Baseline Characteristics of Weight-Loss Success in a Personalized Nutrition Intervention: A Secondary Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Objective and Approvals
2.2. Participants
2.3. Screening, Data Collection Procedures, Randomization
2.4. Baseline Measurements
2.5. Interventions: Standardized vs. Personalized
2.6. Statistical Analysis
3. Results
3.1. Predictors in the Overall Sample
3.2. Predictors in the Standardized Arm
3.3. Predictors in the Personalized Arm
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
eGFR | eGFR |
GV | Glycemic Variability |
HbA1c | Hemoglobin A1c |
IRB | Institutional Review Board |
PNP | Personal Nutrition Program |
PPGR | Post-Prandial Glycemic Response |
TAR | Time Above Range (>140 mg/dL) |
T2D | Type 2 Diabetes |
WEL | Weight Efficacy Lifestyle Questionnaire |
References
- Voruganti, V.S. Precision Nutrition: Recent Advances in Obesity. Physiology 2023, 38, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Bermingham, K.M.; Linenberg, I.; Polidori, L.; Asnicar, F.; Arrè, A.; Wolf, J.; Badri, F.; Bernard, H.; Capdevila, J.; Bulsiewicz, W.J.; et al. Effects of a personalized nutrition program on cardiometabolic health: A randomized controlled trial. Nat. Med. 2024, 30, 1888–1897. [Google Scholar] [CrossRef]
- Popp, C.J.; Hu, L.; Kharmats, A.Y.; Curran, M.; Berube, L.; Wang, C.; Pompeii, M.L.; Illiano, P.; St-Jules, D.E.; Mottern, M.; et al. Effect of a Personalized Diet to Reduce Postprandial Glycemic Response vs a Low-fat Diet on Weight Loss in Adults with Abnormal Glucose Metabolism and Obesity: A Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e2233760. [Google Scholar] [CrossRef] [PubMed]
- Aldubayan, M.A.; Pigsborg, K.; Gormsen, S.M.; Serra, F.; Palou, M.; Galmés, S.; Palou-March, A.; Favari, C.; Wetzels, M.; Calleja, A.; et al. A double-blinded, randomized, parallel intervention to evaluate biomarker-based nutrition plans for weight loss: The PREVENTOMICS study. Clin. Nutr. 2022, 41, 1834–1844. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, K.M.; Celis-Morales, C.; Navas-Carretero, S.; San-Cristobal, R.; Macready, A.L.; Fallaize, R.; Forster, H.; Woolhead, C.; O’Donovan, C.B.; Marsaux, C.F.; et al. Effect of an Internet-based, personalized nutrition randomized trial on dietary changes associated with the Mediterranean diet: The Food4Me Study. Am. J. Clin. Nutr. 2016, 104, 288–297. [Google Scholar] [CrossRef]
- Höchsmann, C.; Yang, S.; Ordovás, J.M.; Dorling, J.L.; Champagne, C.M.; Apolzan, J.W.; Greenway, F.L.; Cardel, M.I.; Foster, G.D.; Martin, C.K. The Personalized Nutrition Study (POINTS): Evaluation of a genetically informed weight loss approach, a Randomized Clinical Trial. Nat. Commun. 2023, 14, 6321. [Google Scholar] [CrossRef]
- Livingstone, K.M.; Celis-Morales, C.; Navas-Carretero, S.; San-Cristobal, R.; Forster, H.; Woolhead, C.; O’Donovan, C.B.; Moschonis, G.; Manios, Y.; Traczyk, I.; et al. Characteristics of participants who benefit most from personalised nutrition: Findings from the pan-European Food4Me randomised controlled trial. Br. J. Nutr. 2020, 123, 1396–1405. [Google Scholar] [CrossRef]
- Popp, C.J.; St-Jules, D.E.; Hu, L.; Ganguzza, L.; Illiano, P.; Curran, M.; Li, H.; Schoenthaler, A.; Bergman, M.; Schmidt, A.M.; et al. The rationale and design of the personal diet study, a randomized clinical trial evaluating a personalized approach to weight loss in individuals with pre-diabetes and early-stage type 2 diabetes. Contemp. Clin. Trials 2019, 79, 80–88. [Google Scholar] [CrossRef]
- Kharmats, A.Y.; Popp, C.; Hu, L.; Berube, L.; Curran, M.; Wang, C.; Pompeii, M.L.; Li, H.; Bergman, M.; St-Jules, D.E.; et al. A randomized clinical trial comparing low-fat with precision nutrition-based diets for weight loss: Impact on glycemic variability and HbA1c. Am. J. Clin. Nutr. 2023, 118, 443–451. [Google Scholar] [CrossRef]
- Clark, M.M.; Abrams, D.B.; Niaura, R.S.; Eaton, C.A.; Rossi, J.S. Self-efficacy in weight management. J. Consult. Clin. Psychol. 1991, 59, 739–744. Available online: http://www.ncbi.nlm.nih.gov/pubmed/1955608 (accessed on 24 May 2018). [CrossRef]
- Battelino, T.; Bergenstal, R.M.; Rodríguez, A.; Landó, L.F.; Bray, R.; Tong, Z.; Brown, K. Efficacy of once-weekly tirzepatide versus once-daily insulin degludec on glycaemic control measured by continuous glucose monitoring in adults with type 2 diabetes (SURPASS-3 CGM): A substudy of the randomised, open-label, parallel-group, phase 3 SURPASS-3 trial. Lancet Diabetes Endocrinol. 2022, 10, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Barua, S.; Sabharwal, A.; Glantz, N.; Conneely, C.; Larez, A.; Bevier, W.; Kerr, D. Dysglycemia in adults at risk for or living with non-insulin treated type 2 diabetes: Insights from continuous glucose monitoring. EClinicalMedicine 2021, 35, 100853. [Google Scholar] [CrossRef]
- Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015, 163, 1079–1094. [Google Scholar] [CrossRef]
- The Diabetes Prevention Program (DPP) Research Group. The Diabetes Prevention Program (DPP): Description of lifestyle intervention. Diabetes Care 2002, 25, 2165–2171. [Google Scholar] [CrossRef]
- Magkos, F.; Fraterrigo, G.; Yoshino, J.; Luecking, C.; Kirbach, K.; Kelly, S.C.; de Las Fuentes, L.; He, S.; Okunade, A.L.; Patterson, B.W.; et al. Effects of Moderate and Subsequent Progressive Weight Loss on Metabolic Function and Adipose Tissue Biology in Humans with Obesity. Cell Metab. 2016, 23, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, P.J.; Carraça, E.V.; Marques, M.M.; Rutter, H.; Oppert, J.M.; De Bourdeaudhuij, I.; Lakerveld, J.; Brug, J. Successful behavior change in obesity interventions in adults: A systematic review of self-regulation mediators. BMC Med. 2015, 13, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Presnell, K.; Pells, J.; Stout, A.; Musante, G. Sex differences in the relation of weight loss self-efficacy, binge eating, and depressive symptoms to weight loss success in a residential obesity treatment program. Eat. Behav. 2008, 9, 170–180. [Google Scholar] [CrossRef]
- Shin, H.; Shin, J.; Liu, P.Y.; Dutton, G.R.; Abood, D.A.; Ilich, J.Z. Self-efficacy improves weight loss in overweight/obese postmenopausal women during a 6-month weight loss intervention. Nutr. Res. 2011, 31, 822–828. [Google Scholar] [CrossRef]
- Gilcharan Singh, H.K.; Chee, W.S.; Hamdy, O.; Mechanick, J.I.; Lee, V.K.; Barua, A.; Mohd Ali, S.Z.; Hussein, Z. Eating self-efficacy changes in individuals with type 2 diabetes following a structured lifestyle intervention based on the transcultural Diabetes Nutrition Algorithm (tDNA): A secondary analysis of a randomized controlled trial. PLoS ONE 2020, 15, e0242487. [Google Scholar] [CrossRef]
- Oikarinen, N.; Jokelainen, T.; Heikkilä, L.; Nurkkala, M.; Hukkanen, J.; Salonurmi, T.; Savolainen, M.J.; Teeriniemi, A.M. Low eating self-efficacy is associated with unfavorable eating behavior tendencies among individuals with overweight and obesity. Sci. Rep. 2023, 13, 7730. [Google Scholar] [CrossRef]
- Mazzeo, S.E.; Saunders, R.; Mitchell, K.S. Gender and binge eating among bariatric surgery candidates. Eat. Behav. 2006, 7, 47–52. [Google Scholar] [CrossRef]
- Nezami, B.T.; Lang, W.; Jakicic, J.M.; Davis, K.K.; Polzien, K.; Rickman, A.D.; Hatley, K.E.; Tate, D.F. The Effect of Self-Efficacy on Behavior and Weight in a Behavioral Weight Loss Intervention. Health Psychol. 2016, 35, 714–722. [Google Scholar] [CrossRef]
- Gallagher, R.; Kirkness, A.; Zelestis, E.; Hollams, D.; Kneale, C.; Armari, E.; Bennett, T.; Daly, J.; Tofler, G. A randomised trial of a weight loss intervention for overweight and obese people diagnosed with coronary heart disease and/or type 2 diabetes. Ann. Behav. Med. 2012, 44, 119–128. [Google Scholar] [CrossRef]
- Annesi, J.J. Behaviorally supported exercise predicts weight loss in obese adults through improvements in mood, self-efficacy, and self-regulation, rather than by caloric expenditure. Perm. J. 2011, 15, 23–27. [Google Scholar] [CrossRef]
- Chopra, S.; Malhotra, A.; Ranjan, P.; Vikram, N.K.; Sarkar, S.; Siddhu, A.; Kumari, A.; Kaloiya, G.S.; Kumar, A. Predictors of successful weight loss outcomes amongst individuals with obesity undergoing lifestyle interventions: A systematic review. Obes. Rev. 2021, 22, e13148. [Google Scholar] [CrossRef]
- Pontzer, H.; Yamada, Y.; Sagayama, H.; Ainslie, P.N.; Andersen, L.F.; Anderson, L.J.; Arab, L.; Baddou, I.; Bedu-Addo, K.; Blaak, E.E.; et al. Daily energy expenditure through the human life course. Science 2021, 373, 808–812. [Google Scholar] [CrossRef]
- Westerterp, K.R.; Yamada, Y.; Sagayama, H.; Ainslie, P.N.; Andersen, L.F.; Anderson, L.J.; Arab, L.; Baddou, I.; Bedu-Addo, K.; Blaak, E.E.; et al. Physical activity and fat-free mass during growth and in later life. Am. J. Clin. Nutr. 2021, 114, 1583–1589. [Google Scholar] [CrossRef]
- Zeisel, S.H. Precision (Personalized) Nutrition: Understanding Metabolic Heterogeneity. Annu. Rev. Food Sci. Technol. 2020, 11, 71–92. [Google Scholar] [CrossRef]
- Wagner, R.; Heni, M.; Tabak, A.G.; Machann, J.; Schick, F.; Randrianarisoa, E.; Hrabě de Angelis, M.; Birkenfeld, A.L.; Stefan, N.; Peter, A.; et al. Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nat. Med. 2021, 27, 49–57. [Google Scholar] [CrossRef]
- Hillesheim, E.; Yin, X.; Sundaramoorthy, G.P.; Brennan, L. Using a Metabotype Framework to Deliver Personalized Nutrition Improves Dietary Quality and Metabolic Health Parameters: A 12-Week Randomized Controlled Trial. Mol. Nutr. Food Res. 2023, 67, 2200620. [Google Scholar] [CrossRef]
- Acosta, A.; Camilleri, M.; Abu Dayyeh, B.; Calderon, G.; Gonzalez, D.; McRae, A.; Rossini, W.; Singh, S.; Burton, D.; Clark, M.M. Selection of Antiobesity Medications Based on Phenotypes Enhances Weight Loss: A Pragmatic Trial in an Obesity Clinic. Obesity 2021, 29, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, E.W.; Beyl, R.A.; Fearnbach, S.N.; Altazan, A.D.; Martin, C.K.; Redman, L.M. The Impact of COVID-19 Stay-At-Home Orders on Health Behaviors in Adults. Obesity 2021, 29, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Wing, R.R.; Lang, W.; Wadden, T.A.; Safford, M.; Knowler, W.C.; Bertoni, A.G.; Hill, J.O.; Brancati, F.L.; Peters, A.; Wagenknecht, L.; et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care 2011, 34, 1481–1486. [Google Scholar] [CrossRef] [PubMed]
Mean (SD) | ||||
---|---|---|---|---|
Characteristic | All (n = 155) | Standardized (n = 71) | Personalized (n = 84) | p-Value |
Sex, No. (%) | 0.05 | |||
Female | 103 (66.5%) | 41 (57.7%) | 62 (73.8%) | |
Male | 52 (33.5%) | 30 (42.3%) | 22 (26.2%) | |
Age, y | 59.5 (10.2) | 60.0 (9.87) | 59.0 (10.6) | 0.55 |
Race/ethnicity, No. (%) | 0.40 | |||
White | 87 (56.1%) | 44 (62.0%) | 43 (51.2%) | |
African American | 36 (23.2%) | 16 (22.5%) | 20 (23.8%) | |
Other ‡ | 30 (19.4%) | 11 (15.5%) | 19 (22.6%) | |
Missing | 2 (1.3%) | 0 (0%) | 2 (2.4%) | |
Ethnicity | 1.0 | |||
Non-Hispanic | 130 (83.9%) | 60 (84.5%) | 70 (83.3%) | |
Hispanic | 25 (16.1%) | 11 (15.5%) | 14 (16.7%) | |
Education, No (%) | 0.75 | |||
<Bachelor’s Degree | 40 (25.8%) | 20 (28.2%) | 20 (23.8%) | |
≥Bachelor’s Degree | 106 (68.4%) | 48 (67.6%) | 58 (69.0%) | |
Missing | 9 (5.8%) | 3 (4.2%) | 6 (7.1%) | |
Income, per year, No (%) | 0.93 | |||
<$75,000 | 52 (33.5%) | 25 (35.2%) | 27 (32.1%) | |
>$75,000 | 81 (52.3%) | 37 (52.1%) | 44 (52.4%) | |
Missing | 22 (14.2%) | 9 (12.7%) | 13 (15.5%) | |
Body weight, kg | 92.8 (16.4) | 91.1 (15.5) | 94.2 (17.2) | 0.24 |
BMI, kg/m2 | 33.4 (4.61) | 32.6 (4.22) | 34.2 (4.82 | 0.03 |
Weight-loss self-efficacy, total score | 120 (34.7) | 123 (36.3) | 118 (33.4) | 0.44 |
TAR>140, % | 10.0 (17.4) | 11.8 (19.8) | 8.41 (15.0) | 0.29 |
HbA1c, % | 5.80 (0.588) | 5.84 (0.603) | 5.78 (0.578) | 0.53 |
Metformin use, No. (%) | 32 (20.6%) | 17 (23.9%) | 15 (17.9%) | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popp, C.J.; Wang, C.; Berube, L.; Curran, M.; Hu, L.; Pompeii, M.L.; Barua, S.; Li, H.; St-Jules, D.E.; Schoenthaler, A.; et al. Baseline Characteristics of Weight-Loss Success in a Personalized Nutrition Intervention: A Secondary Analysis. Nutrients 2025, 17, 2178. https://doi.org/10.3390/nu17132178
Popp CJ, Wang C, Berube L, Curran M, Hu L, Pompeii ML, Barua S, Li H, St-Jules DE, Schoenthaler A, et al. Baseline Characteristics of Weight-Loss Success in a Personalized Nutrition Intervention: A Secondary Analysis. Nutrients. 2025; 17(13):2178. https://doi.org/10.3390/nu17132178
Chicago/Turabian StylePopp, Collin J., Chan Wang, Lauren Berube, Margaret Curran, Lu Hu, Mary Lou Pompeii, Souptik Barua, Huilin Li, David E. St-Jules, Antoinette Schoenthaler, and et al. 2025. "Baseline Characteristics of Weight-Loss Success in a Personalized Nutrition Intervention: A Secondary Analysis" Nutrients 17, no. 13: 2178. https://doi.org/10.3390/nu17132178
APA StylePopp, C. J., Wang, C., Berube, L., Curran, M., Hu, L., Pompeii, M. L., Barua, S., Li, H., St-Jules, D. E., Schoenthaler, A., Segal, E., Bergman, M., & Sevick, M. A. (2025). Baseline Characteristics of Weight-Loss Success in a Personalized Nutrition Intervention: A Secondary Analysis. Nutrients, 17(13), 2178. https://doi.org/10.3390/nu17132178