Dietary Structure and Cardiometabolic Risk Factors: A Comparative Analysis of Lingnan and Central Plains Regions in China Based on China Nutrition and Health Surveillance 2015–2017
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection and Samples
2.2. Basic Information Survey
2.3. Physical Examination
2.4. Laboratory Test
2.5. Dietary Assessment
2.6. Definition of Obesity, Hypertension, Diabetes Mellitus and Hyperlipidemia
2.7. Covariates
2.8. Statistical Analysis
3. Result
3.1. Characteristics of Participants
3.2. Comparison of Food Intake Between the Two Regions in China
3.3. Comparison of the Prevalence of Obesity, Diabetes, Hypertension, and Hyperlipidemia Between the Two Regions in CHINA
3.4. Subgroup Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andraos, S.; Beck, K.L.; Jones, M.B.; Han, T.L.; Conlon, C.A.; de Seymour, J.V. Characterizing patterns of dietary exposure using metabolomic profiles of human biospecimens: A systematic review. Nutr. Rev. 2022, 80, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Hu, X.F.; Zhang, R.; Chan, H.M. Identification of Chinese dietary patterns and their relationships with health outcomes: A systematic review and meta-analysis. Public Health Nutr. 2024, 27, e209. [Google Scholar] [CrossRef]
- Qin, C.; Lv, J.; Yu, C.; Guo, Y.; Bian, Z.; Gao, M.; Du, H.; Yang, L.; Chen, Y.; Shen, L.; et al. Dietary patterns and cardiometabolic diseases in 0.5 million Chinese adults: A 10-year cohort study. Nutr. J. 2021, 20, 74. [Google Scholar] [CrossRef]
- Tang, D.; Xiao, X.; Chen, L.; Kangzhu, Y.; Deng, W.; Basang; Yang, S.; Long, L.; Xie, X.; Lu, J.; et al. Association of dietary patterns with obesity and metabolically healthy obesity phenotype in Chinese population: A cross-sectional analysis of China Multi-Ethnic Cohort Study. Br. J. Nutr. 2022, 128, 2230–2240. [Google Scholar] [CrossRef]
- Xiao, X.; Qin, Z.; Lv, X.; Dai, Y.; Ciren, Z.; Yangla, Y.; Zeng, P.; Ma, Y.; Li, X.; Wang, L.; et al. Dietary patterns and cardiometabolic risks in diverse less-developed ethnic minority regions: Results from the China Multi-Ethnic Cohort (CMEC) Study. Lancet Reg. Health West. Pac. 2021, 15, 100252. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, Y.; Yang, X.; Hemler, E.C.; Fang, Y.; Zhao, L.; Zhang, J.; Yang, Z.; Wang, Z.; He, L.; et al. The dietary transition and its association with cardiometabolic mortality among Chinese adults, 1982–2012: A cross-sectional population-based study. Lancet Diabetes Endocrinol. 2019, 7, 540–548. [Google Scholar] [CrossRef]
- Popkin, B.M. The nutrition transition and obesity in the developing world. J. Nutr. 2001, 131, 871s–873s. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, H.; Zhu, X. Regional differences and health effects of dietary pattern of Chinese residents. Sci. Geogr. Sin. 2023, 43, 1825–1836. [Google Scholar] [CrossRef]
- Simsek, M.; Whitney, K. Examination of Primary and Secondary Metabolites Associated with a Plant-Based Diet and Their Impact on Human Health. Foods 2024, 13, 1020. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Dong, Q.; Wang, Y.; Li, X.; Li, C.; Li, F.; Zhang, J. Global trends and risk factors in gastric cancer: A comprehensive analysis of the Global Burden of Disease Study 2021 and multi-omics data. Int. J. Med. Sci. 2025, 22, 341–356. [Google Scholar] [CrossRef]
- Tahir, U.A.; Gerszten, R.E. Molecular Biomarkers for Cardiometabolic Disease: Risk Assessment in Young Individuals. Circ. Res. 2023, 132, 1663–1673. [Google Scholar] [CrossRef] [PubMed]
- National Center for Cardiovascular Diseases; The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on Cardiovascular Health and Diseases in China 2023: An Updated Summary. Biomed. Environ. Sci. 2024, 37, 949–992. [Google Scholar] [CrossRef]
- Dieleman, J.L.; Beauchamp, M.; Crosby, S.W.; DeJarnatt, D.; Johnson, E.K.; Lescinsky, H.; McHugh, T.; Pollock, I.; Sahu, M.; Swart, V.; et al. Tracking US Health Care Spending by Health Condition and County. JAMA 2025, 333, 1051–1061. [Google Scholar] [CrossRef]
- O’Donnell, M.J.; Chin, S.L.; Rangarajan, S.; Xavier, D.; Liu, L.; Zhang, H.; Rao-Melacini, P.; Zhang, X.; Pais, P.; Agapay, S.; et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): A case-control study. Lancet 2016, 388, 761–775. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics-2019 Update: A Report from the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Zhang, X.J.; Ji, Y.X.; Zhang, P.; She, Z.G.; Li, H. Nonalcoholic Fatty Liver Disease Pandemic Fuels the Upsurge in Cardiovascular Diseases. Circ. Res. 2020, 126, 679–704. [Google Scholar] [CrossRef]
- Xu, M.; Liu, P.P.; Li, H. Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physiol. Rev. 2019, 99, 893–948. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, B.; Aguilar, D.; Deswal, A.; Dunbar, S.B.; Francis, G.S.; Horwich, T.; Jessup, M.; Kosiborod, M.; Pritchett, A.M.; Ramasubbu, K.; et al. Contributory Risk and Management of Comorbidities of Hypertension, Obesity, Diabetes Mellitus, Hyperlipidemia, and Metabolic Syndrome in Chronic Heart Failure: A Scientific Statement From the American Heart Association. Circulation 2016, 134, e535–e578. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J. Am. Coll. Cardiol. 2022, 80, 2361–2371. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A.J.; Sharp, S.J.; Lentjes, M.A.; Luben, R.N.; Khaw, K.T.; Wareham, N.J.; Forouhi, N.G. A prospective study of the association between quantity and variety of fruit and vegetable intake and incident type 2 diabetes. Diabetes Care 2012, 35, 1293–1300. [Google Scholar] [CrossRef]
- Malesza, I.J.; Malesza, M.; Walkowiak, J.; Mussin, N.; Walkowiak, D.; Aringazina, R.; Bartkowiak-Wieczorek, J.; Mądry, E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021, 10, 3164. [Google Scholar] [CrossRef] [PubMed]
- Niu, K.; Momma, H.; Kobayashi, Y.; Guan, L.; Chujo, M.; Otomo, A.; Ouchi, E.; Nagatomi, R. The traditional Japanese dietary pattern and longitudinal changes in cardiovascular disease risk factors in apparently healthy Japanese adults. Eur. J. Nutr. 2016, 55, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Dietary Guidelines Advisory Committee. USDA Nutrition Evidence Systematic Reviews. In Dietary Patterns and Risk of Cardiovascular Disease: A Systematic Review; USDA Nutrition Evidence Systematic Review: Alexandria, VA, USA, 2020. [Google Scholar]
- Gupta, D.K.; Lewis, C.E.; Varady, K.A.; Su, Y.R.; Madhur, M.S.; Lackland, D.T.; Reis, J.P.; Wang, T.J.; Lloyd-Jones, D.M.; Allen, N.B. Effect of Dietary Sodium on Blood Pressure: A Crossover Trial. JAMA 2023, 330, 2258–2266. [Google Scholar] [CrossRef]
- Cantonese Dietary Pattern Expert Group; Guangdong Nutrition Society. An Introduction To The Cantonese Dietary Pattern (2023). Acta Nutr. Sin. 2023, 45, 417–421. [Google Scholar] [CrossRef]
- Zhao, R.; Zhao, L.; Gao, X.; Yang, F.; Yang, Y.; Fang, H.; Ju, L.; Xu, X.; Guo, Q.; Li, S.; et al. Geographic Variations in Dietary Patterns and Their Associations with Overweight/Obesity and Hypertension in China: Findings from China Nutrition and Health Surveillance (2015–2017). Nutrients 2022, 14, 3949. [Google Scholar] [CrossRef]
- Yu, D.; Zhao, L.; Zhang, J.; Yang, Z.; Yang, L.; Huang, J.; Fang, H.; Guo, Q.; Xu, X.; Ju, L.; et al. China Nutrition and Health Surveys (1982–2017). China CDC Wkly. 2021, 3, 193–195. [Google Scholar] [CrossRef]
- Chen, C.; Lu, F.C. The guidelines for prevention and control of overweight and obesity in Chinese adults. Biomed. Environ. Sci. 2004, 17 (Suppl. S1–S36). [Google Scholar]
- Zhang, W.Z. Intensified, optimized and standardized management of Chinese patients with hypertension: Comments on “2018 Chinese Guidelines for Prevention and Treatment of Hypertension”. J. Geriatr. Cardiol. 2019, 16, 178–181. [Google Scholar] [CrossRef]
- Chinese Elderly Type 2 Diabetes Prevention and Treatment of Clinical Guidelines Writing Group; Geriatric Endocrinology and Metabolism Branch of Chinese Geriatric Society; Geriatric Endocrinology and Metabolism Branch of Chinese Geriatric Health Care Society; Geriatric Professional Committee of Beijing Medical Award Foundation; National Clinical Medical Research Center for Geriatric Diseases (PLA General Hospital); Tian, H.; Li, C.; Ji, L. Clinical guidelines for prevention and treatment of type 2 diabetes mellitus in the elderly in China (2022 edition). Zhonghua Nei Ke Za Zhi 2022, 61, 12–50. [Google Scholar] [CrossRef]
- Joint Committee on the Chinese Guidelines for Lipid Management; Li, J.; Zhao, S.; Gao, R. Chinese guidelines for lipid management (2023). Zhonghua Xin Xue Guan Bing Za Zhi 2023, 51, 221–255. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Lyu, J.; He, P. Chinese guidelines for data processing and analysis concerning the International Physical Activity Questionnaire. Zhonghua Liu Xing Bing Xue Za Zhi 2014, 35, 961–964. [Google Scholar] [PubMed]
- Stefan, N.; Schulze, M.B. Metabolic health and cardiometabolic risk clusters: Implications for prediction, prevention, and treatment. Lancet Diabetes Endocrinol. 2023, 11, 426–440. [Google Scholar] [CrossRef]
- Yan, P. A Study on the Spread of Lingnan Food Culture by Scholars Who Have Been to Lingnan in Song Dynasty. Master’s Thesis, South China University of Technology, Guangzhou, China, 2020. [Google Scholar]
- Luo, Y.; Sun, L.; Wu, Q.; Song, B.; Wu, Y.; Yang, X.; Zhou, P.; Niu, Z.; Zheng, H.; Li, H.; et al. Diet-Related Lipidomic Signatures and Changed Type 2 Diabetes Risk in a Randomized Controlled Feeding Study with Mediterranean Diet and Traditional Chinese or Transitional Diets. Diabetes Care 2023, 46, 1691–1699. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, J.; Sun, L.; Gu, W.; Zong, G.; Song, B.; Shen, C.; Zhou, P.; Chen, Y.; Wu, Y.; et al. Isocaloric-restricted Mediterranean Diet and Chinese Diets High or Low in Plants in Adults with Prediabetes. J. Clin. Endocrinol. Metab. 2022, 107, 2216–2227. [Google Scholar] [CrossRef]
- Kiani, A.K.; Medori, M.C.; Bonetti, G.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Stuppia, L.; Connelly, S.T.; Herbst, K.L.; et al. Modern vision of the Mediterranean diet. J. Prev. Med. Hyg. 2022, 63, E36–E43. [Google Scholar] [CrossRef] [PubMed]
- Morris, L.; Bhatnagar, D. The Mediterranean diet. Curr. Opin. Lipidol. 2016, 27, 89–91. [Google Scholar] [CrossRef]
- Widmer, R.J.; Flammer, A.J.; Lerman, L.O.; Lerman, A. The Mediterranean diet, its components, and cardiovascular disease. Am. J. Med. 2015, 128, 229–238. [Google Scholar] [CrossRef]
- Willett, W.C.; Sacks, F.; Trichopoulou, A.; Drescher, G.; Ferro-Luzzi, A.; Helsing, E.; Trichopoulos, D. Mediterranean diet pyramid: A cultural model for healthy eating. Am. J. Clin. Nutr. 1995, 61, 1402s–1406s. [Google Scholar] [CrossRef]
- Tan, J.; Wang, C.; Tomiyama, A.J. Dietary Approaches to Stop Hypertension (DASH) diet and mental well-being: A systematic review. Nutr. Rev. 2023, 82, 60–75. [Google Scholar] [CrossRef] [PubMed]
- Filippou, C.D.; Tsioufis, C.P.; Thomopoulos, C.G.; Mihas, C.C.; Dimitriadis, K.S.; Sotiropoulou, L.I.; Chrysochoou, C.A.; Nihoyannopoulos, P.I.; Tousoulis, D.M. Dietary Approaches to Stop Hypertension (DASH) Diet and Blood Pressure Reduction in Adults with and without Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2020, 11, 1150–1160. [Google Scholar] [CrossRef]
- Di Rosa, C.; Lattanzi, G.; Spiezia, C.; Imperia, E.; Piccirilli, S.; Beato, I.; Gaspa, G.; Micheli, V.; De Joannon, F.; Vallecorsa, N.; et al. Mediterranean Diet versus Very Low-Calorie Ketogenic Diet: Effects of Reaching 5% Body Weight Loss on Body Composition in Subjects with Overweight and with Obesity-A Cohort Study. Int. J. Environ. Res. Public Health 2022, 19, 13040. [Google Scholar] [CrossRef] [PubMed]
- Martín-Peláez, S.; Fito, M.; Castaner, O. Mediterranean Diet Effects on Type 2 Diabetes Prevention, Disease Progression, and Related Mechanisms. A Review. Nutrients 2020, 12, 2236. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean diet and health: A comprehensive overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef]
- Zhang, N.; Xiao, X.; Xu, J.; Zeng, Q.; Li, J.; Xie, Y.; Guo, B.; Dai, S.; Zhu, X.; Lei, Y.; et al. Dietary Approaches to Stop Hypertension (DASH) diet, Mediterranean diet and blood lipid profiles in less-developed ethnic minority regions. Br. J. Nutr. 2022, 128, 1137–1146. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef]
- Yang, H.; Yang, T.; Heng, C.; Zhou, Y.; Jiang, Z.; Qian, X.; Du, L.; Mao, S.; Yin, X.; Lu, Q. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother. Res. 2019, 33, 3140–3152. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, Y. Combined Effects of Phytochemicals and Exercise on Fatty Acid Oxidation. J. Exerc. Nutr. Biochem. 2016, 20, 20–26. [Google Scholar] [CrossRef]
- Shen, L.; Li, J.; Li, Y. Resistant starch formation in rice: Genetic regulation and beyond. Plant Commun. 2022, 3, 100329. [Google Scholar] [CrossRef]
- Weickert, M.O.; Pfeiffer, A.F.H. Impact of Dietary Fiber Consumption on Insulin Resistance and the Prevention of Type 2 Diabetes. J. Nutr. 2018, 148, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Sundqvist, M.L.; Larsen, F.J.; Carlström, M.; Bottai, M.; Pernow, J.; Hellénius, M.L.; Weitzberg, E.; Lundberg, J.O. A randomized clinical trial of the effects of leafy green vegetables and inorganic nitrate on blood pressure. Am. J. Clin. Nutr. 2020, 111, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Chinese Nutrition Society. Dietary Guidelines for Chinese Residents: 2022; People’s Medical Publishing House: Beijing, China, 2022. [Google Scholar]
Characteristics | Lingnan Region | Central Plains Region | ||||
---|---|---|---|---|---|---|
N | R/% | N | R/% | χ2 | p-Value | |
Gender | 0.009 | 0.926 | ||||
Male | 3401 | 46.9 | 3400 | 47.0 | ||
Female | 3848 | 53.1 | 3835 | 53.0 | ||
Age (years) | 101.553 | <0.0001 | ||||
18 ≲ 45 | 2414 | 33.3 | 1857 | 25.7 | ||
45 ≲ 60 | 2667 | 36.8 | 2954 | 40.8 | ||
≥60 | 2168 | 29.9 | 2424 | 33.5 | ||
Living area | 49.871 | <0.0001 | ||||
Urban | 2859 | 39.4 | 3273 | 45.2 | ||
Rural | 4390 | 60.6 | 3962 | 54.8 | ||
Income | 465.400 | <0.0001 | ||||
Missing | 1774 | 24.5 | 2721 | 37.6 | ||
Low | 1718 | 23.7 | 1830 | 25.3 | ||
Medium | 1557 | 21.5 | 1426 | 19.7 | ||
High | 2200 | 30.3 | 1258 | 17.4 | ||
Education | 53.857 | <0.0001 | ||||
Primary school | ||||||
or below | 3374 | 46.5 | 3015 | 41.7 | ||
Junior middle | ||||||
school | 2288 | 31.6 | 2691 | 37.2 | ||
High school or | ||||||
higher | 1587 | 21.9 | 1529 | 21.1 | ||
Physical activity | 74.127 | <0.0001 | ||||
Mild | 1623 | 22.4 | 1867 | 25.8 | ||
Moderate | 1776 | 24.5 | 2043 | 28.2 | ||
Severe | 3850 | 53.1 | 3325 | 46.0 | ||
Smoking | 7.402 | 0.007 | ||||
No | 5264 | 72.6 | 5398 | 74.6 | ||
Yes | 1985 | 27.4 | 1837 | 25.4 | ||
Drinking | 53.741 | <0.0001 | ||||
No | 4544 | 62.7 | 4954 | 68.5 | ||
Yes | 2705 | 37.3 | 2281 | 31.5 | ||
DM | 22.330 | <0.0001 | ||||
No | 6699 | 92.4 | 6526 | 90.2 | ||
Yes | 550 | 7.6 | 709 | 9.8 | ||
OB | 282.398 | <0.0001 | ||||
No | 6628 | 91.4 | 5929 | 82.0 | ||
Yes | 621 | 8.6 | 1306 | 18.1 | ||
HTN | 291.722 | <0.0001 | ||||
No | 4860 | 67.0 | 3845 | 53.1 | ||
Yes | 2389 | 33.0 | 3390 | 46.9 | ||
HL | 0.002 | 0.965 | ||||
No | 4446 | 61.3 | 4440 | 61.4 | ||
Yes | 2803 | 38.7 | 2795 | 38.6 | ||
Total | 7249 | 100 | 7235 | 100 |
Food Group | Lingnan Region | Central Plains Region | Adjusted Mean Difference (95%CI) * |
---|---|---|---|
Rice products | 185.6 ± 103.6 | 32.3 ± 44.8 | 151.275 (148.660, 153.889) |
Wheat products | 24.0 ± 38.7 | 212.5 ± 109.3 | −186.827 (−189.524, −184.130) |
Other cereal | 17.0 ± 44.1 | 111.7 ± 116.7 | −96.737 (−99.671, −93.805) |
Soybean | 6.8 ± 14.9 | 12.3 ± 20.3 | −5.574 (−6.172, −4.975) |
Dark-colored vegetables | 114.4 ± 101.7 | 44.3 ± 55.9 | 71.319 (68.571, 74.068) |
Light-colored vegetables | 160.2 ± 120.7 | 163.3 ± 119.3 | −3.816 (−7.839, 0.207) |
Fruit | 31.6 ± 63.4 | 28.2 ± 67.2 | 4.024 (1.914, 6.134) |
Red meat | 108.5 ± 70.3 | 25.6 ± 39.4 | 82.219 (80.330,84.107) |
Poultry | 31.1 ± 43.5 | 3.2 ± 15.0 | 27.646 (26.562, 28.730) |
Milk products | 8.3 ± 39.1 | 14.3 ± 51.4 | −5.441 (−6.926, −3.956) |
Eggs | 14.3 ± 22.1 | 19.1 ± 26.5 | −4.946 (−5.749, −4.143) |
Seafood | 51.9 ± 72.9 | 2.4 ± 12.6 | 49.081 (47.328, 50.833) |
Subgroup | DM | OB | HTN | HL | ||||
---|---|---|---|---|---|---|---|---|
OR (95% CI) * | p for Interaction | OR (95% CI) * | p for Interaction | OR (95% CI) * | p for Interaction | OR (95% CI) * | p for Interaction | |
Central Plains | Reference | Reference | Reference | Reference | ||||
Lingnan Region | 0.841 (0.744, 0.950) | 0.431 (0.388, 0.479) | 0.564 (0.523, 0.608) | 1.055 (0.984, 1.131) | ||||
Gender | 0.720 | 0.817 | 0.001 | <0.001 | ||||
Male | 0.850 (0.710, 1.017) | 0.429 (0.367, 0.502) | 0.649 (0.584, 0.722) | 1.171 (1.060, 1.294) | ||||
Female | 0.828 (0.699, 0.980) | 0.427 (0.370, 0.493) | 0.487 (0.437, 0.542) | 0.944 (0.855, 1.044) | ||||
Age (years) | 0.112 | 0.083 | 0.254 | 0.233 | ||||
18 ≲ 45 | 0.745 (0.525, 1.057) | 0.388 (0.321, 0.470) | 0.558 (0.468, 0.665) | 1.012 (0.882, 1.161) | ||||
45 ≲ 60 | 0.952 (0.782, 1.159) | 0.487 (0.414, 0.574) | 0.550 (0.492, 0.616) | 1.104 (0.989, 1.233) | ||||
≥60 | 0.802 (0.672, 0.957) | 0.413 (0.338, 0.506) | 0.587 (0.518, 0.666) | 1.039 (0.918, 1.175) | ||||
Living area | 0.174 | 0.071 | 0.020 | <0.001 | ||||
Urban | 0.673 (0.567, 0.799) | 0.486 (0.418, 0.564) | 0.563 (0.504, 0.629) | 1.284 (1.154, 1.429) | ||||
Rural | 0.862 (0.727, 1.022) | 0.390 (0.337, 0.452) | 0.502 (0.458, 0.551) | 0.851 (0.777, 0.933) | ||||
Income | 0.299 | 0.318 | 0.252 | 0.098 | ||||
Low | 0.716 (0.563, 0.911) | 0.295 (0.233, 0.372) | 0.475 (0.417, 0.541) | 0.870 (0.766, 0.988) | ||||
Medium | 0.920 (0.723, 1.170) | 0.432 (0.352, 0.530) | 0.582 (0.505, 0.671) | 1.063 (0.926, 1.220) | ||||
High | 0.702 (0.549, 0.898) | 0.509 (0.412, 0.629) | 0.575 (0.492, 0.672) | 1.226 (1.055, 1.424) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, W.; Zhang, J.; Wang, H.; Fang, H.; Wen, J.; Gan, P.; Huang, P.; Li, J.; Lu, J.; Zhuo, Q.; et al. Dietary Structure and Cardiometabolic Risk Factors: A Comparative Analysis of Lingnan and Central Plains Regions in China Based on China Nutrition and Health Surveillance 2015–2017. Nutrients 2025, 17, 2173. https://doi.org/10.3390/nu17132173
Gong W, Zhang J, Wang H, Fang H, Wen J, Gan P, Huang P, Li J, Lu J, Zhuo Q, et al. Dietary Structure and Cardiometabolic Risk Factors: A Comparative Analysis of Lingnan and Central Plains Regions in China Based on China Nutrition and Health Surveillance 2015–2017. Nutrients. 2025; 17(13):2173. https://doi.org/10.3390/nu17132173
Chicago/Turabian StyleGong, Weiyi, Jiguo Zhang, Huijun Wang, Hongyun Fang, Jian Wen, Ping Gan, Panpan Huang, Jiaqi Li, Jiayu Lu, Qin Zhuo, and et al. 2025. "Dietary Structure and Cardiometabolic Risk Factors: A Comparative Analysis of Lingnan and Central Plains Regions in China Based on China Nutrition and Health Surveillance 2015–2017" Nutrients 17, no. 13: 2173. https://doi.org/10.3390/nu17132173
APA StyleGong, W., Zhang, J., Wang, H., Fang, H., Wen, J., Gan, P., Huang, P., Li, J., Lu, J., Zhuo, Q., & Ding, G. (2025). Dietary Structure and Cardiometabolic Risk Factors: A Comparative Analysis of Lingnan and Central Plains Regions in China Based on China Nutrition and Health Surveillance 2015–2017. Nutrients, 17(13), 2173. https://doi.org/10.3390/nu17132173