Functional Foods in Modern Nutrition Science: Mechanisms, Evidence, and Public Health Implications
Abstract
1. Introduction
2. Methods
2.1. Database and Source Selection
2.2. Keywords and Search Terms
Inclusion and Exclusion Criteria
- were based on human clinical research (animal studies were excluded);
- adhered to recognized methodological quality standards;
- investigated the physiological effects of specific functional foods or components;
- were published in English or Hungarian.
- were speculative and lacked primary data;
- relied solely on in vitro or animal model data.
- the type of functional component investigated (e.g., probiotic, flavonoid);
- the duration and dosage of the intervention;
- characteristics of the study population;
- outcome measures evaluated (e.g., cholesterol levels, insulin sensitivity, microbiome composition, cognitive function, inflammatory markers, glycemic control, antioxidant status, immune response);
- statistical significance and effect sizes.
3. Physiological Effects and Preventive Potential
4. Clinical and Epidemiological Evidence on the Efficacy of Functional Foods
4.1. Naturally Functional Foods
- Blueberries, which may positively influence cardiovascular and cognitive functions;
- Broccoli, which exhibits significant anti-carcinogenic and anti-inflammatory properties;
- Kefir, which supports gut microbiota balance and immune function through its probiotic content.
4.2. Intentionally Modified Functional Foods
- Margarine enriched with omega-3 fatty acids (cardiovascular protection)
- Yogurt containing added prebiotics (support for gut microbiota)
- Micronutrient-fortified products (ensuring essential nutrient intake)
- Formulations enriched with polyphenols (enhanced antioxidant activity)
4.3. Functionalized Foods
- Polyphenol-enriched baked products, showing increased antioxidant activity
- Pasta fortified with carrot and olive leaf flour, resulting in higher polyphenol content and enhanced antioxidant capacity
- Yogurt with added mango peel powder, demonstrating improved in vitro prebiotic effects
5. Clinical and Epidemiological Evidence
6. Multifaceted Health Benefits of Kefir: Cardiovascular, Metabolic, Gut Microbiota, and Cognitive Perspectives
7. Effects of Fruits, Vegetables, and Plant-Based Functional Foods on Cognitive and Cardiometabolic Parameters
8. Health Benefits and Molecular Mechanisms of Blueberries
8.1. Modulation of Inflammatory Processes
8.2. Reduction in Oxidative Stress
8.3. Improvement of Vascular Function
8.4. Regulation of Glucose Metabolism
8.5. The Role of Blueberry Polyphenols in Neurodegenerative Disease Prevention
9. Intentionally Modified Functional Foods: Categories and Physiological Benefits
10. Functionalized Foods: New Directions in Health-Promoting Nutrition
11. The Impact of Functional Foods on Public Health Nutrition
11.1. Implementation Strategies
11.2. Global Challenges
11.3. Consumer Expectations and Sensitivity Toward Functional Foods
- Sensory properties (taste, smell, texture);
- Nutritional value;
- Functional efficacy;
- Food safety;
- Environmental impact;
- Intangible aspects (e.g., ethics, sustainability).
11.4. Future Directions: Personalized Nutrition and Regulation of Functional Foods
11.5. Futures Studies—The Current State of Science
11.6. Legal, Economic, and Ethical Challenges
12. Limitations
13. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brandi, M.L.; Marini, F.; Parri, S.; Bandinelli, S.; Iantomasi, T.; Giusti, F.; Talluri, E.; Sini, G.; Nannipieri, F.; Battaglia, S.; et al. Association of vitamin D and bisphenol A levels with cardiovascular risk in an elderly Italian population: Results from the InCHIANTI study. Geroscience 2024, 46, 6141–6156. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Aziz, N.A.; Pehlivan, G.; Breteler, M.M.B. Cardiovascular correlates of epigenetic aging across the adult lifespan: A population-based study. Geroscience 2023, 45, 1605–1618. [Google Scholar] [CrossRef] [PubMed]
- Nyul-Toth, A.; Patai, R.; Csiszar, A.; Ungvari, A.; Gulej, R.; Mukli, P.; Yabluchanskiy, A.; Benyo, Z.; Sotonyi, P.; Prodan, C.I.; et al. Linking peripheral atherosclerosis to blood-brain barrier disruption: Elucidating its role as a manifestation of cerebral small vessel disease in vascular cognitive impairment. Geroscience 2024, 46, 6511–6536. [Google Scholar] [CrossRef]
- Wikstrom Shemer, D.; Mostafaei, S.; Tang, B.; Pedersen, N.L.; Karlsson, I.K.; Fall, T.; Hagg, S. Associations between epigenetic aging and diabetes mellitus in a Swedish longitudinal study. Geroscience 2024, 46, 5003–5014. [Google Scholar] [CrossRef] [PubMed]
- Ungvari, Z.; Fekete, M.; Varga, P.; Lehoczki, A.; Fekete, J.T.; Ungvari, A.; Gyorffy, B. Overweight and obesity significantly increase colorectal cancer risk: A meta-analysis of 66 studies revealing a 25–57% elevation in risk. Geroscience 2024, 47, 3343–3364. [Google Scholar] [CrossRef]
- Cao, X.; Wang, M.; Zhou, M.; Mi, Y.; Fazekas-Pongor, V.; Major, D.; Lehoczki, A.; Guo, Y. Trends in prevalence, mortality, and risk factors of dementia among the oldest-old adults in the United States: The role of the obesity epidemic. Geroscience 2024, 46, 4761–4778. [Google Scholar] [CrossRef]
- Goswami, N. A dual burden dilemma: Navigating the global impact of communicable and non-communicable diseases and the way forward. Int. J. Med. Res. 2024, 12, 65–77. [Google Scholar] [CrossRef]
- Abdullahi, Z.M.; Kingsley, O.I.; Yusuf, M.; EO, U.; Otutu, M.; Nwose, E.U. Epidemiology, Prevention and Management of Non-Communicable Diseases (NCDS): A Review. J. Health Wellness Saf. Res. 2025, 7, 161–178. [Google Scholar]
- Khan, B. The Role of Lifestyle Interventions in Preventing and Managing Non-Communicable Diseases. Non-Commun. Dis. Care 2025, 2, 50–60. [Google Scholar]
- Fekete, M.; Szarvas, Z.; Fazekas-Pongor, V.; Feher, A.; Csipo, T.; Forrai, J.; Dosa, N.; Peterfi, A.; Lehoczki, A.; Tarantini, S.; et al. Nutrition Strategies Promoting Healthy Aging: From Improvement of Cardiovascular and Brain Health to Prevention of Age-Associated Diseases. Nutrients 2022, 15, 47. [Google Scholar] [CrossRef]
- Dai, Z.; Lee, S.Y.; Sharma, S.; Ullah, S.; Tan, E.C.; Brodaty, H.; Schutte, A.E.; Sachdev, P.S. A systematic review of diet and medication use among centenarians and near-centenarians worldwide. GeroScience 2024, 46, 6625–6639. [Google Scholar] [CrossRef] [PubMed]
- Fekete, M.; Varga, P.; Ungvari, Z.; Fekete, J.T.; Buda, A.; Szappanos, Á.; Lehoczki, A.; Mózes, N.; Grosso, G.; Godos, J. The role of the Mediterranean diet in reducing the risk of cognitive impairement, dementia, and Alzheimer’s disease: A meta-analysis. GeroScience 2025, 47, 3111–3130. [Google Scholar] [CrossRef]
- Šelb, J.; Cvetko, F.; Deutsch, L.; Bedrač, L.; Kuščer, E.; Maier, A.B. Personalization matters: The effect of sex in multivitamin-multimineral-based cancer prevention. GeroScience 2024, 46, 1351–1356. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.P.; Nyunt, S.Z.; Gao, Q.; Gwee, X.; Chua, D.Q.L.; Yap, K.B. Curcumin-rich curry consumption and life expectancy: Singapore longitudinal ageing study. GeroScience 2024, 46, 969–980. [Google Scholar] [CrossRef]
- Ghosh, D.; Bogueva, D.; Smarta, R. Nutrition Science, Marketing Nutrition, Health Claims, and Public Policy; Academic Press: Cambridge, MA, USA, 2023. [Google Scholar]
- Zupo, R.; Donghia, R.; Castellana, F.; Bortone, I.; De Nucci, S.; Sila, A.; Tatoli, R.; Lampignano, L.; Sborgia, G.; Panza, F.; et al. Ultra-processed food consumption and nutritional frailty in older age. Geroscience 2023, 45, 2229–2243. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Yang, H.; Li, H.; Zhou, L.; Zhang, M.; Wang, Y. Associations of sugar-sweetened, artificially sweetened, and naturally sweet juices with Alzheimer’s disease: A prospective cohort study. Geroscience 2024, 46, 1229–1240. [Google Scholar] [CrossRef]
- Dobreva, I.; Marston, L.; Mukadam, N. Which components of the Mediterranean diet are associated with dementia? A UK Biobank cohort study. Geroscience 2022, 44, 2541–2554. [Google Scholar] [CrossRef]
- Hetherington-Rauth, M.; Johnson, E.; Migliavacca, E.; Parimi, N.; Langsetmo, L.; Hepple, R.T.; Grzywinski, Y.; Corthesy, J.; Ryan, T.E.; Ferrucci, L.; et al. Nutrient Metabolites Associated With Low D3Cr Muscle Mass, Strength, and Physical Performance in Older Men. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad217. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Belsky, D.W.; Gu, Y. Healthy Lifestyle Behaviors and Biological Aging in the U.S. National Health and Nutrition Examination Surveys 1999-2018. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 1535–1542. [Google Scholar] [CrossRef]
- Alongi, M.; Anese, M. Re-thinking functional food development through a holistic approach. J. Funct. Foods 2021, 81, 104466. [Google Scholar] [CrossRef]
- Teuliere, J.; Bernard, C.; Corel, E.; Lapointe, F.J.; Martens, J.; Lopez, P.; Bapteste, E. Network analyses unveil ageing-associated pathways evolutionarily conserved from fungi to animals. Geroscience 2023, 45, 1059–1080. [Google Scholar] [CrossRef] [PubMed]
- Marcozzi, S.; Bigossi, G.; Giuliani, M.E.; Giacconi, R.; Piacenza, F.; Cardelli, M.; Brunetti, D.; Segala, A.; Valerio, A.; Nisoli, E.; et al. Cellular senescence and frailty: A comprehensive insight into the causal links. Geroscience 2023, 45, 3267–3305. [Google Scholar] [CrossRef]
- Ting, K.K.; Coleman, P.; Kim, H.J.; Zhao, Y.; Mulangala, J.; Cheng, N.C.; Li, W.; Gunatilake, D.; Johnstone, D.M.; Loo, L.; et al. Vascular senescence and leak are features of the early breakdown of the blood-brain barrier in Alzheimer’s disease models. Geroscience 2023, 45, 3307–3331. [Google Scholar] [CrossRef]
- Cummings, S.R.; Lui, L.Y.; Zaira, A.; Mau, T.; Fielding, R.A.; Atkinson, E.J.; Patel, S.; LeBrasseur, N. Biomarkers of cellular senescence and major health outcomes in older adults. Geroscience 2024, 47, 3407–3415. [Google Scholar] [CrossRef] [PubMed]
- Ungvari, Z.; Ungvari, A.; Fekete, M.; Kiss, C.; Gyorffy, B. Senescence-related genes as prognostic indicators in breast cancer survival. Geroscience 2024, 47, 2995–3006. [Google Scholar] [CrossRef] [PubMed]
- Ungvari, Z.; Ungvari, A.; Bianchini, G.; Gyorffy, B. Prognostic significance of a signature based on senescence-related genes in colorectal cancer. Geroscience 2024, 46, 4495–4504. [Google Scholar] [CrossRef]
- Habiballa, L.; Hruby, A.; Granic, A.; Dodds, R.M.; Hillman, S.J.; Jurk, D.; Passos, J.F.; Sayer, A.A. Determining the feasibility of characterising cellular senescence in human skeletal muscle and exploring associations with muscle morphology and physical function at different ages: Findings from the MASS_Lifecourse Study. Geroscience 2024, 46, 1141–1158. [Google Scholar] [CrossRef]
- Fang, Y.; Peck, M.R.; Quinn, K.; Chapman, J.E.; Medina, D.; McFadden, S.A.; Bartke, A.; Hascup, E.R.; Hascup, K.N. Senolytic intervention improves cognition, metabolism, and adiposity in female APP(NL)(-F/NL-F) mice. Geroscience 2024, 47, 1123–1138. [Google Scholar] [CrossRef]
- Faakye, J.; Nyul-Toth, A.; Muranyi, M.; Gulej, R.; Csik, B.; Shanmugarama, S.; Tarantini, S.; Negri, S.; Prodan, C.; Mukli, P.; et al. Preventing spontaneous cerebral microhemorrhages in aging mice: A novel approach targeting cellular senescence with ABT263/navitoclax. Geroscience 2024, 46, 21–37. [Google Scholar] [CrossRef]
- Fielding, R.A.; Atkinson, E.J.; Aversa, Z.; White, T.A.; Heeren, A.A.; Mielke, M.M.; Cummings, S.R.; Pahor, M.; Leeuwenburgh, C.; LeBrasseur, N.K. Biomarkers of Cellular Senescence Predict the Onset of Mobility Disability and Are Reduced by Physical Activity in Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad257. [Google Scholar] [CrossRef]
- Zhu, Y.Z.; Liu, J.K.; Li, X.E.; Yu, Z.P.; Yang, L.Q.; Wan, Q.; Zhao, Y.; Saeed, M.; Wu, A.D.; Tian, X.L. Genome-Wide Search Links Senescence-Associated Secretory Proteins With Susceptibility for Coronary Artery Disease in Mouse and Human. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glae070. [Google Scholar] [CrossRef] [PubMed]
- Kravvariti, E.; Ntouros, P.A.; Vlachogiannis, N.I.; Pappa, M.; Souliotis, V.L.; Sfikakis, P.P. Geriatric Frailty Is Associated With Oxidative Stress, Accumulation, and Defective Repair of DNA Double-Strand Breaks Independently of Age and Comorbidities. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 603–610. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J.; Wang, M.; Hou, H.; Ding, X.; Ma, L.; Liu, M. Oxidative Stress Factors Mediate the Association Between Life’s Essential 8 and Accelerated Phenotypic Aging: NHANES 2005-2018. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad240. [Google Scholar] [CrossRef]
- Cribb, L.; Hodge, A.M.; Southey, M.C.; Giles, G.G.; Milne, R.L.; Dugue, P.A. Dietary factors and DNA methylation-based markers of ageing in 5310 middle-aged and older Australian adults. Geroscience 2024, 47, 1685–1698. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Binder, A.; Chen, B.; Parada, H., Jr.; Gallo, L.C.; Alcaraz, J.; Horvath, S.; Bhatti, P.; Whitsel, E.A.; Jordahl, K.; et al. The Association of Epigenetic Age Acceleration and Multimorbidity at Age 90 in the Women’s Health Initiative. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 2274–2281. [Google Scholar] [CrossRef]
- Mak, J.K.L.; Karlsson, I.K.; Tang, B.; Wang, Y.; Pedersen, N.L.; Hagg, S.; Jylhava, J.; Reynolds, C.A. Temporal Dynamics of Epigenetic Aging and Frailty From Midlife to Old Age. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad251. [Google Scholar] [CrossRef]
- Mutambudzi, M.; Brown, M.T.; Chen, N.W. Association of Epigenetic Age and Everyday Discrimination With Longitudinal Trajectories of Chronic Health Conditions in Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glae005. [Google Scholar] [CrossRef]
- Gao, T.; Zheng, Y.; Joyce, B.T.; Kho, M.; Terry, J.G.; Wang, J.; Nannini, D.; Carr, J.J.; Nair, S.; Zhang, K.; et al. Epigenetic Aging Is Associated With Measures of Midlife Muscle Volume and Attenuation in CARDIA Study. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad261. [Google Scholar] [CrossRef] [PubMed]
- Zavala, D.V.; Dzikowski, N.; Gopalan, S.; Harrington, K.D.; Pasquini, G.; Mogle, J.; Reid, K.; Sliwinski, M.; Graham-Engeland, J.E.; Engeland, C.G.; et al. Epigenetic Age Acceleration and Chronological Age: Associations With Cognitive Performance in Daily Life. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad242. [Google Scholar] [CrossRef]
- Lopez, F.V.; O’Shea, A.; Huo, Z.; DeKosky, S.T.; Trouard, T.P.; Alexander, G.E.; Woods, A.J.; Bowers, D. Neurocognitive correlates of cerebral mitochondrial function and energy metabolism using phosphorus magnetic resonance spectroscopy in older adults. Geroscience 2024, 47, 2223–2234. [Google Scholar] [CrossRef]
- Tian, Q.; Zweibaum, D.A.; Qian, Y.; Oppong, R.F.; Pilling, L.C.; Casanova, F.; Atkins, J.L.; Melzer, D.; Ding, J.; Ferrucci, L. Mitochondrial DNA copy number associated dementia risk by somatic mutations and frailty. Geroscience 2024, 47, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Seman, A.; Chandra, P.K.; Byrum, S.D.; Mackintosh, S.G.; Gies, A.J.; Busija, D.W.; Rutkai, I. Targeting mitochondria in the aged cerebral vasculature with SS-31, a proteomic study of brain microvessels. Geroscience 2023, 45, 2951–2965. [Google Scholar] [CrossRef]
- Qi, X.; Rusch, N.J.; Fan, J.; Mora, C.J.; Xie, L.; Mu, S.; Rabinovitch, P.S.; Zhang, H. Mitochondrial proton leak in cardiac aging. Geroscience 2023, 45, 2135–2143. [Google Scholar] [CrossRef] [PubMed]
- Pharaoh, G.; Kamat, V.; Kannan, S.; Stuppard, R.S.; Whitson, J.; Martin-Perez, M.; Qian, W.J.; MacCoss, M.J.; Villen, J.; Rabinovitch, P.; et al. The mitochondrially targeted peptide elamipretide (SS-31) improves ADP sensitivity in aged mitochondria by increasing uptake through the adenine nucleotide translocator (ANT). Geroscience 2023, 45, 3529–3548. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.D.; Samuelson, A.T.; Chiao, Y.A.; Sweetwyne, M.T.; Ladiges, W.C.; Rabinovitch, P.S.; Marcinek, D.J. Intermittent treatment with elamipretide preserves exercise tolerance in aged female mice. Geroscience 2023, 45, 2245–2255. [Google Scholar] [CrossRef]
- Mau, T.; Blackwell, T.L.; Cawthon, P.M.; Molina, A.J.A.; Coen, P.M.; Distefano, G.; Kramer, P.A.; Ramos, S.V.; Forman, D.E.; Goodpaster, B.H.; et al. Muscle Mitochondrial Bioenergetic Capacities Are Associated With Multimorbidity Burden in Older Adults: The Study of Muscle, Mobility and Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glae101. [Google Scholar] [CrossRef]
- Norling, A.M.; Lipsitz, L.A. Exercise to Mitigate Cerebrovascular Aging: A Geroscience Perspective. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glae083. [Google Scholar] [CrossRef]
- Bencivenga, L.; Strumia, M.; Rolland, Y.; Martinez, L.; Cestac, P.; Guyonnet, S.; Andrieu, S.; Parini, A.; Lucas, A.; Vellas, B.; et al. Biomarkers of mitochondrial dysfunction and inflammaging in older adults and blood pressure variability. Geroscience 2023, 45, 797–809. [Google Scholar] [CrossRef]
- Andonian, B.J.; Hippensteel, J.A.; Abuabara, K.; Boyle, E.M.; Colbert, J.F.; Devinney, M.J.; Faye, A.S.; Kochar, B.; Lee, J.; Litke, R.; et al. Inflammation and aging-related disease: A transdisciplinary inflammaging framework. Geroscience 2024, 47, 515–542. [Google Scholar] [CrossRef]
- Pellegrino, R.; Paganelli, R.; Di Iorio, A.; Bandinelli, S.; Moretti, A.; Iolascon, G.; Sparvieri, E.; Tarantino, D.; Tanaka, T.; Ferrucci, L. Beyond Inflammaging: The Impact of Immune System Aging on Age-Related Muscle Decline, Results From the InCHIANTI Study. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad238. [Google Scholar] [CrossRef]
- Ren, P.; Zhang, J.; Vijg, J. Somatic mutations in aging and disease. Geroscience 2024, 46, 5171–5189. [Google Scholar] [CrossRef] [PubMed]
- Andrawus, M.; David, G.B.; Terziyska, I.; Sharvit, L.; Bergman, A.; Barzilai, N.; Raj, S.M.; Govindaraju, D.R.; Atzmon, G. Genome integrity as a potential index of longevity in Ashkenazi Centenarian’s families. Geroscience 2024, 46, 4147–4162. [Google Scholar] [CrossRef]
- Stankovics, L.; Ungvari, A.; Fekete, M.; Nyul-Toth, A.; Mukli, P.; Patai, R.; Csik, B.; Gulej, R.; Conley, S.; Csiszar, A.; et al. The vasoprotective role of IGF-1 signaling in the cerebral microcirculation: Prevention of cerebral microhemorrhages in aging. Geroscience 2024, 47, 445–455. [Google Scholar] [CrossRef]
- Blanchard, T.; Eppe, J.; Mugnier, A.; Delfour, F.; Meynadier, A. Enhancing cognitive functions in aged dogs and cats: A systematic review of enriched diets and nutraceuticals. Geroscience 2025, 47, 2925–2947. [Google Scholar] [CrossRef]
- Fulton, T.L.; Wansbrough, M.R.; Mirth, C.K.; Piper, M.D.W. Short-term fasting of a single amino acid extends lifespan. Geroscience 2024, 46, 3607–3615. [Google Scholar] [CrossRef] [PubMed]
- Darrah, M.A.; Longtine, A.G.; Greenberg, N.T.; Mahoney, S.A.; Venkatasubramanian, R.; VanDongen, N.S.; Reisz, J.A.; D’Alessandro, A.; Seals, D.R.; de Quiros Miranda, Y.B.; et al. The influence of a human macronutrient-matched diet on phenotypes in old mice. Geroscience 2024, 47, 2293–2308. [Google Scholar] [CrossRef]
- Maroto-Rodriguez, J.; Delgado-Velandia, M.; Ortola, R.; Carballo-Casla, A.; Garcia-Esquinas, E.; Rodriguez-Artalejo, F.; Sotos-Prieto, M. Plant-based diets and risk of frailty in community-dwelling older adults: The Seniors-ENRICA-1 cohort. Geroscience 2023, 45, 221–232. [Google Scholar] [CrossRef]
- Bray, E.E.; Zheng, Z.; Tolbert, M.K.; McCoy, B.M.; Dog Aging Project, C.; Kaeberlein, M.; Kerr, K.F. Once-daily feeding is associated with better health in companion dogs: Results from the Dog Aging Project. Geroscience 2022, 44, 1779–1790. [Google Scholar] [CrossRef] [PubMed]
- Berry, B.J.; Mjelde, E.; Carreno, F.; Gilham, K.; Hanson, E.J.; Na, E.; Kaeberlein, M. Preservation of mitochondrial membrane potential is necessary for lifespan extension from dietary restriction. Geroscience 2023, 45, 1573–1581. [Google Scholar] [CrossRef]
- Orr, M.E.; Kotkowski, E.; Ramirez, P.; Bair-Kelps, D.; Liu, Q.; Brenner, C.; Schmidt, M.S.; Fox, P.T.; Larbi, A.; Tan, C.; et al. A randomized placebo-controlled trial of nicotinamide riboside in older adults with mild cognitive impairment. Geroscience 2024, 46, 665–682. [Google Scholar] [CrossRef]
- Ealey, K.N.; Togo, J.; Lee, J.H.; Patel, Y.; Kim, J.R.; Park, S.Y.; Sung, H.K. Intermittent fasting promotes rejuvenation of immunosenescent phenotypes in aged adipose tissue. Geroscience 2024, 46, 3457–3470. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Derous, D.; Huang, X.; Mitchell, S.E.; Douglas, A.; Lusseau, D.; Wang, Y.; Speakman, J.R. The Effects of Graded Levels of Calorie Restriction: XIX. Impact of Graded Calorie Restriction on Protein Expression in the Liver. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 1125–1134. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.E.; Togo, J.; Green, C.L.; Derous, D.; Hambly, C.; Speakman, J.R. The Effects of Graded Levels of Calorie Restriction: XX. Impact of Long-Term Graded Calorie Restriction on Survival and Body Mass Dynamics in Male C57BL/6J Mice. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 1953–1963. [Google Scholar] [CrossRef]
- Panda, S.; Maier, G.; Villareal, D.T. Targeting Energy Intake and Circadian Biology to Engage Mechanisms of Aging in Older Adults With Obesity: Calorie Restriction and Time-Restricted Eating. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78 (Suppl. 1), 79–85. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Wu, Y.; Li, M.; Mitchell, S.E.; Speakman, J.R. The Effects of Graded Levels of Calorie Restriction XXI: Impact of short term graded restriction on gene expression profiles of stomach and skeletal muscle. J. Gerontol. A Biol. Sci. Med. Sci. 2024, glae299. [Google Scholar] [CrossRef]
- Lengele, L.; Rolland, Y.; Martinez, L.O.; Guyonnet, S.; Parini, A.; Lucas, A.; Vellas, B.; Barreto, P.S.; Group, M.D. Longitudinal Associations Between ATPase Inhibitory Factor 1, Growth Differentiation Factor-15, and Nutritional Status in Older Adults From the MAPT Study. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad236. [Google Scholar] [CrossRef]
- Adefegha, S.A. Functional foods and nutraceuticals as dietary intervention in chronic diseases; novel perspectives for health promotion and disease prevention. J. Diet. Suppl. 2018, 15, 977–1009. [Google Scholar] [CrossRef]
- Hasler, C.M.; Brown, A.C. Position of the American Dietetic Association: Functional foods. J. Am. Diet. Assoc. 2009, 109, 735–746. [Google Scholar]
- Granato, D.; Barba, F.J.; Bursać Kovačević, D.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional foods: Product development, technological trends, efficacy testing, and safety. Annu. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef]
- Bizzozero-Peroni, B.; Diaz-Goni, V.; Beneit, N.; Oliveira, A.; Jimenez-Lopez, E.; Martinez-Vizcaino, V.; Mesas, A.E. Nut consumption is associated with a lower risk of all-cause dementia in adults: A community-based cohort study from the UK Biobank. Geroscience 2024, 47, 1721–1733. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Jassal, D.S.; Ravandi, A.; Lehoczki, A. Dietary flaxseed: Cardiometabolic benefits and its role in promoting healthy aging. Geroscience 2025, 47, 2895–2923. [Google Scholar] [CrossRef]
- Vignesh, A.; Amal, T.C.; Sarvalingam, A.; Vasanth, K. A review on the influence of nutraceuticals and functional foods on health. Food Chem. Adv. 2024, 5, 100749. [Google Scholar] [CrossRef]
- Granato, D.; Nunes, D.S.; Barba, F.J. An integrated strategy between food chemistry, biology, nutrition, pharmacology, and statistics in the development of functional foods: A proposal. Trends Food Sci. Technol. 2017, 62, 13–22. [Google Scholar] [CrossRef]
- Bogan, R.R. Food-as-Medicine: An Everyday Strategy of Health. Ph.D. Thesis, City University of New York, New York, NY, USA, September 2021. [Google Scholar]
- Neufeld, L.M.; Ho, E.; Obeid, R.; Tzoulis, C.; Green, M.; Huber, L.G.; Stout, M.; Griffiths, J.C. Advancing nutrition science to meet evolving global health needs. Eur. J. Nutr. 2023, 62, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.T.; Lu, P.; Parrella, J.A.; Leggette, H.R. Consumer acceptance toward functional foods: A scoping review. Int. J. Environ. Res. Public Health 2022, 19, 1217. [Google Scholar] [CrossRef] [PubMed]
- Frumuzachi, O.; Flanagan, A.; Rohn, S.; Mocan, A. The dichotomy between functional and functionalized foods–A critical characterization of concepts. Food Res. Int. 2025, 208, 116173. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, X.; Luo, N.; Huang, J.; Zhu, Y. Association of Dietary Live Microbes and Nondietary Prebiotic/Probiotic Intake With Cognitive Function in Older Adults: Evidence From NHANES. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad175. [Google Scholar] [CrossRef]
- Ayyanar, M.P.; Vijayan, M. A review on gut microbiota and miRNA crosstalk: Implications for Alzheimer’s disease. Geroscience 2024, 47, 339–385. [Google Scholar] [CrossRef]
- Kim, J.; Westra, J.; Tintle, N.; Harris, W.S.; Park, Y. Association of Plasma n-3 Polyunsaturated Fatty Acid Levels and the Prevalence of Frailty in Older Adults: A Cross-Sectional Analysis of UK Biobank. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glae085. [Google Scholar] [CrossRef]
- Vyas, C.M.; Kang, J.H.; Mischoulon, D.; Cook, N.R.; Reynolds Iii, C.F.; Chang, G.; Mora, S.; De Vivo, I.; Manson, J.E.; Okereke, O.I. Apolipoprotein E and Its Association With Cognitive Change and Modification of Treatment Effects of Vitamin D3 and Omega-3s on Cognitive Change: Results From the In-Clinic Subset of a Randomized Clinical Trial. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad260. [Google Scholar] [CrossRef]
- LeBoff, M.S.; Bischoff-Ferrari, H.A. The Effects of Vitamin D Supplementation on Musculoskeletal Health: The VITAL and DO-Health Trials. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78 (Suppl. 1), 73–78. [Google Scholar] [CrossRef]
- Ji, Y.; Sun, H.; Wang, Y.; Li, Y.; Piao, R.; Bu, L.; Xu, H. Characterizing the oral and gastrointestinal microbiome associated with healthy aging: Insights from long-lived populations in Northeastern China. Geroscience 2024, 47, 2275–2292. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Okpala, C.O.R. Natural nutraceuticals, especially functional foods, their ma-jor bioactive components, formulation, and health benefits for disease prevention-An overview. J. Food Bioact. 2022, 19, 97–123. [Google Scholar] [CrossRef]
- Ghanbari, F.; Hasani, S.; Aghili, Z.S.; Asgary, S. The potential preventive effect of probiotics, prebiotics, and synbiotics on cardiovascular risk factors through modulation of gut microbiota: A review. Food Sci. Nutr. 2024, 12, 4569–4580. [Google Scholar] [CrossRef]
- Temple, N.J. A rational definition for functional foods: A perspective. Front. Nutr. 2022, 9, 957516. [Google Scholar] [CrossRef] [PubMed]
- Henry, C. Functional foods. Eur. J. Clin. Nutr. 2010, 64, 657–659. [Google Scholar] [CrossRef] [PubMed]
- Vettorazzi, A.; Lopez de Cerain, A.; Sanz-Serrano, J.; Gil, A.G.; Azqueta, A. European regulatory framework and safety assessment of food-related bioactive compounds. Nutrients 2020, 12, 613. [Google Scholar] [CrossRef] [PubMed]
- Granado-Lorencio, F.; Hernández-Alvarez, E. Functional foods and health effects: A nutritional biochemistry perspective. Curr. Med. Chem. 2016, 23, 2929–2957. [Google Scholar] [CrossRef]
- Diplock, A.; Charuleux, J.-L.; Crozier-Willi, G.; Kok, F.; Rice-Evans, C.; Roberfroid, M.; Stahl, W.; Vina-Ribes, J. Functional food science and defence against reactive oxidative species. Br. J. Nutr. 1998, 80, S77–S112. [Google Scholar] [CrossRef]
- Valenzuela, A.; Sanhueza, J.; Nieto, S. Natural antioxidants in functional foods: From food safety to health benefits. Grasas Y Aceites 2003, 54, 295–303. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E. The Role of Antioxidants in Longevity and Age-Related Diseases; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Ağagündüz, D.; Şahin, D.O.; Yılmaz, B.; Ekenci, K.D.; Ozer, S.D.; Capasso, R. Cruciferous Vegetables and Their Bioactive Metabolites: From Prevention to Novel Therapies of Colorectal Cancer. Evid.-Based Complement. Altern. Med. 2022, 2022, 1534083. [Google Scholar] [CrossRef] [PubMed]
- Bhutta, Z.A.; Choi, K.C. Phytochemicals as Novel Therapeutics for Triple-Negative Breast Cancer: A Comprehensive Review of Current Knowledge. Phytother. Res. 2025, 39, 364–396. [Google Scholar] [CrossRef]
- Chandra, P.; Sharma, H.; Sachan, N. The Potential Role of Prebiotics, Probiotics, and Synbiotics in Cancer Prevention and Therapy. In Synbiotics in Metabolic Disorders; CRC Press: Boca Raton, FL, USA, 2024; pp. 191–213. [Google Scholar]
- Onoruoiza, M.; Ayodele, A.; David-Momoh, T. A review on the effects of functional food on humans and microorganisms. Int. J. Probiotics Diet. 2024, 4, 1–14. [Google Scholar]
- Borghi, C.; Cicero, A.F. Omega-3 polyunsaturated fatty acids: Their potential role in blood pressure prevention and management. Heart Int. 2006, 2, 182618680600200205. [Google Scholar] [CrossRef]
- Bischoff-Ferrari, H.A.; Vellas, B.; Rizzoli, R.; Kressig, R.W.; da Silva, J.A.P.; Blauth, M.; Felson, D.T.; McCloskey, E.V.; Watzl, B.; Hofbauer, L.C.; et al. Effect of Vitamin D Supplementation, Omega-3 Fatty Acid Supplementation, or a Strength-Training Exercise Program on Clinical Outcomes in Older Adults: The DO-HEALTH Randomized Clinical Trial. JAMA 2020, 324, 1855–1868. [Google Scholar] [CrossRef]
- Fekete, M.; Csípő, T.; Fazekas-Pongor, V.; Fehér, Á.; Szarvas, Z.; Kaposvári, C.; Horváth, K.; Lehoczki, A.; Tarantini, S.; Varga, J.T. The Effectiveness of Supplementation with Key Vitamins, Minerals, Antioxidants and Specific Nutritional Supplements in COPD-A Review. Nutrients 2023, 15, 2741. [Google Scholar] [CrossRef]
- Fekete, M.; Lehoczki, A.; Tarantini, S.; Fazekas-Pongor, V.; Csipo, T.; Csizmadia, Z.; Varga, J.T. Improving Cognitive Function with Nutritional Supplements in Aging: A Comprehensive Narrative Review of Clinical Studies Investigating the Effects of Vitamins, Minerals, Antioxidants, and Other Dietary Supplements. Nutrients 2023, 15, 5116. [Google Scholar] [CrossRef]
- Fekete, M.; Szőllősi, G.; Németh, A.N.; Varga, J.T. Clinical value of omega-3 polyunsaturated fatty acid supplementation in chronic obstructive pulmonary disease. Orvosi Hetil. 2021, 162, 23–30. [Google Scholar] [CrossRef]
- Immerstrand, T. Cholesterol-Lowering Properties of Oats: Effects of Processing and the Role of Oat Components. Ph.D. Thesis, Lund University, Lund, Sweden, 2010. [Google Scholar]
- Andersson, K.E.; Immerstrand, T.; Swärd, K.; Bergenståhl, B.; Lindholm, M.W.; Öste, R.; Hellstrand, P. Effects of oats on plasma cholesterol and lipoproteins in C57BL/6 mice are substrain specific. Br. J. Nutr. 2010, 103, 513–521. [Google Scholar] [CrossRef]
- Ungvari, Z.; Fekete, M.; Fekete, J.T.; Grosso, G.; Ungvari, A.; Győrffy, B. Adherence to the Mediterranean diet and its protective effects against colorectal cancer: A meta-analysis of 26 studies with 2,217,404 participants. GeroScience 2024, 47, 1105–1121. [Google Scholar] [CrossRef]
- Vince, F.-P.; Zoltán, U.; Mónika, F. Táplálkozási stratégiák az egészséges öregedésért: Krónikus, életkorral összefüggő betegségek. Sci. J. Hung. Assoc. Gerontol. Geriatr. 2024, 9, 4–12. [Google Scholar]
- McGee, K.C.; Sullivan, J.; Hazeldine, J.; Schmunk, L.J.; Martin-Herranz, D.E.; Jackson, T.; Lord, J.M. A combination nutritional supplement reduces DNA methylation age only in older adults with a raised epigenetic age. Geroscience 2024, 46, 4333–4347. [Google Scholar] [CrossRef] [PubMed]
- Bray, N.W.; Pieruccini-Faria, F.; Witt, S.T.; Bartha, R.; Doherty, T.J.; Nagamatsu, L.S.; Almeida, Q.J.; Liu-Ambrose, T.; Middleton, L.E.; Bherer, L.; et al. Combining exercise with cognitive training and vitamin D(3) to improve functional brain connectivity (FBC) in older adults with mild cognitive impairment (MCI). Results from the SYNERGIC trial. Geroscience 2023, 45, 1967–1985. [Google Scholar] [CrossRef]
- Vetter, V.M.; Sommerer, Y.; Kalies, C.H.; Spira, D.; Bertram, L.; Demuth, I. Vitamin D supplementation is associated with slower epigenetic aging. Geroscience 2022, 44, 1847–1859. [Google Scholar] [CrossRef] [PubMed]
- Wintergerst, E.S.; Maggini, S.; Hornig, D.H. Contribution of selected vitamins and trace elements to immune function. Ann. Nutr. Metab. 2007, 51, 301–323. [Google Scholar] [CrossRef]
- Banik, S.P.; Ghosh, R.B.; Downs, B.W.; Chakraborty, S.; Bagchi, M.; Chakraborty, T.R.; Bagchi, D. Functional foods beyond nutrition: Therapeutic interventions to combat COVID-19 and other viral diseases. J. Food Bioact. 2021, 15, 63–73. [Google Scholar] [CrossRef]
- Bakhru, A. Nutrition and Integrative Medicine for Clinicians: Volume Two; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Wilczyńska, A.; Singh, R.B.; De Meester, F. Nutritional modulators of neuropsychiatric dysfunction. Open Nutraceuticals J. 2011, 4, 52–60. [Google Scholar] [CrossRef]
- De Domenico, S.; Giudetti, A.M. Nutraceutical intervention in ageing brain. J. Gerontol. Geriatr. 2017, 65, 79–92. [Google Scholar]
- Fekete, M.; Major, D.; Feher, A.; Fazekas-Pongor, V.; Lehoczki, A. Geroscience and pathology: A new frontier in understanding age-related diseases. Pathol. Oncol. Res. 2024, 30, 1611623. [Google Scholar] [CrossRef]
- Pop, S.; Enciu, A.M.; Tarcomnicu, I.; Gille, E.; Tanase, C. Phytochemicals in cancer prevention: Modulating epigenetic alterations of DNA methylation. Phytochem. Rev. 2019, 18, 1005–1024. [Google Scholar] [CrossRef]
- Hsieh, H.-H.; Kuo, M.-Z.; Chen, I.-A.; Lin, C.-J.; Hsu, V.; HuangFu, W.-C.; Wu, T.-Y. Epigenetic Modifications as Novel Therapeutic Strategies of Cancer Chemoprevention by Phytochemicals. Pharm. Res. 2025, 42, 69–78. [Google Scholar] [CrossRef]
- Milner, J.A. Functional foods: The US perspective. Am. J. Clin. Nutr. 2000, 71, 1654S–1659S. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, F.; Lecce, L.; Frisullo, P.; Conte, A.; Alessandro Del Nobile, M. Functional food: Product development and health benefits. Recent. Pat. Eng. 2012, 6, 2–19. [Google Scholar] [CrossRef]
- Boon, C.S.; Taylor, C.L.; Henney, J.E. Strategies to Reduce Sodium Intake in the United States; National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Flore, G.; Deledda, A.; Lombardo, M.; Armani, A.; Velluzzi, F. Effects of Functional and Nutraceutical Foods in the Context of the Mediterranean Diet in Patients Diagnosed with Breast Cancer. Antioxidants 2023, 12, 1845. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.L.; Zhang, P.H.; Yan, H.H. Functional foods and dietary supplements in the management of non-alcoholic fatty liver disease: A systematic review and meta-analysis. Front. Nutr. 2023, 10, 1014010. [Google Scholar] [CrossRef]
- Venkatakrishnan, K.; Chiu, H.F.; Wang, C.K. Extensive review of popular functional foods and nutraceuticals against obesity and its related complications with a special focus on randomized clinical trials. Food Funct. 2019, 10, 2313–2329. [Google Scholar] [CrossRef]
- Willis, H.J.; Slavin, J.L. The Influence of Diet Interventions Using Whole, Plant Food on the Gut Microbiome: A Narrative Review. J. Acad. Nutr. Diet. 2020, 120, 608–623. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.B. Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Boone-Villa, V.D.; Obregón-Sánchez, N.H.; Del Bosque-Moreno, J.; Aguirre-Joya, J.A. Trends in functional food in non-communicable diseases. In Handbook of Research on Food Science and Technology; Apple Academic Press: Palm Bay, FL, USA, 2019; pp. 1–32. [Google Scholar]
- Hossain, A.; Rahman, M.J. Safety, nutrition and functionality of the traditional foods. Tradit. Foods: Hist. Prep. Process. Saf. 2019, 219–238. [Google Scholar]
- Mondal, S.; Soumya, N.P.P.; Mini, S.; Sivan, S.K. Bioactive compounds in functional food and their role as therapeutics. Bioact. Compd. Health Dis. 2021, 4, 24–39. [Google Scholar] [CrossRef]
- Essa, M.M.; Bishir, M.; Bhat, A.; Chidambaram, S.B.; Al-Balushi, B.; Hamdan, H.; Govindarajan, N.; Freidland, R.P.; Qoronfleh, M.W. Functional foods and their impact on health. J. Food Sci. Technol. 2023, 60, 820–834. [Google Scholar] [CrossRef]
- Pap, N.; Fidelis, M.; Azevedo, L.; do Carmo, M.A.V.; Wang, D.; Mocan, A.; Pereira, E.P.R.; Xavier-Santos, D.; Sant’Ana, A.S.; Yang, B. Berry polyphenols and human health: Evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Curr. Opin. Food Sci. 2021, 42, 167–186. [Google Scholar] [CrossRef]
- Cirignano, S.M.; Morgan, K.T. The Role of Carotenoid-and Glucosinolate-Containing Vegetables in Cancer Prevention and Their Promotion in Clinical Practice. Top. Clin. Nutr. 2014, 29, 33–46. [Google Scholar] [CrossRef]
- Joye, I.J. Dietary fibre from whole grains and their benefits on metabolic health. Nutrients 2020, 12, 3045. [Google Scholar] [CrossRef]
- Kaur, H.; Kaur, G.; Ali, S.A. Dairy-based probiotic-fermented functional foods: An update on their health-promoting properties. Fermentation 2022, 8, 425. [Google Scholar] [CrossRef]
- Aguiar, L.M.; Geraldi, M.V.; Cazarin, C.B.B.; Junior, M.R.M. Functional food consumption and its physiological effects. In Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2019; pp. 205–225. [Google Scholar]
- Alkhatib, A.; Tsang, C.; Tiss, A.; Bahorun, T.; Arefanian, H.; Barake, R.; Khadir, A.; Tuomilehto, J. Functional foods and lifestyle approaches for diabetes prevention and management. Nutrients 2017, 9, 1310. [Google Scholar] [CrossRef]
- Bellikci-Koyu, E.; Sarer-Yurekli, B.P.; Karagozlu, C.; Aydin-Kose, F.; Ozgen, A.G.; Buyuktuncer, Z. Probiotic kefir consumption improves serum apolipoprotein A1 levels in metabolic syndrome patients: A randomized controlled clinical trial. Nutr. Res. 2022, 102, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Bellikci-Koyu, E.; Sarer-Yurekli, B.P.; Akyon, Y.; Aydin-Kose, F.; Karagozlu, C.; Ozgen, A.G.; Brinkmann, A.; Nitsche, A.; Ergunay, K.; Yilmaz, E.; et al. Effects of Regular Kefir Consumption on Gut Microbiota in Patients with Metabolic Syndrome: A Parallel-Group, Randomized, Controlled Study. Nutrients 2019, 11, 2089. [Google Scholar] [CrossRef]
- Yılmaz, İ.; Dolar, M.E.; Özpınar, H. Effect of administering kefir on the changes in fecal microbiota and symptoms of inflammatory bowel disease: A randomized controlled trial. Turk. J. Gastroenterol. 2019, 30, 242–253. [Google Scholar] [CrossRef]
- Alihosseini, N.; Moahboob, S.A.; Farrin, N.; Mobasseri, M.; Taghizadeh, A.; Ostadrahimi, A.R. Effect of Probiotic Fermented Milk (Kefir) on Serum Level of Insulin and Homocysteine in Type 2 Diabetes Patients. Acta Endocrinol. 2017, 13, 431–436. [Google Scholar] [CrossRef]
- Fathi, Y.; Ghodrati, N.; Zibaeenezhad, M.J.; Faghih, S. Kefir drink causes a significant yet similar improvement in serum lipid profile, compared with low-fat milk, in a dairy-rich diet in overweight or obese premenopausal women: A randomized controlled trial. J. Clin. Lipidol. 2017, 11, 136–146. [Google Scholar] [CrossRef]
- Öneş, E.; Zavotçu, M.; Nisan, N.; Baş, M.; Sağlam, D. Effects of Kefir Consumption on Gut Microbiota and Athletic Performance in Professional Female Soccer Players: A Randomized Controlled Trial. Nutrients 2025, 17, 512. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.C.; Zaydi, A.I.; Lin, W.H.; Lin, J.S.; Liong, M.T.; Wu, J.J. Putative Probiotic Strains Isolated from Kefir Improve Gastrointestinal Health Parameters in Adults: A Randomized, Single-Blind, Placebo-Controlled Study. Probiotics Antimicrob. Proteins 2020, 12, 840–850. [Google Scholar] [CrossRef]
- Pražnikar, Z.J.; Kenig, S.; Vardjan, T.; Bizjak, M.Č.; Petelin, A. Effects of kefir or milk supplementation on zonulin in overweight subjects. J. Dairy. Sci. 2020, 103, 3961–3970. [Google Scholar] [CrossRef]
- Ton, A.M.M.; Campagnaro, B.P.; Alves, G.A.; Aires, R.; Côco, L.Z.; Arpini, C.M.; Guerra, E.O.T.; Campos-Toimil, M.; Meyrelles, S.S.; Pereira, T.M.C.; et al. Oxidative Stress and Dementia in Alzheimer’s Patients: Effects of Synbiotic Supplementation. Oxid. Med. Cell Longev. 2020, 2020, 2638703. [Google Scholar] [CrossRef] [PubMed]
- Noori, M.; Shateri, Z.; Babajafari, S.; Eskandari, M.H.; Parastouei, K.; Ghasemi, M.; Afshari, H.; Samadi, M. The effect of probiotic-fortified kefir on depression, appetite, oxidative stress, and inflammatory parameters in Iranian overweight and obese elderly: A randomized, double-blind, placebo-controlled clinical trial. J. Health Popul. Nutr. 2025, 44, 30. [Google Scholar] [CrossRef] [PubMed]
- Tatullo, M.; Marrelli, B.; Benincasa, C.; Aiello, E.; Amantea, M.; Gentile, S.; Leonardi, N.; Balestrieri, M.L.; Campanile, G. Potential impact of functional biomolecules-enriched foods on human health: A randomized controlled clinical trial. Int. J. Med. Sci. 2022, 19, 563–571. [Google Scholar] [CrossRef]
- Ostadrahimi, A.; Taghizadeh, A.; Mobasseri, M.; Farrin, N.; Payahoo, L.; Beyramalipoor Gheshlaghi, Z.; Vahedjabbari, M. Effect of probiotic fermented milk (kefir) on glycemic control and lipid profile in type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Iran. J. Public. Health 2015, 44, 228–237. [Google Scholar]
- Bourrie, B.C.T.; Forgie, A.J.; Makarowski, A.; Cotter, P.D.; Richard, C.; Willing, B.P. Consumption of kefir made with traditional microorganisms resulted in greater improvements in LDL cholesterol and plasma markers of inflammation in males when compared to a commercial kefir: A randomized pilot study. Appl. Physiol. Nutr. Metab. 2023, 48, 668–677. [Google Scholar] [CrossRef]
- O’Brien, K.V.; Stewart, L.K.; Forney, L.A.; Aryana, K.J.; Prinyawiwatkul, W.; Boeneke, C.A. The effects of postexercise consumption of a kefir beverage on performance and recovery during intensive endurance training. J. Dairy. Sci. 2015, 98, 7446–7449. [Google Scholar] [CrossRef]
- Nilsson, A.; Cano, A.; Bergens, O.; Kadi, F. Randomized Controlled Trial for Promotion of Healthy Eating in Older Adults by Increasing Consumption of Plant-Based Foods: Effect on Inflammatory Biomarkers. Nutrients 2021, 13, 3753. [Google Scholar] [CrossRef]
- Carrillo, J.; Arcusa, R.; Zafrilla, M.P.; Marhuenda, J. Effects of Fruit and Vegetable-Based Nutraceutical on Cognitive Function in a Healthy Population: Placebo-Controlled, Double-Blind, and Randomized Clinical Trial. Antioxidants 2021, 10, 116. [Google Scholar] [CrossRef]
- Arcusa, R.; Carrillo, J.; Xandri-Martínez, R.; Cerdá, B.; Villaño, D.; Marhuenda, J.; Zafrilla, M.P. Effects of a Fruit and Vegetable-Based Nutraceutical on Biomarkers of Inflammation and Oxidative Status in the Plasma of a Healthy Population: A Placebo-Controlled, Double-Blind, and Randomized Clinical Trial. Molecules 2021, 26, 3604. [Google Scholar] [CrossRef] [PubMed]
- Kopf, J.C.; Suhr, M.J.; Clarke, J.; Eyun, S.I.; Riethoven, J.M.; Ramer-Tait, A.E.; Rose, D.J. Role of whole grains versus fruits and vegetables in reducing subclinical inflammation and promoting gastrointestinal health in individuals affected by overweight and obesity: A randomized controlled trial. Nutr. J. 2018, 17, 72. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.Y.; Smeele, R.J.; Harington, K.D.; van Loon, F.M.; Wanders, A.J.; Venn, B.J. The effects of functional fiber on postprandial glycemia, energy intake, satiety, palatability and gastrointestinal wellbeing: A randomized crossover trial. Nutr. J. 2014, 13, 76. [Google Scholar] [CrossRef] [PubMed]
- Campbell, E.K.; Campbell, T.M.; Culakova, E.; Blanchard, L.; Wixom, N.; Guido, J.J.; Fetten, J.; Huston, A.; Shayne, M.; Janelsins, M.C.; et al. A whole food, plant-based randomized controlled trial in metastatic breast cancer: Feasibility, nutrient, and patient-reported outcomes. Breast Cancer Res. Treat. 2024, 206, 273–283. [Google Scholar] [CrossRef]
- Lamport, D.J.; Lawton, C.L.; Merat, N.; Jamson, H.; Myrissa, K.; Hofman, D.; Chadwick, H.K.; Quadt, F.; Wightman, J.D.; Dye, L. Concord grape juice, cognitive function, and driving performance: A 12-wk, placebo-controlled, randomized crossover trial in mothers of preteen children. Am. J. Clin. Nutr. 2016, 103, 775–783. [Google Scholar] [CrossRef]
- Haskell-Ramsay, C.; Stuart, R.; Okello, E.; Watson, A. Cognitive and mood improvements following acute supplementation with purple grape juice in healthy young adults. Eur. J. Nutr. 2017, 56, 2621–2631. [Google Scholar] [CrossRef]
- Nilsson, A.; Salo, I.; Plaza, M.; Björck, I. Effects of a mixed berry beverage on cognitive functions and cardiometabolic risk markers; A randomized cross-over study in healthy older adults. PLoS ONE 2017, 12, e0188173. [Google Scholar] [CrossRef]
- Connolly, E.L.; Liu, A.H.; Radavelli-Bagatini, S.; Shafaei, A.; Boyce, M.C.; Wood, L.G.; McCahon, L.; Koch, H.; Sim, M.; Hill, C.R.; et al. Cruciferous vegetables lower blood pressure in adults with mildly elevated blood pressure in a randomized, controlled, crossover trial: The VEgetableS for vaScular hEaLth (VESSEL) study. BMC Med. 2024, 22, 353. [Google Scholar] [CrossRef]
- Riso, P.; Vendrame, S.; Del Bo, C.; Martini, D.; Martinetti, A.; Seregni, E.; Visioli, F.; Parolini, M.; Porrini, M. Effect of 10-day broccoli consumption on inflammatory status of young healthy smokers. Int. J. Food Sci. Nutr. 2014, 65, 106–111. [Google Scholar] [CrossRef]
- Navarro, S.L.; Schwarz, Y.; Song, X.; Wang, C.Y.; Chen, C.; Trudo, S.P.; Kristal, A.R.; Kratz, M.; Eaton, D.L.; Lampe, J.W. Cruciferous vegetables have variable effects on biomarkers of systemic inflammation in a randomized controlled trial in healthy young adults. J. Nutr. 2014, 144, 1850–1857. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Ray, S.; Craigie, A.M.; Kennedy, G.; Hill, A.; Barton, K.L.; Broughton, J.; Belch, J.J. Lowering of oxidative stress improves endothelial function in healthy subjects with habitually low intake of fruit and vegetables: A randomized controlled trial of antioxidant- and polyphenol-rich blackcurrant juice. Free Radic. Biol. Med. 2014, 72, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Duthie, S.J.; Duthie, G.G.; Russell, W.R.; Kyle, J.A.M.; Macdiarmid, J.I.; Rungapamestry, V.; Stephen, S.; Megias-Baeza, C.; Kaniewska, J.J.; Shaw, L.; et al. Effect of increasing fruit and vegetable intake by dietary intervention on nutritional biomarkers and attitudes to dietary change: A randomised trial. Eur. J. Nutr. 2018, 57, 1855–1872. [Google Scholar] [CrossRef]
- Nadeem, N.; Woodside, J.V.; Neville, C.E.; McCall, D.O.; McCance, D.; Edgar, D.; Young, I.S.; McEneny, J. Serum amyloid A-related inflammation is lowered by increased fruit and vegetable intake, while high-sensitive C-reactive protein, IL-6 and E-selectin remain unresponsive. Br. J. Nutr. 2014, 112, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Siddarth, P.; Li, Z.; Miller, K.J.; Ercoli, L.M.; Merril, D.A.; Henning, S.M.; Heber, D.; Small, G.W. Randomized placebo-controlled study of the memory effects of pomegranate juice in middle-aged and older adults. Am. J. Clin. Nutr. 2020, 111, 170–177. [Google Scholar] [CrossRef]
- Ahles, S.; Cuijpers, I.; Hartgens, F.; Troost, F.J. The Effect of a Citrus and Pomegranate Complex on Physical Fitness and Mental Well-Being in Healthy Elderly: A Randomized Placebo-Controlled Trial. J. Nutr. Health Aging 2022, 26, 839–846. [Google Scholar] [CrossRef]
- Kennedy, S.J.; Ryan, L.; Clegg, M.E. The Effects of a Functional Food Breakfast on Gluco-Regulation, Cognitive Performance, Mood, and Satiety in Adults. Nutrients 2020, 12, 2974. [Google Scholar] [CrossRef]
- Kent, K.; Charlton, K.; Roodenrys, S.; Batterham, M.; Potter, J.; Traynor, V.; Gilbert, H.; Morgan, O.; Richards, R. Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia. Eur. J. Nutr. 2017, 56, 333–341. [Google Scholar] [CrossRef]
- Lamport, D.J.; Pal, D.; Macready, A.L.; Barbosa-Boucas, S.; Fletcher, J.M.; Williams, C.M.; Spencer, J.P.; Butler, L.T. The effects of flavanone-rich citrus juice on cognitive function and cerebral blood flow: An acute, randomised, placebo-controlled cross-over trial in healthy, young adults. Br. J. Nutr. 2016, 116, 2160–2168. [Google Scholar] [CrossRef]
- Rosli, H.; Shahar, S.; Rajab, N.F.; Che Din, N.; Haron, H. The effects of polyphenols-rich tropical fruit juice on cognitive function and metabolomics profile—A randomized controlled trial in middle-aged women. Nutr. Neurosci. 2022, 25, 1577–1593. [Google Scholar] [CrossRef]
- Saeidi, A.; Soltani, M.; Daraei, A.; Nohbaradar, H.; Haghighi, M.M.; Khosravi, N.; Johnson, K.E.; Laher, I.; Hackney, A.C.; VanDusseldorp, T.A.; et al. The Effects of Aerobic-Resistance Training and Broccoli Supplementation on Plasma Dectin-1 and Insulin Resistance in Males with Type 2 Diabetes. Nutrients 2021, 13, 3144. [Google Scholar] [CrossRef] [PubMed]
- Whyte, A.R.; Cheng, N.; Butler, L.T.; Lamport, D.J.; Williams, C.M. Flavonoid-Rich Mixed Berries Maintain and Improve Cognitive Function Over a 6 h Period in Young Healthy Adults. Nutrients 2019, 11, 2685. [Google Scholar] [CrossRef] [PubMed]
- Gouvarchinghaleh, H.E.; Kiany, F.; Parastouei, K.; Alishiri, G.; Jafari, N.J.; Fooladi, A.A.I.; Pargar, A.; Ghazvini, A.; Mirnejad, R.; Raei, M.; et al. The effects of functional foods mixture on inflammatory cytokines and biochemical findings in hospitalized patients with COVID-19: A randomized double-blind controlled trial. Trials 2023, 24, 442. [Google Scholar] [CrossRef]
- Stokić, E.; Mandić, A.; Sakač, M.; Mišan, A.; Pestorić, M.; Šimurina, O.; Jambrec, D.; Jovanov, P.; Nedeljković, N.; Milovanović, I. Quality of buckwheat-enriched wheat bread and its antihyperlipidemic effect in statin treated patients. LWT-Food Sci. Technol. 2015, 63, 556–561. [Google Scholar] [CrossRef]
- Dinu, M.; Ghiselli, L.; Whittaker, A.; Pagliai, G.; Cesari, F.; Fiorillo, C.; Becatti, M.; Marcucci, R.; Benedettelli, S.; Sofi, F. Consumption of buckwheat products and cardiovascular risk profile: A randomized, single-blinded crossover trial. Nutr. Metab. Cardiovasc. Dis. 2017, 27, e20–e21. [Google Scholar] [CrossRef]
- Smith, L.; Lopez Sanchez, G.F.; Veronese, N.; Soysal, P.; Oh, H.; Kostev, K.; Rahmati, M.; Butler, L.; Gibson, P.; Keyes, H.; et al. Association of Fruit and Vegetable Consumption With Mild Cognitive Impairment in Low- and Middle-Income Countries. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 1410–1416. [Google Scholar] [CrossRef]
- Ghavipour, M.; Sotoudeh, G.; Ghorbani, M. Tomato juice consumption improves blood antioxidative biomarkers in overweight and obese females. Clin. Nutr. 2015, 34, 805–809. [Google Scholar] [CrossRef]
- Saito, Y.; Nitta, A.; Imai, S.; Kajiyama, S.; Miyawaki, T.; Ozasa, N.; Kajiyama, S.; Hashimoto, Y.; Fukui, M. Tomato juice preload has a significant impact on postprandial glucose concentration in healthy women: A randomized cross-over trial. Asia Pac. J. Clin. Nutr. 2020, 29, 491–497. [Google Scholar] [CrossRef]
- Michaličková, D.; Belović, M.; Ilić, N.; Kotur-Stevuljević, J.; Slanař, O.; Šobajić, S. Comparison of Polyphenol-Enriched Tomato Juice and Standard Tomato Juice for Cardiovascular Benefits in Subjects with Stage 1 Hypertension: A Randomized Controlled Study. Plant Foods Hum. Nutr. 2019, 74, 122–127. [Google Scholar] [CrossRef]
- Upritchard, J.E.; Sutherland, W.H.; Mann, J.I. Effect of supplementation with tomato juice, vitamin E, and vitamin C on LDL oxidation and products of inflammatory activity in type 2 diabetes. Diabetes Care 2000, 23, 733–738. [Google Scholar] [CrossRef]
- Hirose, A.; Terauchi, M.; Tamura, M.; Akiyoshi, M.; Owa, Y.; Kato, K.; Kubota, T. Tomato juice intake increases resting energy expenditure and improves hypertriglyceridemia in middle-aged women: An open-label, single-arm study. Nutr. J. 2015, 14, 34. [Google Scholar] [CrossRef] [PubMed]
- Valderas-Martinez, P.; Chiva-Blanch, G.; Casas, R.; Arranz, S.; Martínez-Huélamo, M.; Urpi-Sarda, M.; Torrado, X.; Corella, D.; Lamuela-Raventós, R.M.; Estruch, R. Tomato Sauce Enriched with Olive Oil Exerts Greater Effects on Cardiovascular Disease Risk Factors than Raw Tomato and Tomato Sauce: A Randomized Trial. Nutrients 2016, 8, 170. [Google Scholar] [CrossRef]
- Burton-Freeman, B.; Talbot, J.; Park, E.; Krishnankutty, S.; Edirisinghe, I. Protective activity of processed tomato products on postprandial oxidation and inflammation: A clinical trial in healthy weight men and women. Mol. Nutr. Food Res. 2012, 56, 622–631. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chien, Y.W. Fresh Tomato (Lycopersicon esculentum Mill.) in the Diet Improves the Features of the Metabolic Syndrome: A Randomized Study in Postmenopausal Women. Biology 2024, 13, 588. [Google Scholar] [CrossRef] [PubMed]
- Thies, F.; Masson, L.F.; Rudd, A.; Vaughan, N.; Tsang, C.; Brittenden, J.; Simpson, W.G.; Duthie, S.; Horgan, G.W.; Duthie, G. Effect of a tomato-rich diet on markers of cardiovascular disease risk in moderately overweight, disease-free, middle-aged adults: A randomized controlled trial. Am. J. Clin. Nutr. 2012, 95, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, M.; Tominaga, N.; Ishikawa-Takano, Y.; Maeda-Yamamoto, M.; Nishihira, J. Effect of 12-Week Daily Intake of the High-Lycopene Tomato (Solanum Lycopersicum), A Variety Named "PR-7", on Lipid Metabolism: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study. Nutrients 2019, 11, 1177. [Google Scholar] [CrossRef]
- Miller, M.G.; Hamilton, D.A.; Joseph, J.A.; Shukitt-Hale, B. Dietary blueberry improves cognition among older adults in a randomized, double-blind, placebo-controlled trial. Eur. J. Nutr. 2018, 57, 1169–1180. [Google Scholar] [CrossRef]
- Dodd, G.F.; Williams, C.M.; Butler, L.T.; Spencer, J.P. Acute effects of flavonoid-rich blueberry on cognitive and vascular function in healthy older adults. Nutr. Healthy Aging 2019, 5, 119–132. [Google Scholar] [CrossRef]
- Wood, E.; Hein, S.; Mesnage, R.; Fernandes, F.; Abhayaratne, N.; Xu, Y.; Zhang, Z.; Bell, L.; Williams, C.; Rodriguez-Mateos, A. Wild blueberry (poly)phenols can improve vascular function and cognitive performance in healthy older individuals: A double-blind randomized controlled trial. Am. J. Clin. Nutr. 2023, 117, 1306–1319. [Google Scholar] [CrossRef]
- Stull, A.J.; Cassidy, A.; Djousse, L.; Johnson, S.A.; Krikorian, R.; Lampe, J.W.; Mukamal, K.J.; Nieman, D.C.; Porter Starr, K.N.; Rasmussen, H.; et al. The state of the science on the health benefits of blueberries: A perspective. Front. Nutr. 2024, 11, 1415737. [Google Scholar] [CrossRef]
- Lau, F.C.; Bielinski, D.F.; Joseph, J.A. Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharide-activated BV2 microglia. J. Neurosci. Res. 2007, 85, 1010–1017. [Google Scholar] [CrossRef]
- Dąbek, J.; Kułach, A.; Gąsior, Z. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB): A new potential therapeutic target in atherosclerosis? Pharmacol. Rep. 2010, 62, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Martini, D.; Marino, M.; Venturi, S.; Tucci, M.; Klimis-Zacas, D.; Riso, P.; Porrini, M.; Del Bo, C. Blueberries and their bioactives in the modulation of oxidative stress, inflammation and cardio/vascular function markers: A systematic review of human intervention studies. J. Nutr. Biochem. 2023, 111, 109154. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.G.; Kim, B.; Yang, Y.; Pham, T.X.; Park, Y.K.; Manatou, J.; Koo, S.I.; Chun, O.K.; Lee, J.Y. Berry anthocyanins suppress the expression and secretion of proinflammatory mediators in macrophages by inhibiting nuclear translocation of NF-κB independent of NRF2-mediated mechanism. J. Nutr. Biochem. 2014, 25, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Henriques, J.F.; Serra, D.; Dinis, T.C.P.; Almeida, L.M. The Anti-Neuroinflammatory Role of Anthocyanins and Their Metabolites for the Prevention and Treatment of Brain Disorders. Int. J. Mol. Sci. 2020, 21, 8653. [Google Scholar] [CrossRef]
- Ma, L.; Sun, Z.; Zeng, Y.; Luo, M.; Yang, J. Molecular Mechanism and Health Role of Functional Ingredients in Blueberry for Chronic Disease in Human Beings. Int. J. Mol. Sci. 2018, 19, 2785. [Google Scholar] [CrossRef]
- Senoner, T.; Dichtl, W. Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target? Nutrients 2019, 11, 2090. [Google Scholar] [CrossRef]
- Pandics, T.; Major, D.; Fazekas-Pongor, V.; Szarvas, Z.; Peterfi, A.; Mukli, P.; Gulej, R.; Ungvari, A.; Fekete, M.; Tompa, A.; et al. Exposome and unhealthy aging: Environmental drivers from air pollution to occupational exposures. Geroscience 2023, 45, 3381–3408. [Google Scholar] [CrossRef]
- Janssens, G.E.; Grevendonk, L.; Schomakers, B.V.; Perez, R.Z.; van Weeghel, M.; Schrauwen, P.; Hoeks, J.; Houtkooper, R.H. A metabolomic signature of decelerated physiological aging in human plasma. Geroscience 2023, 45, 3147–3164. [Google Scholar] [CrossRef]
- Ungvari, A.; Gulej, R.; Patai, R.; Papp, Z.; Toth, A.; Szabo, A.A.; Podesser, B.K.; Sotonyi, P.; Benyo, Z.; Yabluchanskiy, A.; et al. Sex-specific mechanisms in vascular aging: Exploring cellular and molecular pathways in the pathogenesis of age-related cardiovascular and cerebrovascular diseases. Geroscience 2025, 2025 47, 301–337. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, Z.; Lu, H.; Xu, Z.; Tong, R.; Shi, J.; Jia, G. Recent Advances of Natural Polyphenols Activators for Keap1-Nrf2 Signaling Pathway. Chem. Biodivers. 2019, 16, e1900400. [Google Scholar] [CrossRef] [PubMed]
- Riordan, R.; Rong, W.; Yu, Z.; Ross, G.; Valerio, J.; Dimas-Munoz, J.; Heredia, V.; Magnusson, K.; Galvan, V.; Perez, V.I. Effect of Nrf2 loss on senescence and cognition of tau-based P301S mice. Geroscience 2023, 45, 1451–1469. [Google Scholar] [CrossRef] [PubMed]
- Shaw, P.; Chattopadhyay, A. Nrf2-ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms. J. Cell Physiol. 2020, 235, 3119–3130. [Google Scholar] [CrossRef] [PubMed]
- Ketnawa, S.; Reginio, F.C., Jr.; Thuengtung, S.; Ogawa, Y. Changes in bioactive compounds and antioxidant activity of plant-based foods by gastrointestinal digestion: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 4684–4705. [Google Scholar] [CrossRef]
- Woolf, E.K.; Lee, S.Y.; Ghanem, N.; Vazquez, A.R.; Johnson, S.A. Protective effects of blueberries on vascular function: A narrative review of preclinical and clinical evidence. Nutr. Res. 2023, 120, 20–57. [Google Scholar] [CrossRef]
- Najjar, R.S.; Schwartz, A.M.; Wong, B.J.; Mehta, P.K.; Feresin, R.G. Berries and Their Polyphenols as a Potential Therapy for Coronary Microvascular Dysfunction: A Mini-Review. Int. J. Mol. Sci. 2021, 22, 3373. [Google Scholar] [CrossRef]
- Tousoulis, D.; Kampoli, A.M.; Tentolouris, C.; Papageorgiou, N.; Stefanadis, C. The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol. 2012, 10, 4–18. [Google Scholar] [CrossRef]
- Stull, A.J. Blueberries’ Impact on Insulin Resistance and Glucose Intolerance. Antioxidants 2016, 5, 44. [Google Scholar] [CrossRef]
- Li, Z.; Tian, J.; Cheng, Z.; Teng, W.; Zhang, W.; Bao, Y.; Wang, Y.; Song, B.; Chen, Y.; Li, B. Hypoglycemic bioactivity of anthocyanins: A review on proposed targets and potential signaling pathways. Crit. Rev. Food Sci. Nutr. 2023, 63, 7878–7895. [Google Scholar] [CrossRef]
- Kang, G.G.; Francis, N.; Hill, R.; Waters, D.; Blanchard, C.; Santhakumar, A.B. Dietary Polyphenols and Gene Expression in Molecular Pathways Associated with Type 2 Diabetes Mellitus: A Review. Int. J. Mol. Sci. 2019, 21, 140. [Google Scholar] [CrossRef]
- Momtaz, S.; Salek-Maghsoudi, A.; Abdolghaffari, A.H.; Jasemi, E.; Rezazadeh, S.; Hassani, S.; Ziaee, M.; Abdollahi, M.; Behzad, S.; Nabavi, S.M. Polyphenols targeting diabetes via the AMP-activated protein kinase pathway; future approach to drug discovery. Crit. Rev. Clin. Lab. Sci. 2019, 56, 472–492. [Google Scholar] [CrossRef]
- Ashique, S.; Mukherjee, T.; Mohanty, S.; Garg, A.; Mishra, N.; Kaushik, M.; Bhowmick, M.; Chattaraj, B.; Mohanto, S.; Srivastava, S. Blueberries in focus: Exploring the phytochemical potentials and therapeutic applications. J. Agric. Food Res. 2024, 18, 101300. [Google Scholar] [CrossRef]
- Giacalone, M.; Di Sacco, F.; Traupe, I.; Pagnucci, N.; Forfori, F.; Giunta, F. Blueberry polyphenols and neuroprotection. In Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease; Elsevier: Amsterdam, The Netherlands, 2015; pp. 17–28. [Google Scholar]
- Krikorian, R.; Shidler, M.D.; Nash, T.A.; Kalt, W.; Vinqvist-Tymchuk, M.R.; Shukitt-Hale, B.; Joseph, J.A. Blueberry supplementation improves memory in older adults. J. Agric. Food Chem. 2010, 58, 3996–4000. [Google Scholar] [CrossRef]
- Whyte, A.R.; Cheng, N.; Fromentin, E.; Williams, C.M. A randomized, double-blinded, placebo-controlled study to compare the safety and efficacy of low dose enhanced wild blueberry powder and wild blueberry extract (ThinkBlue™) in maintenance of episodic and working memory in older adults. Nutrients 2018, 10, 660. [Google Scholar] [CrossRef] [PubMed]
- Cheng, N. The acute effects of wild blueberry extract on cognition in healthy older adults. Ph.D. Thesis, University of Reading, Reading, Berkshire, UK, 2024. [Google Scholar]
- Choi, Y.-H.; Kwon, H.-S.; Shin, S.-G.; Chung, C.-K. Vaccinium uliginosum L. improves amyloid β protein-induced learning and memory impairment in Alzheimer’s disease in mice. Prev. Nutr. Food Sci. 2014, 19, 343. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Zhang, H.; Li, H.; Sun, S.; Lyu, Q.; Jiang, Y. Blueberry extracts antagonize Aβ25–35 neurotoxicity and exert a neuroprotective effect through MEK-ERK-BDNF/UCH-L1 signaling pathway in rat and mouse hippocampus. Nutr. Neurosci. 2024, 27, 745–760. [Google Scholar] [CrossRef]
- Abdi-Moghadam, Z.; Darroudi, M.; Mahmoudzadeh, M.; Mohtashami, M.; Jamal, A.M.; Shamloo, E.; Rezaei, Z. Functional yogurt, enriched and probiotic: A focus on human health. Clin. Nutr. ESPEN 2023, 57, 575–586. [Google Scholar] [CrossRef]
- Russo, F.; Linsalata, M.; Clemente, C.; Chiloiro, M.; Orlando, A.; Marconi, E.; Chimienti, G.; Riezzo, G. Inulin-enriched pasta improves intestinal permeability and modifies the circulating levels of zonulin and glucagon-like peptide 2 in healthy young volunteers. Nutr. Res. 2012, 32, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Fontané, L.; Pedro-Botet, J.; Garcia-Ribera, S.; Climent, E.; Muns, M.D.; Ballesta, S.; Satorra, P.; Flores-Le Roux, J.A.; Benaiges, D. Use of phytosterol-fortified foods to improve LDL cholesterol levels: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 1472–1480. [Google Scholar] [CrossRef]
- Demonty, I.; Ras, R.T.; van der Knaap, H.C.; Duchateau, G.S.; Meijer, L.; Zock, P.L.; Geleijnse, J.M.; Trautwein, E.A. Continuous dose-response relationship of the LDL-cholesterol–lowering effect of phytosterol intake. J. Nutr. 2009, 139, 271–284. [Google Scholar] [CrossRef]
- Musa-Veloso, K.; Poon, T.H.; Elliot, J.A.; Chung, C. A comparison of the LDL-cholesterol lowering efficacy of plant stanols and plant sterols over a continuous dose range: Results of a meta-analysis of randomized, placebo-controlled trials. Prostaglandins Leukot. Essent. Fat. Acids 2011, 85, 9–28. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- He, Y.; Huang, S.Y.; Wang, H.F.; Zhang, W.; Deng, Y.T.; Zhang, Y.R.; Dong, Q.; Feng, J.F.; Cheng, W.; Yu, J.T. Circulating polyunsaturated fatty acids, fish oil supplementation, and risk of incident dementia: A prospective cohort study of 440,750 participants. Geroscience 2023, 45, 1997–2009. [Google Scholar] [CrossRef] [PubMed]
- Murugkar, D.A.; Zanwar, A.A. With Omega-3 Fatty Acids: A Promising Approach for Improved Nutritional. Omega-3 Fatty Acids: Keys to Nutritional Health and Disease; Springer: Cham, Switzerland, 2025; p. 313. [Google Scholar]
- Ungvari, Z.; Fekete, M.; Varga, P.; Fekete, J.T.; Buda, A.; Szappanos, Á.; Lehoczki, A.; Mózes, N.; Grosso, G.; Menyhart, O. Impact of adherence to the Mediterranean diet on stroke risk. GeroScience 2025, 47, 3565–3581. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Ruiz, J.C.; Ortiz Vazquez, E.D.L.L.; Segura Campos, M.R. Encapsulation of vegetable oils as source of omega-3 fatty acids for enriched functional foods. Crit. Rev. Food Sci. Nutr. 2017, 57, 1423–1434. [Google Scholar] [CrossRef]
- Dawczynski, C.; Massey, K.A.; Ness, C.; Kiehntopf, M.; Stepanow, S.; Platzer, M.; Grün, M.; Nicolaou, A.; Jahreis, G. Randomized placebo-controlled intervention with n-3 LC-PUFA-supplemented yoghurt: Effects on circulating eicosanoids and cardiovascular risk factors. Clin. Nutr. 2013, 32, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Khan, S.A.; Wu, H.; Liu, Y.; Ling, H.Q. Biofortification of iron and zinc in rice and wheat. J. Integr. Plant Biol. 2022, 64, 1157–1167. [Google Scholar] [CrossRef]
- Kodkany, B.S.; Bellad, R.M.; Mahantshetti, N.S.; Westcott, J.E.; Krebs, N.F.; Kemp, J.F.; Hambidge, K.M. Biofortification of pearl millet with iron and zinc in a randomized controlled trial increases absorption of these minerals above physiologic requirements in young children. J. Nutr. 2013, 143, 1489–1493. [Google Scholar] [CrossRef]
- Ou, J.; Wang, M.; Zheng, J.; Ou, S. Positive and negative effects of polyphenol incorporation in baked foods. Food Chem. 2019, 284, 90–99. [Google Scholar] [CrossRef]
- Conti, V.; Piccini, C.; Romi, M.; Salusti, P.; Cai, G.; Cantini, C. Pasta enriched with carrot and olive leaf flour retains high levels of accessible bioactives after in vitro digestion. Foods 2023, 12, 3540. [Google Scholar] [CrossRef]
- Zahid, H.F.; Ali, A.; Legione, A.R.; Ranadheera, C.S.; Fang, Z.; Dunshea, F.R.; Ajlouni, S. Probiotic yoghurt enriched with mango peel powder: Biotransformation of phenolics and modulation of metabolomic outputs after in vitro digestion and colonic fermentation. Int. J. Mol. Sci. 2023, 24, 8560. [Google Scholar] [CrossRef] [PubMed]
- Almada, A.L. Nutraceuticals and functional foods: Innovation, insulation, evangelism, and evidence. In Nutraceutical and Functional Food Regulations in the United States and Around the World; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–11. [Google Scholar]
- Iwatani, S.; Yamamoto, N. Functional food products in Japan: A review. Food Sci. Hum. Wellness 2019, 8, 96–101. [Google Scholar] [CrossRef]
- Firoozzare, A.; Boccia, F.; Yousefian, N.; Ghazanfari, S.; Pakook, S. Understanding the role of awareness and trust in consumer purchase decisions for healthy food and products. Food Qual. Prefer. 2024, 121, 105275. [Google Scholar] [CrossRef]
- Siervo, M.; Lara, J.; Chowdhury, S.; Ashor, A.; Oggioni, C.; Mathers, J.C. Effects of the Dietary Approach to Stop Hypertension (DASH) diet on cardiovascular risk factors: A systematic review and meta-analysis. Br. J. Nutr. 2015, 113, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Trabado-Fernandez, A.; Garcia-Colomo, A.; Cuadrado-Soto, E.; Peral-Suarez, A.; Salas-Gonzalez, M.D.; Lorenzo-Mora, A.M.; Aparicio, A.; Delgado-Losada, M.L.; Maestu-Unturbe, F.; Lopez-Sobaler, A.M. Association of a DASH diet and magnetoencephalography in dementia-free adults with different risk levels of Alzheimer’s disease. Geroscience 2024, 47, 1747–1759. [Google Scholar] [CrossRef] [PubMed]
- Challa, H.J.; Ameer, M.A.; Uppaluri, K.R. DASH diet to stop hypertension. In StatPearls [Internet]; StatPearls Publishing: St. Petersburg, FL, USA, 2022. [Google Scholar]
- Wickman, B.E.; Enkhmaa, B.; Ridberg, R.; Romero, E.; Cadeiras, M.; Meyers, F.; Steinberg, F. Dietary management of heart failure: DASH diet and precision nutrition perspectives. Nutrients 2021, 13, 4424. [Google Scholar] [CrossRef]
- Tablante, E.C.; Pachón, H.; Guetterman, H.M.; Finkelstein, J.L. Fortification of wheat and maize flour with folic acid for population health outcomes. Cochrane Database Syst. Rev. 2019, 7, CD012150. [Google Scholar] [CrossRef]
- Castillo-Lancellotti, C.; Tur, J.A.; Uauy, R. Impact of folic acid fortification of flour on neural tube defects: A systematic review. Public. Health Nutr. 2013, 16, 901–911. [Google Scholar] [CrossRef]
- De Wals, P.; Tairou, F.; Van Allen, M.I.; Uh, S.H.; Lowry, R.B.; Sibbald, B.; Evans, J.A.; Van den Hof, M.C.; Zimmer, P.; Crowley, M.; et al. Reduction in neural-tube defects after folic acid fortification in Canada. N. Engl. J. Med. 2007, 357, 135–142. [Google Scholar] [CrossRef]
- Mills, J.L.; Signore, C. Neural tube defect rates before and after food fortification with folic acid. Birth Defects Res. Part. A: Clin. Mol. Teratol. 2004, 70, 844–845. [Google Scholar] [CrossRef]
- Darmon, N.; Drewnowski, A. Contribution of food prices and diet cost to socioeconomic disparities in diet quality and health: A systematic review and analysis. Nutr. Rev. 2015, 73, 643–660. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.; Hayes, K. Vitamin excess and toxicity. Nutr. Toxicol. 1982, 1, 81–133. [Google Scholar]
- Frewer, L.; Scholderer, J.; Lambert, N. Consumer acceptance of functional foods: Issues for the future. Br. Food J. 2003, 105, 714–731. [Google Scholar] [CrossRef]
- Smith, V.; Clement, J.; Møgelvang-Hansen, P.; Sørensen, H.S. Assessing in-store food-to-consumer communication from a fairness perspective: An integrated approach. Fachsprache 2011, 33, 84–106. [Google Scholar] [CrossRef]
- Hasler, C.M. Functional foods: Benefits, concerns and challenges—A position paper from the American Council on Science and Health. J. Nutr. 2002, 132, 3772–3781. [Google Scholar] [CrossRef]
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional food. Product development, marketing and consumer acceptance—A review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef]
- Coppens, P.; Da Silva, M.F.; Pettman, S. European regulations on nutraceuticals, dietary supplements and functional foods: A framework based on safety. Toxicology 2006, 221, 59–74. [Google Scholar] [CrossRef]
- Grimaldi, K.A. Nutrigenetics and personalized nutrition: Are we ready for DNA-based dietary advice? Pers. Med. 2014, 11, 297–307. [Google Scholar] [CrossRef]
- da Silva, B.V.; Barreira, J.C.; Oliveira, M.B.P. Natural phytochemicals and probiotics as bioactive ingredients for functional foods: Extraction, biochemistry and protected-delivery technologies. Trends Food Sci. Technol. 2016, 50, 144–158. [Google Scholar] [CrossRef]
- Yamada, K.; Sato-Mito, N.; Nagata, J.; Umegaki, K. Health claim evidence requirements in Japan. J. Nutr. 2008, 138, 1192S–1198S. [Google Scholar] [CrossRef]
- Heasman, M.; Mellentin, J. The Functional Foods Revolution: Healthy People, Healthy Profits? Earthscan: Barcelona, Spain, 2001. [Google Scholar]
- Otero, M.C.B.; Bernolo, L.F. General principles in nutrigenomics and nutrigenetics. In Role of Nutrigenomics in Modern-Day Healthcare and Drug Discovery; Elsevier: Amsterdam, The Netherlands, 2023; pp. 3–18. [Google Scholar]
- Pray, L. Nutrigenomics and the Future of Nutrition; The National Academic Press: Washington, DC, USA, 2018. [Google Scholar]
- Chaudhary, D.; Guleria, D.; Aggarwal, H.; Mishra, V.; Chauhan, A.; Dufossé, L.; Joshi, N.C. Nutrigenomics and Personalized Diets-Tailoring Nutrition for Optimal Health. Appl. Food Res. 2025, 5, 100980. [Google Scholar] [CrossRef]
- Hiraoka, M.; Kagawa, Y. Genetic polymorphisms and folate status. Congenit. Anom. 2017, 57, 142–149. [Google Scholar] [CrossRef]
- Bueno, O.; Molloy, A.M.; Fernandez-Ballart, J.D.; García-Minguillán, C.J.; Ceruelo, S.; Ríos, L.; Ueland, P.M.; Meyer, K.; Murphy, M.M. Common polymorphisms that affect folate transport or metabolism modify the effect of the MTHFR 677C> T polymorphism on folate status. J. Nutr. 2016, 146, 1–8. [Google Scholar] [CrossRef]
- Hong, J.Y.; Kim, Y.J. Application of Big Data and Artificial Intelligence in The RESEARCH of Health Functional Foods. Food Suppl. Biomater. Health 2024, 4, e19. [Google Scholar] [CrossRef]
- Joshi, T.; Sehgal, H.; Puri, S.; Mahapatra, T.; Joshi, M.; Deepa, P.; Sharma, P.K. ML-based technologies in sustainable agro-food production and beyond: Tapping the (semi) arid landscape for bioactives-based product development. J. Agric. Food Res. 2024, 18, 101350. [Google Scholar] [CrossRef]
- Moreno, C. Landscaping a Biofuture in Latin America; The Centre for Research and Documentation Chile-Latin America: Berlin, Germany, 2020; pp. 4–27. [Google Scholar]
- Verhoog, S.; Taneri, P.E.; Roa Díaz, Z.M.; Marques-Vidal, P.; Troup, J.P.; Bally, L.; Franco, O.H.; Glisic, M.; Muka, T. Dietary factors and modulation of bacteria strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: A systematic review. Nutrients 2019, 11, 1565. [Google Scholar] [CrossRef] [PubMed]
- Effendi, R.M.R.A.; Anshory, M.; Kalim, H.; Dwiyana, R.F.; Suwarsa, O.; Pardo, L.M.; Nijsten, T.E.; Thio, H.B. Akkermansia muciniphila and Faecalibacterium prausnitzii in immune-related diseases. Microorganisms 2022, 10, 2382. [Google Scholar] [CrossRef]
- Teng, T.S.; Chin, Y.L.; Chai, K.F.; Chen, W.N. Fermentation for future food systems: Precision fermentation can complement the scope and applications of traditional fermentation. EMBO Rep. 2021, 22, e52680. [Google Scholar] [CrossRef]
- Mishra, M.; Afzal, S.; Singh, N.K. CRISPR/Cas9-Mediated Genome Engineering for Production of Biofortified Crops. In Phytoremediation and Biofortification; Apple Academic Press: Palm Bay, FL, USA, 2024; pp. 303–333. [Google Scholar]
- Khan, A.; Pudhuvai, B.; Shrestha, A.; Mishra, A.K.; Shah, M.P.; Koul, B.; Dey, N. CRISPR-mediated iron and folate biofortification in crops: Advances and perspectives. Biotechnol. Genet. Eng. Rev. 2024, 40, 4138–4168. [Google Scholar] [CrossRef]
- Kumar, D.; Yadav, A.; Ahmad, R.; Dwivedi, U.N.; Yadav, K. CRISPR-based genome editing for nutrient enrichment in crops: A promising approach toward global food security. Front. Genet. 2022, 13, 932859. [Google Scholar] [CrossRef]
- Ververis, E.; Ackerl, R.; Azzollini, D.; Colombo, P.A.; de Sesmaisons, A.; Dumas, C.; Fernandez-Dumont, A.; da Costa, L.F.; Germini, A.; Goumperis, T. Novel foods in the European Union: Scientific requirements and challenges of the risk assessment process by the European Food Safety Authority. Food Res. Int. 2020, 137, 109515. [Google Scholar] [CrossRef] [PubMed]
- Martirosyan, D.; Alvarado, A. Functional foods regulation system: Proposed regulatory paradigm by functional food center. Funct. Food Sci. 2023, 3, 275–287. [Google Scholar] [CrossRef]
- Martirosyan, D.; Lampert, T.; Ekblad, M. Classification and regulation of functional food proposed by the functional food center. Funct. Food Sci. 2022, 2, 25–46. [Google Scholar] [CrossRef]
- González-Díaz, C.; Vilaplana-Aparicio, M.J.; Iglesias-García, M. How is functional food advertising understood? An approximation in university students. Nutrients 2020, 12, 3312. [Google Scholar] [CrossRef] [PubMed]
- Sääksjärvi, M.; Holmlund, M.; Tanskanen, N. Consumer knowledge of functional foods. Int. Rev. Retail. Distrib. Consum. Res. 2009, 19, 135–156. [Google Scholar] [CrossRef]
- Fanzo, J.; McLaren, R.; Bellows, A.; Carducci, B. Challenges and opportunities for increasing the effectiveness of food reformulation and fortification to improve dietary and nutrition outcomes. Food Policy 2023, 119, 102515. [Google Scholar] [CrossRef]
Study [Ref.] | Intervention | Duration/Design | Participants | Outcomes Measured | Key Findings |
---|---|---|---|---|---|
Bellikci-Koyu et al. [136] | Kefir | 12 weeks, 180 mL/day | Metabolic syndrome (n = 62) | Anthropometrics, glycemic, lipids, BP, inflammation | ApoA1 ↑ 3.4%, LDL-C ↓ 7.6%, BP ↓, inflammatory markers ↓ (p < 0.05) |
Bellikci-Koyu et al. [137] | Kefir | 12 weeks, 180 mL/day | Metabolic syndrome (n = 22) | Insulin, HOMA-IR, cytokines, BP, microbiota | Within-group improvements; no between-group differences; Actinobacteria ↑ (p = 0.023) |
Yılmaz et al. [138] | Kefir | 4 weeks, 400 mL/day | IBD (Inflammatory Bowel Disease) patients (n = 45) | Stool bacteria, symptoms, inflammation | Lactobacillus ↑; ESR, CRP ↓ in Crohn’s; bloating ↓ (p < 0.05) |
Alihosseini et al. [139] | Probiotic kefir | 8 weeks, 600 mL/day | Type 2 diabetes (n = 60) | Insulin, HOMA-IR, QUICKI, homocysteine | Reduced HOMA-IR in probiotic group; homocysteine decreased in both groups |
Fathi et al. [140] | Kefir (probiotic dairy) | 8 weeks, 2 servings/day | Overweight women (n = 75) | Lipids (TC, LDL-C, HDL-C, TG, ratios) | TC, LDL-C, Non-HDL-C decreased in kefir and milk groups (p < 0.05) |
Öneş et al. [141] | Probiotic kefir | 4 weeks, 200 mL/day | Female soccer players (n = 21) | Microbiome, body composition, athletic performance | Microbial diversity ↑; Akkermansia and Faecalibacterium ↑; VO2max ↑ (p < 0.05) |
Wang et al. [142] | AB-kefir (Lactobacillus acidophilus (A), Bifidobacterium bifidum (B) | 3 weeks, 1 sachet/day | Healthy adults (n = 56) | GI symptoms, microbiota | Abdominal pain and bloating decreased in men; bifidobacteria increase maintained; total anaerobes increased in women |
Pražnikar et al. [143] | Kefir | 3 weeks | Overweight adults (n = 28) | Zonulin, lipids, glucose, CRP, mood | Zonulin improved (η2 = 0.275); slight mood improvement; lipids and glucose similar to milk |
Ton et al. [144] | Kefir | 90 days, 2 mL/kg/day | Alzheimer’s patients (n = 13) | Cognitive tests, cytokines, oxidative stress | Cognitive functions improved; inflammatory and oxidative markers decreased (~30%) |
Noori et al. [145] | Probiotic-fortified kefir | 8 weeks, 240 mL/day | Elderly men (n = 67) | Depression, appetite, oxidative stress, inflammation | Depression improved (p = 0.001); antioxidant capacity ↑ (p = 0.009); no change in inflammation |
Tatullo et al. [146] | Mediterranean buffalo milk (bioactive) | 12 weeks | Adults, high CV risk, BMI > 25 (n = 20) | BP, glucose, BMI, weight | Blood pressure improved (p < 0.05) |
Ostadrahimi et al. [147] | Kefir (L. casei, L. acidophilus, Bifido) | 8 weeks, 600 mL/day | Type 2 diabetes patients (n = 60) | Fasting glucose, HbA1c, lipids | Glucose and HbA1c decreased (p ≤ 0.02); lipids unchanged |
Bourrie et al. [148] | Commercial vs. pitched kefir | 4 weeks, 2 servings/day | Males with high LDL-C (n = 21) | Lipids, endothelial markers, inflammation | Pitched kefir decreased LDL-C, ICAM-1, VCAM-1, IL-8, CRP, TNF-α vs. commercial (p < 0.05) |
O’Brien et al. [149] | Kefir beverage | 15 weeks, 2 servings/week | Young adults (n = 67) | Running time, body composition, CRP | CRP increase attenuated by kefir |
Study [Ref.] | Intervention | Duration/Design | Participants | Outcomes Measured | Key Findings |
---|---|---|---|---|---|
Nilsson et al. [150] | Natural fruits and vegetables | 16 weeks; intake increased from ~2.2 to ~4.2 servings/day | 66 older adults (65–70 y); randomized (FV vs. control) | Inflammatory biomarkers: CRP, IL-6, IL-18, TNF-α, MIP-1α/β, TRAIL, TRANCE, CX3CL1 | ↓ TRAIL, TRANCE, CX3CL1 in FV group (p < 0.05); no significant change in other markers; waist circumference and physical activity unchanged |
Carrillo et al. [151] | Polyphenol-rich micronized fruit and vegetable preparation | Two 16-week periods; crossover with 4-week washout | 108 healthy adults (53 intervention, 55 placebo); sex-stratified | Cognitive tests: Stroop, TESEN, RIST | Improved executive function, memory, attention, and processing speed; p-values not statistically significant but trend favored intervention |
Arcusa et al. [152] | High-polyphenol nutraceutical (fruit and vegetable-based) | Two 16-week periods; 4-week washout | 108 healthy adults (53 intervention, 55 placebo); 92 completers | Oxidative stress and inflammatory markers; catecholamines | ↓ OxLDL (78.98→69.52) and CRP (1.50→1.39) (p < 0.001); ↑ dopamine (15.43→19.61; p < 0.05) |
Kopf et al. [153] | Whole grains and fruits/vegetables | 6 weeks; 3 servings/day (WG, FV, or refined grains) | 49 overweight/obese adults with low baseline FV/WG intake | IL-6, TNF-α, LBP, hs-CRP, gut microbiota diversity | ↓ LBP (WG p = 0.02; FV p = 0.005), ↓ IL-6 (FV p = 0.006), ↓ TNF-α (WG p < 0.001); ↑ alpha diversity in FV group; no significant differences in microbiota composition between groups |
Yuan et al. [154] | Functional fibers (fruit fiber, FibreMax) | Acute; single dose (10 g fiber per bread serving) | 80 healthy adults; crossover, double-blind design | Postprandial glycemia, satiety, energy intake, gastrointestinal well-being | Fruit fiber: ↓ glycemia by 35% (p = 0.004), ↓ energy intake by 368 kJ (p = 0.001); FibreMax: ↓ glycemia by 43% (p = 0.004); no reported gastrointestinal side effects |
Campbell et al. [155] | Whole food, plant-based diet (WFPB) | 8 weeks; 3 ad libitum meals/day provided | 32 women with metastatic breast cancer (21 intervention, 11 control) | Cognitive function, emotional well-being, fatigue | ↑ FACT-Cog score (+16.1; p = 0.040), ↑ emotional well-being (+2.3; p = 0.016), ↓ fatigue severity (p = 0.047); high adherence rate (94.3%) |
Lamport et al. [156] | Concord grape juice (777 mg polyphenols) | 12 weeks; 355 mL/day; crossover with 4-week washout | 25 healthy middle-aged working women (40–50 y) | Cognitive function, simulated driving, blood pressure, mood | Improved immediate spatial memory and driving performance vs. placebo; sustained cognitive benefits reported |
Haskell-Ramsay et al. [157] | Berry phenolics (purple grape juice) | Acute; single 230 mL dose vs. placebo | 20 healthy young adults | Memory, attention, mood | Improved attention reaction time (p = 0.047), ↑ calmness ratings (p = 0.046); memory RT showed order effects (p = 0.018) |
Nilsson et al. [158] | Mixed-berry beverage (polyphenols + fiber) | 5 weeks; daily intake (berries and tomatoes) | 40 healthy adults (50–70 y) | Cognitive function, cardiometabolic markers | ↓ total and LDL cholesterol (p < 0.05); control group ↑ glucose and insulin; ↑ working memory vs. control (p < 0.05); no other cognitive effects observed |
Connolly et al. [159] | Cruciferous vegetables (~300 g/day) | 2-week crossover with 2-week washout | 18 adults with mildly elevated BP (median age 68 y) | 24 h and daytime systolic BP, triglycerides | ↓ 24 h SBP by −2.5 mmHg (p = 0.002), ↓ daytime SBP by −3.6 mmHg (p < 0.001), ↓ triglycerides by −0.2 mmol/L (p = 0.047) |
Riso et al. [160] | Broccoli (whole food, 250 g/day) | 10 days | Young male smokers (n = 17) | Plasma folate, lutein, CRP, TNF-α, IL-6, adiponectin | ↓ CRP by 48% (p < 0.05), ↑ folate (+17%) and lutein (+39%); no significant changes in TNF-α, IL-6, adiponectin |
Navarro et al. [161] | Cruciferous and apiaceous vegetables | Four 14-day controlled diets with 21-day washouts | 63 healthy adults (20–40 y) | Serum IL-6, IL-8, CRP, TNF-α; genotype–diet interaction | ↓ IL-6 (19–20%) in cruciferous-only and combined diets; ↑ IL-8 (+16%) in cruciferous + apiaceous group; genotype influenced IL-6, CRP, and IL-8 response |
Khan et al. [162] | Blackcurrant juice (vitamin C + polyphenols) | 6 weeks; 250 mL × 4/day | 66 healthy adults with low fruit/veg intake (<2 servings/day) | Flow-mediated dilation (FMD), plasma F2-isoprostanes, vitamin C | ↑ FMD at high dose (p = 0.022), ↑ plasma vitamin C (p < 0.001), ↓ F2-isoprostanes (p = 0.002–0.003) |
Duthie et al. [163] | High fruit, vegetable, and juice intake | 12 weeks; +480 g fruits/veg + 300 mL juice/day | 45 adults (39–58 y) with low baseline intake (<3/day) | Nutritional biomarkers, antioxidant capacity, DNA damage | ↑ plasma vitamin C (+35%), folate (+15%), carotenoids (+50–70%); no change in antioxidant capacity or vascular markers |
Nadeem et al. [164] | Fruit and vegetable intake (1, 3, or 6 servings/day) | 8–16 weeks | Hypertensive subjects; older adults (65–85 y; n = 192) | hsCRP, IL-6, E-selectin, SAA, HDL subfractions, CETP | No effect on hsCRP, IL-6, E-selectin; ↓ HDL3-SAA (p = 0.049), ↓ HDL2/3-SAA (p = 0.035/0.032), ↓ HDL3/2-CETP (p = 0.010/0.030) |
Siddarth et al. [165] | Pomegranate juice (polyphenol antioxidant) | 12 months; 236.5 mL daily | 261 nondemented adults aged 50–75; 200 completers | Memory tests (BVMT-R, SRT) | Significant group × time interaction in BVMT-R learning (p = 0.003); small improvement in pomegranate group vs. significant decline in placebo |
Ahles et al. [166] | Citrus and pomegranate complex (polyphenol-rich) | 4 weeks daily supplementation | 36 healthy elderly adults (60–75 years) | Handgrip strength, fitness, QOL, cognition, oxidative stress | ↑ Handgrip strength (p = 0.019), ↑ cognition (p = 0.042), ↓ malondialdehyde (p = 0.033); no changes in fitness or other QOL markers |
Kennedy et al. [167] | Polyphenol-rich functional breakfast (FB) | Single meal crossover (FB, control, RTEC) | 16 healthy adults | Total polyphenols, glucose and insulin response, mood, memory | FB had higher polyphenols (230 mg vs. 147 mg; p < 0.05), lowest insulin AUC (p < 0.05); no effect on glucose AUC, mood, or memory |
Kent et al. [168] | Anthocyanin-rich cherry juice | 12 weeks; 200 mL/day | 49 older adults (≥70 years) with mild/moderate dementia | Cognitive function, BP, inflammatory markers (CRP, IL-6) | Improved verbal fluency (p = 0.014), short-/long-term memory (p ≤ 0.014), ↓ systolic BP (p = 0.038); no CRP or IL-6 changes |
Lamport et al. [169] | Flavanone-rich citrus juice (70.5 mg flavanones) | Single 500 mL dose; single-blind crossover | 24 healthy young adults (18–30 years) | Cognitive tests (DSST), regional cerebral blood flow (CBF) | ↑ CBF in right frontal gyrus at 2 h; improved DSST at 2 h; no other cognitive changes |
Rosli et al. [170] | Polyphenol-rich tropical fruit juice | 10 weeks; 500 mL × 3/day × 3 days/week | 31 middle-aged women with impaired cognitive function | Cognitive tests (RAVLT, CTMT), metabolomics | ↑ Immediate verbal recall (RAVLT) and cognitive flexibility (CTMT Trail 4) (p < 0.05); ↑ urinary thyroxine and 3-methyladenine, linked to cognition |
Saeidi et al. [171] | Broccoli + aerobic-resistance exercise | 12 weeks; 10 g/day broccoli; CARET 3×/week | 44 men with type 2 diabetes (4 groups, n = 11 each) | Plasma dectin-1, insulin resistance, cardiometabolic markers | Groups showed ↓ dectin-1 (p < 0.05); improved insulin resistance and cardiometabolic markers (p < 0.05) |
Whyte et al. [172] | Flavonoid-rich mixed-berry smoothie | Single 400 mL dose; 6-hour monitoring | 40 healthy young adults (20 berry, 20 placebo) | Executive function (MANT, TST), mood | Placebo group showed performance decline; berry group maintained accuracy and improved reaction times at 2–6 h; cognitive benefits observed during fatigue |
Gouvarchinghaleh et al. [173] | Functional food mixture (plant-based soup) | Daily dosing; hospitalized COVID-19 patients | 60 COVID-19 patients (30 intervention, 30 control) | Cytokines (IL-1β, IL-6, IL-17, IL-10, TNF-α), D-dimer, BUN, creatinine, CRP, potassium | Significant reductions in cytokines, D-dimer, BUN, creatinine (p < 0.05); CRP and potassium improved more in control group |
Stokić et al. [174] | Buckwheat-enriched wheat bread (50% flour) | 1 month regular consumption | Normal weight patients on statin therapy (n = 80) | Total cholesterol, LDL, LDL/HDL ratio, sensory preference, fiber, phenolics | ↓ total cholesterol, LDL, LDL/HDL ratio; 2.22× fiber, 4.29× phenolics; 71.88% consumer preference |
Dinu et al. [175] | Buckwheat-enriched semi-wholegrain products | 8-week intervention + 8-week washout; crossover | 21 high cardiovascular risk adults (mean age 51.3 y) | Cholesterol, triglycerides, glucose, insulin, TBARs, plasma ORAC | ↓ total cholesterol (−4.7%), LDL-C (−8.5%), triglycerides (−15%), glucose (−5.8%), insulin (−17%), TBARs (−29.5%); ↑ plasma antioxidant capacity (ORAC) by 9.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fekete, M.; Lehoczki, A.; Kryczyk-Poprawa, A.; Zábó, V.; Varga, J.T.; Bálint, M.; Fazekas-Pongor, V.; Csípő, T.; Rząsa-Duran, E.; Varga, P. Functional Foods in Modern Nutrition Science: Mechanisms, Evidence, and Public Health Implications. Nutrients 2025, 17, 2153. https://doi.org/10.3390/nu17132153
Fekete M, Lehoczki A, Kryczyk-Poprawa A, Zábó V, Varga JT, Bálint M, Fazekas-Pongor V, Csípő T, Rząsa-Duran E, Varga P. Functional Foods in Modern Nutrition Science: Mechanisms, Evidence, and Public Health Implications. Nutrients. 2025; 17(13):2153. https://doi.org/10.3390/nu17132153
Chicago/Turabian StyleFekete, Mónika, Andrea Lehoczki, Agata Kryczyk-Poprawa, Virág Zábó, János Tamás Varga, Madarász Bálint, Vince Fazekas-Pongor, Tamás Csípő, Elżbieta Rząsa-Duran, and Péter Varga. 2025. "Functional Foods in Modern Nutrition Science: Mechanisms, Evidence, and Public Health Implications" Nutrients 17, no. 13: 2153. https://doi.org/10.3390/nu17132153
APA StyleFekete, M., Lehoczki, A., Kryczyk-Poprawa, A., Zábó, V., Varga, J. T., Bálint, M., Fazekas-Pongor, V., Csípő, T., Rząsa-Duran, E., & Varga, P. (2025). Functional Foods in Modern Nutrition Science: Mechanisms, Evidence, and Public Health Implications. Nutrients, 17(13), 2153. https://doi.org/10.3390/nu17132153