Kreutzer, A.; Willis, J.L.; Moss, K.; Braun-Trocchio, R.; Shah, M. Age Drives the Differences in Dietary Supplement Use in Endurance Athletes: A Cross-Sectional Analysis of Cyclists, Runners, and Triathletes. J. Diet. Suppl. 2023, 20, 602–620. [Google Scholar] [CrossRef] [PubMed]
- Desbrow, B.; McCormack, J.; Burke, L.M.; Cox, G.R.; Fallon, K.; Hislop, M.; Logan, R.; Marino, N.; Sawyer, S.M.; Shaw, G.; et al. Sports Dietitians Australia Position Statement: Sports Nutrition for the Adolescent Athlete. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 570–584. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete. Br. J. Sports Med. 2018, 52, 439–455. [Google Scholar] [CrossRef]
- Hecht, C.; Bank, N.; Cook, B.; Mistovich, R.J. Nutritional Recommendations for the Young Athlete. J. Pediatr. Orthop. Soc. N. Am. 2023, 5, 599. [Google Scholar] [CrossRef]
- McKinney, J.; Velghe, J.; Fee, J.; Isserow, S.; Drezner, J.A. Defining Athletes and Exercisers. Am. J. Cardiol. 2019, 123, 532–535. [Google Scholar] [CrossRef]
- Capra, M.E.; Stanyevic, B.; Giudice, A.; Monopoli, D.; Decarolis, N.M.; Esposito, S.; Biasucci, G. Nutrition for Children and Adolescents Who Practice Sport: A Narrative Review. Nutrients 2024, 16, 2803. [Google Scholar] [CrossRef]
- Vettorazzi, A.; López de Cerain, A.; Sanz-Serrano, J.; Gil, A.G.; Azqueta, A. European Regulatory Framework and Safety Assessment of Food-Related Bioactive Compounds. Nutrients 2020, 12, 613. [Google Scholar] [CrossRef]
- Marino, M.; Del Bo’, C.; Martini, D.; Porrini, M.; Riso, P. A Review of Registered Clinical Trials on Dietary (Poly)Phenols: Past Efforts and Possible Future Directions. Foods 2020, 9, 1606. [Google Scholar] [CrossRef]
- Biesalski, H.-K.; Dragsted, L.O.; Elmadfa, I.; Grossklaus, R.; Müller, M.; Schrenk, D.; Walter, P.; Weber, P. Bioactive Compounds: Definition and Assessment of Activity. Nutrition 2009, 25, 1202–1205. [Google Scholar] [CrossRef]
- Longdom Publishing SL. Open Access Journals. Available online: https://www.longdom.org/ (accessed on 14 April 2025).
- Morente-Sánchez, J.; Zabala, M. Doping in Sport: A Review of Elite Athletes’ Attitudes, Beliefs, and Knowledge. Sports Med. 2013, 43, 395–411. [Google Scholar] [CrossRef] [PubMed]
- Yesalis, C.E.; Bahrke, M.S. Doping among Adolescent Athletes. Bailliere’s Best Pract. Res. Clin. Endocrinol. Metab. 2000, 14, 25–35. [Google Scholar] [CrossRef]
- Bloodworth, A.J.; Petróczi, A.; Bailey, R.; Pearce, G.; McNamee, M.J. Doping and Supplementation: The Attitudes of Talented Young Athletes. Scand. J. Med. Sci. Sports 2012, 22, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Nutrition and Athletic Performance. Med. Sci. Sports Exerc. 2016, 48, 543. [Google Scholar] [CrossRef]
- Amawi, A.; Khataybeh, B.; Al Aqaili, R.; Ababneh, N.; Alnimer, L.; Qoqazeh, A.; Oukal, F.; Jahrami, H.; Mousa Ay, K.; Al Saoud, H.; et al. Junior Athletes’ Nutritional Demands: A Narrative Review of Consumption and Prevalence of Eating Disorders. Front. Nutr. 2024, 11, 1390204. [Google Scholar] [CrossRef] [PubMed]
- Petrie, H.J.; Stover, E.A.; Horswill, C.A. Nutritional Concerns for the Child and Adolescent Competitor. Nutrition 2004, 20, 620–631. [Google Scholar] [CrossRef]
- DRV Finder. Available online: https://multimedia.efsa.europa.eu/drvs/index.htm (accessed on 25 April 2025).
- Kerksick, C.M.; Arent, S.; Schoenfeld, B.J.; Stout, J.R.; Campbell, B.; Wilborn, C.D.; Taylor, L.; Kalman, D.; Smith-Ryan, A.E.; Kreider, R.B.; et al. International Society of Sports Nutrition Position Stand: Nutrient Timing. J. Int. Soc. Sports Nutr. 2017, 14, 33. [Google Scholar] [CrossRef]
- American College of Sports Medicine; Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American College of Sports Medicine Position Stand. Exercise and Fluid Replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar] [CrossRef]
- Bezrati, I.; Ben Fradj, M.K.; Hammami, R.; Ouerghi, N.; Padulo, J.; Feki, M. A Single Mega Dose of Vitamin D3 Improves Selected Physical Variables in Vitamin D-Deficient Young Amateur Soccer Players: A Randomized Controlled Trial. Appl. Physiol. Nutr. Metab. 2020, 45, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Dubnov-Raz, G.; Livne, N.; Raz, R.; Cohen, A.H.; Constantini, N.W. Vitamin D Supplementation and Physical Performance in Adolescent Swimmers. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 317–325. [Google Scholar] [CrossRef]
- Azevedo, H.; Azevedo, V.; Padilha, D.; Loturco, I.; Artioli, G.; Santos, D.; Azevedo, P. Acute Response of Calcium Lactate Supplementation on the Athletic Performance of Soccer Players Under the Age of 15. Pediatr. Exerc. Sci. 2024, 36, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Gera, T.; Sachdev, H.P.S.; Nestel, P. Effect of Iron Supplementation on Physical Performance in Children and Adolescents: Systematic Review of Randomized Controlled Trials. Indian Pediatr. 2007, 44, 15–24. [Google Scholar] [PubMed]
- Pasricha, S.-R.; Low, M.; Thompson, J.; Farrell, A.; De-Regil, L.-M. Iron Supplementation Benefits Physical Performance in Women of Reproductive Age: A Systematic Review and Meta-Analysis. J. Nutr. 2014, 144, 906–914. [Google Scholar] [CrossRef]
- Guezennec, C.Y.; Nadaud, J.F.; Satabin, P.; Leger, F.; Lafargue, P. Influence of Polyunsaturated Fatty Acid Diet on the Hemorrheological Response to Physical Exercise in Hypoxia. Int. J. Sports Med. 1989, 10, 286–291. [Google Scholar] [CrossRef]
- Brilla, L.R.; Landerholm, T.E. Effect of Fish Oil Supplementation and Exercise on Serum Lipids and Aerobic Fitness. J. Sports Med. Phys. Fitness 1990, 30, 173–180. [Google Scholar]
- Raastad, T.; Høstmark, A.T.; Strømme, S.B. Omega-3 Fatty Acid Supplementation Does Not Improve Maximal Aerobic Power, Anaerobic Threshold and Running Performance in Well-Trained Soccer Players. Scand. J. Med. Sci. Sports 1997, 7, 25–31. [Google Scholar] [CrossRef]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Omega-3 Polyunsaturated Fatty Acids Augment the Muscle Protein Anabolic Response to Hyperaminoacidemia-Hyperinsulinemia in Healthy Young and Middle Aged Men and Women. Clin. Sci. 2011, 121, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Dietary Omega-3 Fatty Acid Supplementation Increases the Rate of Muscle Protein Synthesis in Older Adults: A Randomized Controlled Trial123. Am. J. Clin. Nutr. 2011, 93, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Schröder, H.; Navarro, E.; Mora, J.; Galiano, D.; Tramullas, A. Effects of Alpha-Tocopherol, Beta-Carotene and Ascorbic Acid on Oxidative, Hormonal and Enzymatic Exercise Stress Markers in Habitual Training Activity of Professional Basketball Players. Eur. J. Nutr. 2001, 40, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Mastaloudis, A.; Traber, M.G.; Carstensen, K.; Widrick, J.J. Antioxidants Did Not Prevent Muscle Damage in Response to an Ultramarathon Run. Med. Sci. Sports Exerc. 2006, 38, 72–80. [Google Scholar] [CrossRef]
- Constantini, N.W.; Dubnov-Raz, G.; Eyal, B.-B.; Berry, E.M.; Cohen, A.H.; Hemilä, H. The Effect of Vitamin C on Upper Respiratory Infections in Adolescent Swimmers: A Randomized Trial. Eur. J. Pediatr. 2011, 170, 59–63. [Google Scholar] [CrossRef]
- Ashton, T.; Young, I.S.; Peters, J.R.; Jones, E.; Jackson, S.K.; Davies, B.; Rowlands, C.C. Electron Spin Resonance Spectroscopy, Exercise, and Oxidative Stress: An Ascorbic Acid Intervention Study. J. Appl. Physiol. 1999, 87, 2032–2036. [Google Scholar] [CrossRef] [PubMed]
- Żychowska, M.; Jastrzębski, Z.; Chruściński, G.; Michałowska-Sawczyn, M.; Nowak-Zaleska, A. Vitamin C, A and E Supplementation Decreases the Expression of HSPA1A and HSPB1 Genes in the Leukocytes of Young Polish Figure Skaters during a 10-Day Training Camp. J. Int. Soc. Sports Nutr. 2015, 12, 9. [Google Scholar] [CrossRef]
- Thompson, D.; Williams, C.; McGregor, S.J.; Nicholas, C.W.; McArdle, F.; Jackson, M.J.; Powell, J.R. Prolonged Vitamin C Supplementation and Recovery from Demanding Exercise. Int. J. Sport Nutr. Exerc. Metab. 2001, 11, 466–481. Available online: https://pubmed.ncbi.nlm.nih.gov/11915781/ (accessed on 9 May 2025). [CrossRef] [PubMed]
- Ristow, M.; Zarse, K.; Oberbach, A.; Klöting, N.; Birringer, M.; Kiehntopf, M.; Stumvoll, M.; Kahn, C.R.; Blüher, M. Antioxidants Prevent Health-Promoting Effects of Physical Exercise in Humans. Proc. Natl. Acad. Sci. USA 2009, 106, 8665–8670. [Google Scholar] [CrossRef]
- Sahebkar, A.; Serban, M.-C.; Ursoniu, S.; Banach, M. Effect of Curcuminoids on Oxidative Stress: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Funct. Foods 2015, 18, 898–909. [Google Scholar] [CrossRef]
- Daniel Vasile, P.-R.; Patricia, M.-L.; Marta, M.-S.; Laura, E. Evaluation of Curcumin Intake in Reducing Exercise-Induced Muscle Damage in Athletes: A Systematic Review. J. Int. Soc. Sports Nutr. 2024, 21, 2434217. [Google Scholar] [CrossRef]
- Heidari, Z.; Daei, M.; Boozari, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin Supplementation in Pediatric Patients: A Systematic Review of Current Clinical Evidence. Phytother. Res. 2022, 36, 1442–1458. [Google Scholar] [CrossRef]
- Bai, K.-Y.; Liu, G.-H.; Fan, C.-H.; Kuo, L.-T.; Hsu, W.-H.; Yu, P.-A.; Chen, C.-L. 12-Week Curcumin Supplementation May Relieve Postexercise Muscle Fatigue in Adolescent Athletes. Front. Nutr. 2022, 9, 1078108. [Google Scholar] [CrossRef]
- Suhett, L.G.; de Miranda Monteiro Santos, R.; Silveira, B.K.S.; Leal, A.C.G.; de Brito, A.D.M.; de Novaes, J.F.; Lucia, C.M.D. Effects of Curcumin Supplementation on Sport and Physical Exercise: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2021, 61, 946–958. [Google Scholar] [CrossRef]
- Juhász, I.; Györe, I.; Csende, Z.; Rácz, L.; Tihanyi, J. Creatine Supplementation Improves the Anaerobic Performance of Elite Junior Fin Swimmers. Acta Physiol. Hung. 2009, 96, 325–336. [Google Scholar] [CrossRef]
- Claudino, J.G.; Mezêncio, B.; Amaral, S.; Zanetti, V.; Benatti, F.; Roschel, H.; Gualano, B.; Amadio, A.C.; Serrão, J.C. Creatine Monohydrate Supplementation on Lower-Limb Muscle Power in Brazilian Elite Soccer Players. J. Int. Soc. Sports Nutr. 2014, 11, 32. [Google Scholar] [CrossRef]
- Dawson, B.; Vladich, T.; Blanksby, B.A. Effects of 4 Weeks of Creatine Supplementation in Junior Swimmers on Freestyle Sprint and Swim Bench Performance. J. Strength Cond. Res. 2002, 16, 485–490. [Google Scholar] [PubMed]
- Grindstaff, P.D.; Kreider, R.; Bishop, R.; Wilson, M.; Wood, L.; Alexander, C.; Almada, A. Effects of Creatine Supplementation on Repetitive Sprint Performance and Body Composition in Competitive Swimmers. Int. J. Sport Nutr. 1997, 7, 330–346. [Google Scholar] [CrossRef] [PubMed]
- Ostojic, S.M. Creatine Supplementation in Young Soccer Players. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Silva, A.; Buzzachera, C.F.; Piçarro, I.D.C.; Januario, R.S.B.; Ferreira, L.H.B.; McAnulty, S.R.; Utter, A.C.; Souza-Junior, T.P. Effect of Low Dose, Short-Term Creatine Supplementation on Muscle Power Output in Elite Youth Soccer Players. J. Int. Soc. Sports Nutr. 2017, 14, 5. [Google Scholar] [CrossRef]
- Theodorou, A.S.; Cooke, C.B.; King, R.F.; Hood, C.; Denison, T.; Wainwright, B.G.; Havenetidis, K. The Effect of Longer-Term Creatine Supplementation on Elite Swimming Performance after an Acute Creatine Loading. J. Sports Sci. 1999, 17, 853–859. [Google Scholar] [CrossRef]
- Loureiro, L.M.R.; Reis, C.E.G.; da Costa, T.H.M. Effects of Coffee Components on Muscle Glycogen Recovery: A Systematic Review. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 284–293. [Google Scholar] [CrossRef]
- Ghazaleh, L.; Enayati, A.; Delfan, M.; Bamdad, S.; Laher, I.; Granacher, U.; Zouhal, H. Effects of Caffeine Supplementation on Anaerobic Power and Muscle Activity in Youth Athletes. BMC Sports Sci. Med. Rehabil. 2024, 16, 23. [Google Scholar] [CrossRef]
- Jordan, J.B.; Korgaokar, A.; Farley, R.S.; Coons, J.M.; Caputo, J.L. Caffeine Supplementation and Reactive Agility in Elite Youth Soccer Players. Pediatr. Exerc. Sci. 2014, 26, 168–176. [Google Scholar] [CrossRef]
- Stojanović, E.; Scanlan, A.T.; Milanović, Z.; Fox, J.L.; Stanković, R.; Dalbo, V.J. Acute Caffeine Supplementation Improves Jumping, Sprinting, and Change-of-Direction Performance in Basketball Players When Ingested in the Morning but Not Evening. Eur. J. Sport Sci. 2022, 22, 360–370. [Google Scholar] [CrossRef]
- Ellis, M.; Noon, M.; Myers, T.; Clarke, N. Low Doses of Caffeine: Enhancement of Physical Performance in Elite Adolescent Male Soccer Players. Int. J. Sports Physiol. Perform. 2019, 14, 569–575. [Google Scholar] [CrossRef]
- Wong, T.H.; Sim, A.; Burns, S.F. The Effect of Beetroot Ingestion on High-Intensity Interval Training: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 3674. [Google Scholar] [CrossRef]
- Claus, G.M.; Redkva, P.E.; Brisola, G.M.P.; Malta, E.S.; de Araujo Bonetti de Poli, R.; Miyagi, W.E.; Zagatto, A.M. Beta-Alanine Supplementation Improves Throwing Velocities in Repeated Sprint Ability and 200-m Swimming Performance in Young Water Polo Players. Pediatr. Exerc. Sci. 2017, 29, 203–212. [Google Scholar] [CrossRef]
- Faienza, M.F.; Urbano, F.; Chiarito, M.; Lassandro, G.; Giordano, P. Musculoskeletal Health in Children and Adolescents. Front. Pediatr. 2023, 11, 1226524. [Google Scholar] [CrossRef] [PubMed]
- Byers, A.W.; Connolly, G.; Campbell, W.W. Vitamin D Status and Supplementation Impacts on Skeletal Muscle Function: Comparisons between Young Athletes and Older Adults. Curr. Opin. Clin. Nutr. Metab. Care 2020, 23, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Damian, M.-T.; Vulturar, R.; Login, C.C.; Damian, L.; Chis, A.; Bojan, A. Anemia in Sports: A Narrative Review. Life 2021, 11, 987. [Google Scholar] [CrossRef] [PubMed]
- De Souza, M.J.; Nattiv, A.; Joy, E.; Misra, M.; Williams, N.I.; Mallinson, R.J.; Gibbs, J.C.; Olmsted, M.; Goolsby, M.; Matheson, G.; et al. 2014 Female Athlete Triad Coalition Consensus Statement on Treatment and Return to Play of the Female Athlete Triad: 1st International Conference Held in San Francisco, California, May 2012 and 2nd International Conference Held in Indianapolis, Indiana, May 2013. Br. J. Sports Med. 2014, 48, 289. [Google Scholar] [CrossRef]
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Carter, S.; Constantini, N.; Lebrun, C.; Meyer, N.; Sherman, R.; Steffen, K.; Budgett, R.; et al. The IOC Consensus Statement: Beyond the Female Athlete Triad--Relative Energy Deficiency in Sport (RED-S). Br. J. Sports Med. 2014, 48, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Mountjoy, M.; Sundgot-Borgen, J.K.; Burke, L.M.; Ackerman, K.E.; Blauwet, C.; Constantini, N.; Lebrun, C.; Lundy, B.; Melin, A.K.; Meyer, N.L.; et al. IOC Consensus Statement on Relative Energy Deficiency in Sport (RED-S): 2018 Update. Br. J. Sports Med. 2018, 52, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Fredericson, M.; Kussman, A.; Misra, M.; Barrack, M.T.; Souza, M.J.D.; Kraus, E.; Koltun, K.J.; Williams, N.I.; Joy, E.; Nattiv, A. The Male Athlete Triad-A Consensus Statement From the Female and Male Athlete Triad Coalition Part II: Diagnosis, Treatment, and Return-To-Play. Clin. J. Sport Med. 2021, 31, 349–366. Available online: https://pubmed.ncbi.nlm.nih.gov/34091538/ (accessed on 1 March 2025). [PubMed]
- Jäger, R.; Heileson, J.L.; Abou Sawan, S.; Dickerson, B.L.; Leonard, M.; Kreider, R.B.; Kerksick, C.M.; Cornish, S.M.; Candow, D.G.; Cordingley, D.M.; et al. International Society of Sports Nutrition Position Stand: Long-Chain Omega-3 Polyunsaturated Fatty Acids. J. Int. Soc. Sports Nutr. 2025, 22, 2441775. [Google Scholar] [CrossRef]
- Philpott, J.D.; Witard, O.C.; Galloway, S.D.R. Applications of Omega-3 Polyunsaturated Fatty Acid Supplementation for Sport Performance. Res. Sports Med. 2019, 27, 219–237. [Google Scholar] [CrossRef]
- Kamada, T.; Tokuda, S.; Aozaki, S.; Otsuji, S. Higher Levels of Erythrocyte Membrane Fluidity in Sprinters and Long-Distance Runners. J. Appl. Physiol. 1993, 74, 354–358. [Google Scholar] [CrossRef]
- Kilroe, S.P.; Fulford, J.; Holwerda, A.M.; Jackman, S.R.; Lee, B.P.; Gijsen, A.P.; van Loon, L.J.C.; Wall, B.T. Short-Term Muscle Disuse Induces a Rapid and Sustained Decline in Daily Myofibrillar Protein Synthesis Rates. Am. J. Physiol. Endocrinol. Metab. 2020, 318, E117–E130. [Google Scholar] [CrossRef]
- Wall, B.T.; Dirks, M.L.; Snijders, T.; van Dijk, J.-W.; Fritsch, M.; Verdijk, L.B.; van Loon, L.J.C. Short-Term Muscle Disuse Lowers Myofibrillar Protein Synthesis Rates and Induces Anabolic Resistance to Protein Ingestion. Am. J. Physiol. Endocrinol. Metab. 2016, 310, E137–E147. [Google Scholar] [CrossRef] [PubMed]
- McGlory, C.; Calder, P.C.; Nunes, E.A. The Influence of Omega-3 Fatty Acids on Skeletal Muscle Protein Turnover in Health, Disuse, and Disease. Front. Nutr. 2019, 6, 144. [Google Scholar] [CrossRef]
- Tipton, K.D. Nutritional Support for Exercise-Induced Injuries. Sports Med. 2015, 45 (Suppl. 1), S93–S104. [Google Scholar] [CrossRef]
- Kuipers, H. Exercise-Induced Muscle Damage. Int. J. Sports Med. 1994, 15, 132–135. [Google Scholar] [CrossRef]
- Mickleborough, T.D. Omega-3 Polyunsaturated Fatty Acids in Physical Performance Optimization. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 83–96. [Google Scholar] [CrossRef]
- Rietjens, I.M.C.M.; Boersma, M.G.; de Haan, L.; Spenkelink, B.; Awad, H.M.; Cnubben, N.H.P.; van Zanden, J.J.; van der Woude, H.; Alink, G.M.; Koeman, J.H. The Pro-Oxidant Chemistry of the Natural Antioxidants Vitamin C, Vitamin E, Carotenoids and Flavonoids. Environ. Toxicol. Pharmacol. 2002, 11, 321–333. [Google Scholar] [CrossRef]
- Levine, M.; Conry-Cantilena, C.; Wang, Y.; Welch, R.W.; Washko, P.W.; Dhariwal, K.R.; Park, J.B.; Lazarev, A.; Graumlich, J.F.; King, J.; et al. Vitamin C Pharmacokinetics in Healthy Volunteers: Evidence for a Recommended Dietary Allowance. Proc. Natl. Acad. Sci. USA 1996, 93, 3704–3709. [Google Scholar] [CrossRef]
- Costill, D.L.; Fink, W.J.; Pollock, M.L. Muscle Fiber Composition and Enzyme Activities of Elite Distance Runners. Med. Sci. Sports 1976, 8, 96–100. [Google Scholar] [CrossRef]
- Nikolaidis, M.G.; Kerksick, C.M.; Lamprecht, M.; McAnulty, S.R. Does Vitamin C and E Supplementation Impair the Favorable Adaptations of Regular Exercise? Oxid. Med. Cell. Longev. 2012, 2012, 707941. [Google Scholar] [CrossRef]
- Avloniti, A.; Chatzinikolaou, A.; Deli, C.K.; Vlachopoulos, D.; Gracia-Marco, L.; Leontsini, D.; Draganidis, D.; Jamurtas, A.Z.; Mastorakos, G.; Fatouros, I.G. Exercise-Induced Oxidative Stress Responses in the Pediatric Population. Antioxidants 2017, 6, 6. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Rayess, Y.E.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.; Zielińska, D.; et al. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front. Pharmacol. 2020, 11, 01021. [Google Scholar] [CrossRef]
- Owens, D.J.; Twist, C.; Cobley, J.N.; Howatson, G.; Close, G.L. Exercise-Induced Muscle Damage: What Is It, What Causes It and What Are the Nutritional Solutions? Eur. J. Sport Sci. 2019, 19, 71–85. [Google Scholar] [CrossRef]
- Stohs, S.J.; Chen, O.; Ray, S.D.; Ji, J.; Bucci, L.R.; Preuss, H.G. Highly Bioavailable Forms of Curcumin and Promising Avenues for Curcumin-Based Research and Application: A Review. Molecules 2020, 25, 1397. [Google Scholar] [CrossRef]
- Merry, T.L.; Ristow, M. Do Antioxidant Supplements Interfere with Skeletal Muscle Adaptation to Exercise Training? J. Physiol. 2016, 594, 5135–5147. [Google Scholar] [CrossRef]
- Menniti-Ippolito, F.; Ippoliti, I.; Pastorelli, A.A.; Altieri, I.; Scalise, F.; De Santis, B.; Debegnach, F.; Brera, C.; Pacifici, R.; Pichini, S.; et al. Turmeric (Curcuma longa L.) Food Supplements and Hepatotoxicity: An Integrated Evaluation Approach. Ann. Ist. Super. Sanita 2020, 56, 462–469. [Google Scholar] [CrossRef]
- Unnithan, V.B.; Veehof, S.H.; Vella, C.A.; Kern, M. Is There a Physiologic Basis for Creatine Use in Children and Adolescents? J. Strength Cond. Res. 2001, 15, 524–528. [Google Scholar]
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition Position Stand: Safety and Efficacy of Creatine Supplementation in Exercise, Sport, and Medicine. J. Int. Soc. Sports Nutr. 2017, 14, 18. [Google Scholar] [CrossRef]
- Antonio, J.; Candow, D.G.; Forbes, S.C.; Gualano, B.; Jagim, A.R.; Kreider, R.B.; Rawson, E.S.; Smith-Ryan, A.E.; VanDusseldorp, T.A.; Willoughby, D.S.; et al. Common Questions and Misconceptions about Creatine Supplementation: What Does the Scientific Evidence Really Show? J. Int. Soc. Sports Nutr. 2021, 18, 13. [Google Scholar] [CrossRef]
- Jagim, A.R.; Stecker, R.A.; Harty, P.S.; Erickson, J.L.; Kerksick, C.M. Safety of Creatine Supplementation in Active Adolescents and Youth: A Brief Review. Front. Nutr. 2018, 5, 115. [Google Scholar] [CrossRef]
- Kayton, S.; Cullen, R.W.; Memken, J.A.; Rutter, R. Supplement and Ergogenic Aid Use by Competitive Male and Female High School Athletes. Med. Sci. Sports Exerc. 2002, 34, S193. [Google Scholar]
- Jagim, A.R.; Kerksick, C.M. Creatine Supplementation in Children and Adolescents. Nutrients 2021, 13, 664. [Google Scholar] [CrossRef] [PubMed]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International Society of Sports Nutrition Position Stand: Caffeine and Exercise Performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef]
- Pickering, C.; Grgic, J. Caffeine and Exercise: What Next? Sports Med. 2019, 49, 1007–1030. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the Safety of Caffeine. EFSA J. 2015, 13, 4102. [Google Scholar] [CrossRef]
- Mohamed, D.T.; Abdelaziz, H.A. Caffeine Consumption among Young Athletes and Their Perception in Relation to Performance. J. High Inst. Public Health 2022, 52, 73–81. [Google Scholar] [CrossRef]
- Nawrot, P.; Jordan, S.; Eastwood, J.; Rotstein, J.; Hugenholtz, A.; Feeley, M. Effects of Caffeine on Human Health. Food Addit. Contam. 2003, 20, 1–30. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Nitrate in Vegetables—Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2008, 6, 689. [Google Scholar] [CrossRef]
- Australian Sports Commission. Jurisdiction=Commonwealth of A. corporateName=Australian S. Supplements. Available online: https://www.ais.gov.au/nutrition/supplements (accessed on 19 March 2025).
- Hogwood, A.C.; Anderson, K.C.; Ortiz de Zevallos, J.; Paterson, C.; Weltman, A.; Allen, J.D. Limited Effects of Inorganic Nitrate Supplementation on Exercise Training Responses: A Systematic Review and Meta-Analysis. Sports Med. Open 2023, 9, 84. [Google Scholar] [CrossRef]
- López-Torres, O.; Rodríguez-Longobardo, C.; Capel-Escoriza, R.; Fernández-Elías, V.E. Ergogenic Aids to Improve Physical Performance in Female Athletes: A Systematic Review with Meta-Analysis. Nutrients 2022, 15, 81. [Google Scholar] [CrossRef]
- López-Samanes, Á.; Gómez Parra, A.; Moreno-Pérez, V.; Courel-Ibáñez, J. Does Acute Beetroot Juice Supplementation Improve Neuromuscular Performance and Match Activity in Young Basketball Players? A Randomized, Placebo-Controlled Study. Nutrients 2020, 12, 188. [Google Scholar] [CrossRef] [PubMed]
- Adji, F.R.; Sofro, Z.M.; Hapsari, M. The Effect of Beetroot Juice (Beta vulgaris L.) Supplementation on ṼO2max of Youth Soccer Athletes. J. Public Health Afr. 2022, 13, 2406. [Google Scholar] [CrossRef] [PubMed]
- Bellinger, P.M. β-Alanine Supplementation for Athletic Performance: An Update. J. Strength Cond. Res. 2014, 28, 1751–1770. [Google Scholar] [CrossRef] [PubMed]
- Trexler, E.T.; Smith-Ryan, A.E.; Stout, J.R.; Hoffman, J.R.; Wilborn, C.D.; Sale, C.; Kreider, R.B.; Jäger, R.; Earnest, C.P.; Bannock, L.; et al. International Society of Sports Nutrition Position Stand: Beta-Alanine. J. Int. Soc. Sports Nutr. 2015, 12, 30. [Google Scholar] [CrossRef] [PubMed]
Athlete Category | Training Volume | Competition Level |
---|---|---|
Elite athletes | >10 h/week | Performances at the highest level of competition |
Competitive athletes | >6 h/week | Emphasis on improving performance |
Recreational athletes | >4 h/week | Unregulated competitions |
Exercises | >2.5 h/week | Maintain health and fitness status |
Macronutrients | ||
Component | Recommendation | Details |
Carbohydrates | 45–60% of total caloric intake [21] | Favoring low-glycemic sources (e.g., whole grains, fruits). |
8–12 g of carbohydrate/kg/day [g/kg/day] [22] | To optimize muscle glycogen stores for athletes completing high volumes (i.e., ≥8 h) of exercise per week. | |
Pre-exercise: 1–4 g/kg consumed 1–4 h before exercise [18] | Before exercise > 60 min | |
During exercise > 60 min duration: 30–60 g/h and up to 90 g/h for very prolonged events (2.5+ h) [18] | The benefits are related to muscle energy demands and the maintenance of blood glucose levels. | |
Post-exercise: 1.2 g/kg/h for 4–6 h soon after exhausting exercise, with a preference towards carbohydrate sources that have a high (>70) glycemic index [22] | When rapid restoration of glycogen is required (<4 h of recovery time). | |
Proteins | 1.2–2.0 g/kg body weight/day and regular spacing of intakes of modest amounts of high-quality protein throughout the day [18] | To support lean mass replenishments and growth. |
0.3 g/kg body weight high-quality protein after exercise [18] | To enhance muscle protein synthesis and exercise recovery. | |
Higher protein intakes when energy availability is reduced (e.g., to reduce body weight/fat) [18] | They are needed to support muscle protein synthesis (MPS) and retention of fat-free mass. | |
Fats | 20–35% of total energy intake [18] | Essential for absorption of fat-soluble vitamins and hormone production. |
Athletes should be discouraged from chronic implementation of fat intakes below 20% of energy intake | Reduction in dietary variety often associated with such restrictions is likely to reduce the intake of fat-soluble vitamins and essential fatty acids, especially n-3 fatty acids. | |
Intake of fat by athletes should be in accordance with public health guidelines and should be individualized based on training level and body composition goals [18] | Follow public health guidelines while adjusting according to sport, training intensity, and body composition targets. | |
Micronutrients Athletes should have diets providing at least the Recommended Dietary Allowance (RDA) for all micronutrients. Vitamin and mineral supplements are unnecessary for the athlete who consumes a diet providing high-energy availability from a variety of nutrient-dense foods [18]. PRI refers to Population Reference Intake, AI to Adequate Intake, UL to Upper Level. | ||
Components | Recommendation | Details |
Iron [21] | 7–11 years 11 mg/day PRI (females and males) 12–17 years 13 mg/day PRI (females) and 11 mg/day PRI (males) | Heme and non-heme iron from food sources (meat, legumes, fortified cereals). Adolescent females require a higher intake to compensate for menstrual losses. Iron absorption is improved by vitamin C and reduced by tannins and phytates. |
Vitamin D [21] | 7–10 years 15 μg/day AI and 50 μg VDE/day UL (females and males) 11–17 years 15 μg/day AI and 100 μg VDE/day UL (females and males) | VDE: vitamin D equivalent |
Calcium [21] | 4–10 years 800 mg/day PRI (females and males) 11–17 years 1150 mg/day PRI (females and males) | Essential for bone mineralization and skeletal growth during childhood and adolescence. Main sources: dairy products, green leafy vegetables, calcium water, fortified foods. |
Hydration guidelines | ||
Aspect | Recommendation | |
Fluid loss | Avoid >2% body mass loss due to sweat [23] | Dehydration exceeding 2 percent of body weight impairs physical and cognitive performance. Monitor pre- and post-exercise body weight to estimate sweat losses. |
Fluid intake during high-intensity exercise (>60 min) | Use sport drinks (probably better than water alone) [23] | Drinks with carbohydrates (4–8%) and electrolytes are preferable to water to maintain blood sugar levels, delay fatigue, and promote fluid absorption during prolonged or intense exercise. Strategies should be individualized according to sweating rate and environmental conditions. |
Fluid intake after exercise for restore balance | Drink ~1.5 L of fluid for each kg of body weight lost during exercise [23] | For individuals requiring rapid and complete recovery from excessive dehydration. |
Bioactive Compound or Dietary Supplement | Author (Year of Publication), Study Design | Dosage Under Investigation | Duration of Administration | Reference Age | Outcome of Interest |
---|---|---|---|---|---|
Micronutrients of key interest for prevention, well-being, and performance | |||||
Vitamin D | Bezrati I. et al. (2020); RCT [24] | 200.000 UI | Acute administration | School-age children and adolescent males (8–15 years) | Physical performance |
Dubnov-Raz G. et al. (2015); RCT [25] | 2000 UI/day | 12 weeks | Adolescent males (12–18 years) | ||
Calcium | Azevedo H. et al. (2024); clinical trial [26] | 21.5 mg/kg body mass | Acute administration (60 min before the tests) | Adolescence soccer players (<15 years) | Athletic performance |
Iron | Gera T. et al. (2007); systematic review of randomized controlled trials [27] | 30–200 mg/day | 1–2 months | School-age children and adolescents (8–15 years) and adolescent girls (<18 years) | Physical performance |
Pasricha S.R. et al. (2014); systematic review of randomized controlled trials [28] | 1–325 mg/day | 4–24 weeks | 12–50 years adolescent and adult women | ||
Supplements that may assist with training capacity, recovery, muscle soreness, and injury | |||||
Omega-3 | Guezennec C.Y. et al. (1989); clinical trial [29] | * no data in pediatric age 6 g/day (no information regarding EPA and DHA) | 6 weeks | Adults (19–38 years) | Anti-inflammatory effects |
Brilla L.R. and Landerholm T.E. (1990); clinical trial [30] | * no data in pediatric age 4 g/day (no information regarding EPA and DHA) | 10 weeks | Adults (19–34 years) | ||
Raastad T. et al. (1997); RCT [31] | * no data in pediatric age 5.2 g/day (1.60 g/day EPA and 1.04 g/day DHA) | 10 weeks | Adults (age ~20 yrs) | ||
Smith G.I. et al. (2011); RCT [32] | * no data in pediatric age 4 g/day (1.86 g EPA and 1.5 g DHA) | 8 weeks | Adults (25–45 yrs) | ||
Smith G.I. et al. (2011); RCT [33] | * no data in pediatric age 4 g/day (1.86 g EPA and 1.5 g DHA) | 8 weeks | Adults (≥65 yrs) | ||
Vitamin C | Schröder H. et al. (2001); clinical trial [34] | * no data in pediatric age Vitamin C (1000 mg/day), vitamin E (600 mg/day), β-carotene (32 mg/day) | 35 day | Young adults (23–24 years) | Antioxidant effects and risk of upper respiratory infections |
Mastaloudis A. et al. (2006); RCT [35] | * no data in pediatric age Vitamin C (1000 mg/day), vitamin E (300 mg/day) | 6 weeks; 2 h before the exercise test | 39–41 years | ||
Constantini N.W et al. (2011); RCT [36] | Vitamin C (500 mg/twice a day) | 3 months | 12–17 years | ||
Ashton T. et al. (1999); clinical trial [37] | * no data in pediatric age Vitamin C (1000 mg/day) | (2 h before exercise) 10 days (during training camp) | 18–30 years | ||
Żychowska M. et al. (2015); clinical trial [38] | Vitamin C (8 mg/kg/day), vitamin A (16 μg/kg/day), vitamin E (1 mg/kg/day) | 10 days (during training camp) | Adolescents (14–15 years) | ||
Thompson D. et al. (2001); RCT [39] | * no data in pediatric age Vitamin C (400 mg/day) | 14 days pre-exercise + 3 days post-exercise | Healthy adult males (~20–45 years) | ||
Ristow M. et al. (2009); RCT [40] | * no data in pediatric age Vitamin C (1000 mg/day), vitamin E (400 UI/day) | 4 weeks | Healthy adult males (25–35 y) | ||
Curcumin | Sahebkar A. et al. (2015); systematic review and meta-analysis of RCT [41] | * no data in pediatric age 80–1500 mg/day (different formulations) | ≥6 weeks | Adults (age not specified) | Antioxidant and anti-inflammatory effects |
Daniel Vasile P.R. et al. (2024); systematic review [42] | * no data in pediatric age 90–5000 mg/day (different formulations) | Before and/or after exercise, up to 72 h post-exercise | Adult athletes (>18 years) | ||
Heidari Z. et al. (2022); systematic review [43] | * no data in pediatric age 45–4000 mg/day (different formulations) | 2–48 weeks | Pediatric patients (2–18 years) | ||
Bai K.Y. Et al. (2022); clinical trial [44] | 1200 mg/day (powder form) | 12 weeks | Adolescent athletes (mean age 17 years) | ||
Suhett L.G. et al. (2021); systematic review [45] | * no data in pediatric age 10–6000 mg/day (different formulations) | 1 day–3 months (mostly 7–28 days) | Adolescents (17 years mean) | ||
Ergogenic supplements | |||||
Creatine | Juhász I. et al. (2009); RCT [46] | 20 g/day | 5 days | Adolescents (14–19 years) | Increased phosphocreatine stores and ATP production |
Claudino J.G. et al. (2014); RCT [47] | 20 g/day (1 week), then 5 g/day (6 weeks) | 7 weeks | 17–19 years | ||
Dawson B. et al. (2002); clinical trial [48] | 20 g/day (5 days), then 5 g/day (22 days) | 4 weeks | 16 years | ||
Grindstaff P.D. et al. (1997); RCT [49] | 21 g/day | 9 days | Adolescents (age not specified) | ||
Ostojic S.M. (2004); clinical trial [50] | 30 g/day | 7 days | 16–17 years | ||
Yáñez-Silva A. et al. (2017); clinical trial [51] | 0.03 g/kg/day | 14 days | 17–18 years | ||
Theodorou A.S. et al. (1999); RCT [52] 27 | 25 g/day (4 days) then 5 g/day (2 months) | 4 days load + 2 months maintenance | Age not specified | ||
Caffeine | Loureiro L.M.R. et al. (2018); systematic review [53] | * no data in pediatric age (5–10.2 mg/kg body weight) | Up to 4 h post-exercise | Adults (age not specified) | Neuromuscular function-enhancing effects |
Ghazaleh L. et al. (2024); RCT [54] | 6 mg/kg body weight | Administration 60 min pre test | Adolescents (14.7–17.5 years) | ||
Jordan J.B. et al. (2014); RCT [55] | 6 mg/kg body weight | 30 min pre test | Adolescents (14 years) | ||
Stojanović E. et al. (2022); RCT [56] | 6 mg/kg body weight (double administration of 3 mg/kg body weight) | Administration 30–60 min pre test | Adolescents (15–16 years) | ||
Ellis M. et al. (2019); RCT [57] | 1, 2 or 3 mg/kg body weight | Administration 30–60 min pre test | Adolescents (16–17 years) | ||
Beetroot Juice | Wong T.H. et al. (2021); systematic review [58] | * no data in pediatric age 70–500 mL/day (from 4.84 mmol NO3-/day to 29 mmol NO3- in 36 h) and different formulations | Administration 60 min pre test | Adolescents (16–17 years) | nitric oxide (NO)-enhancing effect |
Beta-alanine | Claus G.M. et al. (2017); RCT [59] | 6.4 g/day | 6 weeks | Adolescents (14–18 years) | Intracellular acid-buffering effect |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Zan, D.; Eletti, F.; Fiore, G.; Di Girolamo, E.; Bozzini, G.G.M.; Perico, V.; Tosi, M.; Norsa, L.; Zuccotti, G.; Verduci, E. Use of Nutritional Strategies, Bioactive Compounds, and Dietary Supplements in Young Athletes: From Evidence to Potential Risks—A Narrative Review. Nutrients 2025, 17, 2194. https://doi.org/10.3390/nu17132194
De Zan D, Eletti F, Fiore G, Di Girolamo E, Bozzini GGM, Perico V, Tosi M, Norsa L, Zuccotti G, Verduci E. Use of Nutritional Strategies, Bioactive Compounds, and Dietary Supplements in Young Athletes: From Evidence to Potential Risks—A Narrative Review. Nutrients. 2025; 17(13):2194. https://doi.org/10.3390/nu17132194
Chicago/Turabian StyleDe Zan, Diego, Francesca Eletti, Giulia Fiore, Elisa Di Girolamo, Gaia Giulia Maria Bozzini, Veronica Perico, Martina Tosi, Lorenzo Norsa, Gianvincenzo Zuccotti, and Elvira Verduci. 2025. "Use of Nutritional Strategies, Bioactive Compounds, and Dietary Supplements in Young Athletes: From Evidence to Potential Risks—A Narrative Review" Nutrients 17, no. 13: 2194. https://doi.org/10.3390/nu17132194
APA StyleDe Zan, D., Eletti, F., Fiore, G., Di Girolamo, E., Bozzini, G. G. M., Perico, V., Tosi, M., Norsa, L., Zuccotti, G., & Verduci, E. (2025). Use of Nutritional Strategies, Bioactive Compounds, and Dietary Supplements in Young Athletes: From Evidence to Potential Risks—A Narrative Review. Nutrients, 17(13), 2194. https://doi.org/10.3390/nu17132194