Novel Resting Energy Expenditure Prediction Equations for Multi-Ethnic Asian Older Adults with Multimorbidity
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Resting Energy Expenditure Measurement
2.3. Anthropometry Measurements, Nutrition Assessment Tool, and Study Variables
2.4. Statistical Analysis
3. Results
- New Prediction Equation 1 (Model 1):REE (kcal/day) = 2420.11 + 34.13 (W) − 5.65 (A) − 18.31 (H),
- New Prediction Equation 2 (Model 2):REE (kcal/day) = 812.67 + 12.61 (M) + 13.65 (C) − 57.5 (S) − 6.99 (A),
4. Discussion
4.1. Rationale for Developing New REE PEs
4.2. Performance of New PEs
4.3. Easy Application of New PEs
4.4. Factors Influencing REE Prediction Models
4.5. Strengths, Limitations, and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MUAC | Mid-upper arm circumference |
CC | Calf circumference |
SGA | Subjective Global Assessment |
BMI | Body mass index |
References
- Gomes, F.; Schuetz, P.; Bounoure, L.; Austin, P.; Ballesteros-Pomar, M.; Cederholm, T.; Fletcher, J.; Laviano, A.; Norman, K.; Poulia, K.A.; et al. ESPEN guidelines on nutritional support for polymorbid internal medicine patients. Clin. Nutr. 2018, 37, 336–353. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, A.J.; Buitrago, G.; Rodríguez, N.; Gómez, G.; Sulo, S.; Gómez, C.; Partridge, J.; Misas, J.; Dennis, R.; Alba, M.J.; et al. Clinical and economic outcomes associated with malnutrition in hospitalized patients. Clin. Nutr. 2019, 38, 1310–1316. [Google Scholar] [CrossRef]
- Cioffi, I.; Marra, M.; Pasanisi, F.; Scalfi, L. Prediction of resting energy expenditure in healthy older adults: A systematic review. Clin. Nutr. 2021, 40, 3094–3103. [Google Scholar] [CrossRef]
- Barcellos, P.S.; Borges, N.; Torres, D.P. New equation to estimate resting energy expenditure in non-critically ill patients. Clin. Nutr. ESPEN 2020, 37, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Sergi, G.; Coin, A.; Bussolotto, M.; Benincà, P.; Tomasi, G.; Pisent, C.; Peruzza, S.; Inelmen, E.M.; Enzi, G. Influence of fat-free mass and functional status on resting energy expenditure in underweight elders. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, M302–M307. [Google Scholar] [CrossRef]
- Bendavid, I.; Lobo, D.N.; Barazzoni, R.; Cederholm, T.; Coëffier, M.; de van der Schueren, M.; Fontaine, E.; Hiesmayr, M.; Laviano, A.; Pichard, C.; et al. The centenary of the Harris-Benedict equations: A call to action. Clin. Nutr. 2021, 40, 1753–1761. [Google Scholar]
- Harris, J.A.; Benedict, F.G. A biometric study of human basal metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef]
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39, 5–41. [Google Scholar]
- Mifflin, M.D.; Jeor, S.T.S.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990, 51, 241–247. [Google Scholar] [CrossRef]
- Camps, S.G.; Wang, N.X.; Tan, W.S.; Henry, C.J. Estimation of basal metabolic rate in Chinese: Are the current prediction equations applicable? Nutr. J. 2015, 15, 79. [Google Scholar] [CrossRef]
- Wei, K.; Thein, F.S.; Nyunt, M.S.; Gao, Q.; Wee, S.L.; Ng, T.P. Nutritional and frailty state transitions in the Singapore Longitudinal Aging Study. J. Nutr. Health Aging 2018, 22, 1221–1227. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.; Ward, L.C.; Nguo, K.; Ward, A.; Davidson, Z.; Gibson, S.; Prentice, R.; Neuhouser, M.L.; Truby, H. Development and validation of age-specific predictive equations for total energy expenditure and physical activity levels for older adults. Am. J. Clin. Nutr. 2024, 119, 1111–1121. [Google Scholar] [CrossRef] [PubMed]
- Weir, J.D. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1. [Google Scholar] [CrossRef]
- Lee, S.; Lim, J.; Tan, C.; Yeo, A.; Chew, J.; Lim, W. SARC-F and modified versions using arm and calf circumference: Diagnostic performance for sarcopenia screening and the impact of obesity. Geriatr. Gerontol. Int. 2024, 24, 182–188. [Google Scholar] [CrossRef]
- Lim, S.L.; Lin, X.H.; Daniels, L. Seven-Point Subjective Global Assessment Is More Time Sensitive Than Conventional Subjective Global Assessment in Detecting Nutrition Changes. JPEN J. Parenter. Enter. Nutr. 2016, 40, 966–972. [Google Scholar] [CrossRef] [PubMed]
- Pourhoseingholi, M.A.; Vahedi, M.; Rahimzadeh, M. Sample size calculation in medical studies. Gastroenterol. Hepatol. Bed Bench 2013, 6, 14–17. [Google Scholar]
- Chan, M.; Lim, Y.P.; Ernest, A.; Tan, T.L. Nutritional assessment in an Asian nursing home and its association with mortality. J. Nutr. Health Aging 2010, 14, 23–28. [Google Scholar] [CrossRef]
- Park, J.S.; Cho, S.R.; Yim, J.E. Resting energy expenditure in Korean type 2 diabetes patients: Comparison between measured and predicted values. Nutr. Res. Pract. 2023, 17, 464–474. [Google Scholar] [CrossRef]
- Collins, G.S.; Dhiman, P.; Ma, J.; Schlussel, M.M.; Archer, L.; Van Calster, B.; Harrell, F.E.; Martin, G.P.; Moons, K.G.; Van Smeden, M.; et al. Evaluation of clinical prediction models (part 1): From development to external validation. BMJ 2024, 384, e074819. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Balu, S. Differences in psychometric properties, cut-off scores, and outcomes between the Barthel Index and Modified Rankin Scale in pharmacotherapy-based stroke trials: Systematic literature review. Curr. Med. Res. Opin. 2009, 25, 1329–1341. [Google Scholar] [CrossRef] [PubMed]
- Tey, S.L.; Huynh, D.T.; Berde, Y.; Baggs, G.; How, C.H.; Low, Y.L.; Cheong, M.; Chow, W.L.; Tan, N.C.; Chew, S.T. Prevalence of low muscle mass and associated factors in community-dwelling older adults in Singapore. Sci. Rep. 2021, 11, 23071. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, T.; Chen, X.; Wang, M.; Jiang, W.; Jia, H. Comparison of the diagnostic value of SARC-F and its three modified versions for screening sarcopenia in Chinese community-dwelling older adults. J. Nutr. Health Aging 2022, 26, 77–83. [Google Scholar] [CrossRef]
- Laura, J.B.; Kym, I.E.S.; Gary, S.C.; Richard, R.D. Guide to presenting clinical prediction models for use in clinical settings. BMJ 2019, 365, l737. [Google Scholar]
- Posit. Shiny for R. Posit. Available online: https://shiny.posit.co/ (accessed on 17 February 2025).
- Tan, N.F.; Tham, K.W.; Ho, C.K.; Ng, C.L. Resting metabolic rate in healthy Singaporeans: Performance of the Harris-Benedict equation and a new predictive model. Proc. Singap. Healthc. 2023, 32, 20101058231156628. [Google Scholar] [CrossRef]
- Wang, X.; Mao, D.; Xu, Z.; Wang, Y.; Yang, X.; Zhuo, Q.; Tian, Y.; Huan, Y.; Li, Y. Predictive equation for basal metabolic rate in normal-weight Chinese adults. Nutrients 2023, 15, 4185. [Google Scholar] [CrossRef]
- Kawase, F.; Masaki, Y.; Ozawa, H.; Imanaka, M.; Sugiyama, A.; Wada, H.; Goto, R.; Kobayashi, S.; Tsukahara, T. Resting energy expenditure in older inpatients: A comparison of prediction equations and measurements. Nutrients 2022, 14, 5210. [Google Scholar] [CrossRef]
- Palmer, A.K.; Jensen, M.D. Metabolic changes in aging humans: Current evidence and therapeutic strategies. J. Clin. Investig. 2022, 132, e158451. [Google Scholar] [CrossRef]
- Jin, X.; Gibson, A.A.; Gale, J.; Schneuer, F.; Ding, D.; March, L.; Sainsbury, A.; Nassar, N. Does weight loss reduce the incidence of total knee and hip replacement for osteoarthritis?-A prospective cohort study among middle-aged and older adults with overweight or obesity. Int. J. Obes. 2021, 45, 1696–1704. [Google Scholar] [CrossRef]
- Hall, M.; Spiers, L.; Knox, G.; Hinman, R.S.; Sumithran, P.; Bennell, K.L. Feasibility of exercise and weight management for people with hip osteoarthritis and overweight or obesity: A pilot study. Osteoarthr. Cartil. Open 2021, 3, 100174. [Google Scholar] [CrossRef]
- Batista, L.D.; Neto, J.V.; de França, N.A.; Ribeiro, S.M. Body composition affects the accuracy of predictive equations to estimate resting energy expenditure in older adults: An exploratory study. Clin. Nutr. ESPEN 2023, 53, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Burridge, K.; Christensen, S.M.; Golden, A.; Ingersoll, A.B.; Tondt, J.; Bays, H.E. Obesity history, physical exam, laboratory, body composition, and energy expenditure: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2022. Obes. Pillars 2022, 1, 100007. [Google Scholar] [CrossRef] [PubMed]
- Löfberg, I.E.; Karppinen, J.E.; Laatikainen-Raussi, V.; Lehti, M.; Hackney, A.C.; Ihalainen, J.K.; Mikkonen, R.S. Resting energy expenditure, metabolic and sex hormones in two phases of the menstrual and hormonal contraceptive cycles. Med. Sci. Sports Exerc. 2024, 56, 2285–2295. [Google Scholar] [CrossRef]
- Hölzel, C.; Weidhase, L.; Petros, S. The effect of age and body mass index on energy expenditure of critically ill medical patients. Eur. J. Clin. Nutr. 2021, 75, 464–472. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Smith, B.; Dahle, J.; Kennedy, S.; Fearnbach, N.; Thomas, D.M.; Bosy-Westphal, A.; Müller, M.J. Resting energy expenditure: From cellular to whole-body level, a mechanistic historical perspective. Obesity 2021, 29, 500–511. [Google Scholar] [CrossRef] [PubMed]
- Bae, E.; Son, K.; Lee, Y.; Jang, J.; Kim, M.; Kang, S.; Kim, T.; Lim, H. Agreement Evaluation of Energy Expenditure Estimations by Predictive Equation and Indirect Calorimetry in Critically Ill Neurosurgical Patients. Clin. Nutr. Res. 2025, 14, 114–126. [Google Scholar] [CrossRef]
- Prado, C.M.; Landi, F.; Chew, S.T.; Atherton, P.J.; Molinger, J.; Ruck, T.; Gonzalez, M.C. Advances in muscle health and nutrition: A toolkit for healthcare professionals. Clin. Nutr. 2022, 41, 2244–2263. [Google Scholar] [CrossRef]
- Bennett, J.P.; Lim, S. The Critical Role of Body Composition Assessment in Advancing Research and Clinical Health Risk Assessment across the Lifespan. J. Obes. Metab. Syndr. 2025, 34, 120–137. [Google Scholar] [CrossRef]
- Reed, K.K.; Silverman, A.E.; Abbaspour, A.; Burger, K.S.; Bulik, C.M.; Carroll, I.M. Energy expenditure during nutritional rehabilitation: A scoping review to investigate hypermetabolism in individuals with anorexia nervosa. J. Eat. Disord. 2024, 12, 63. [Google Scholar] [CrossRef]
- Lindner, M.; Geisler, C.; Rembarz, K.; Hummitzsch, L.; Radke, D.I.; Schulte, D.M.; Müller, M.J.; Bosy-Westphal, A.; Elke, G. Resting Energy Expenditure in the Critically Ill and Healthy Elderly—A Retrospective Matched Cohort Study. Nutrients 2023, 15, 303. [Google Scholar] [CrossRef]
- Fernández-Verdejo, R.; Sanchez-Delgado, G.; Ravussin, E. Energy expenditure in humans: Principles, methods, and changes throughout the Life Course. Annu. Rev. Nutr. 2024, 44, 51–76. [Google Scholar] [CrossRef] [PubMed]
Total (n = 397) | |||||
---|---|---|---|---|---|
Male | Female | ||||
Median | IQR | Median | IQR | ||
Age (year) | 75 | 71–82 | 73 | 69–79 | |
Weight (kg) | 61 | 57–65 | 53 | 50–57 | |
Height (cm) | 165 | 160–169 | 152 | 148–156 | |
Body Mass Index (kg/m2) | 22 | 20–26 | 24 | 21–28 | |
7-point Subjective Global Assessment (SGA) | 6 | 5–7 | 6 | 6–7 | |
Modified Barthel Index (MBI) | 59 | 47–73 | 64 | 46–76 | |
Calf circumference (CC, cm) | 33 | 30–35 | 32 | 30–35 | |
Mid-upper Arm Circumference (MUAC, cm) | 27 | 25–30 | 27 | 25–31 |
BMI Category | Male (n = 152) | Female (n = 245) | Total (n = 397) | |||
---|---|---|---|---|---|---|
Mean REE (kcal) | ±SD | Mean REE (kcal) | ±SD | Mean REE (kcal) | ±SD | |
Underweight | 889.1 | 214.2 | 865.6 | 141.0 | 874.1 | 169.2 |
Normal | 1009.0 | 217.8 | 933.8 | 158.3 | 968.4 | 191.0 |
Overweight | 1136.0 | 191.2 | 1042.8 | 186.4 | 1077.8 | 192.9 |
Obese | 1269.4 | 276.7 | 1219.1 | 207.0 | 1233.4 | 228.4 |
Variable | Estimate (95% CI) | p-Value |
---|---|---|
Age | −11.05 (−14.22, −7.89) | <0.005 |
Weight | 14.60 (11.59, 17.60) | <0.005 |
Height | 5.11 (2.60, 7.61) | <0.005 |
Subjective Global Assessment (SGA) | 93.81 (67.48, 120.15) | <0.005 |
Mid-upper Arm Circumference (MUAC) | 24.82 (20.51, 29.12) | <0.005 |
Calf Circumference (CC) | 26.89 (22.26, 31.51) | <0.005 |
Sex (Female) | −44.15 (−90.59, 2.28) | 0.06 |
Presence of Hypertension | −3.42 (−54.51, 47.67) | 0.895 |
Presence of Hyperlipidemia | −24.06 (−70.76, 22.64) | 0.311 |
Presence of Diabetes mellitus | −9.153 (−56.44, 38.14) | 0.704 |
Presence of Cancer | −37.01 (−97.43, 23.41) | 0.229 |
Equations | REE (kcal) | Accurate Prediction (%) i | Under-Prediction (%) ii | Over-Prediction (%) iii | R-Squared | RMSE (kcal) iv | ICC [IC 95%] v | |
---|---|---|---|---|---|---|---|---|
Total | REE-IC | 1050.4 ± 229.2 | ||||||
(n = 397) | Harris–Benedict [7] | 1139.2 ± 149.4 | 43% | 14% | 44% | 0.06 | 222 | 0.403 ♣ [0.26–0.519] |
Schofield [8] | 1203.3 ± 124 | 35% | 18% | 57% | −0.08 | 258 | 0.271 ◆ [0.045–0.449] | |
Mifflin–St Jeor [9] | 1068.6 ± 200.6 | 38% | 31% | 31% | −0.27 | 239 | 0.389 ◆ [0.302–0.469] | |
Weight-based [1] | 1125.6 ± 203.3 | 39% | 19% | 42% | 0.05 | 232 | 0.460 ♣ [0.349–0.554] | |
PE 1 (equation; Model 1) | 1050.9 ± 137.4 | 48% | 24% | 28% | 0.31 | 186 | 0.529 ♣ [0.454–0.597] | |
PE 1 (nomogram, web; Model 3, 5) | 1050.9 ± 136 | 48% | 24% | 27% | 0.31 | 187 | 0.522 ♣ [0.446–0.59] | |
PE 2 (equation; Model 2) | 1050.4 ± 132.1 | 48% | 25% | 28% | 0.34 | 191 | 0.5 ♣ [0.422–0.57] | |
PE 2 (nomogram, web; Model 4, 6) | 1050.4 ± 131.6 | 47% | 26% | 27% | 0.34 | 190 | 0.497 ♣ [0.419–0.567] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kua, P.S.; Albakri, M.; Tay, S.M.; Thong, P.S.-E.; Xia, O.J.; Chua, W.H.P.; Chong, K.; Tan, N.W.K.; Loh, X.H.; Tan, J.H.; et al. Novel Resting Energy Expenditure Prediction Equations for Multi-Ethnic Asian Older Adults with Multimorbidity. Nutrients 2025, 17, 2144. https://doi.org/10.3390/nu17132144
Kua PS, Albakri M, Tay SM, Thong PS-E, Xia OJ, Chua WHP, Chong K, Tan NWK, Loh XH, Tan JH, et al. Novel Resting Energy Expenditure Prediction Equations for Multi-Ethnic Asian Older Adults with Multimorbidity. Nutrients. 2025; 17(13):2144. https://doi.org/10.3390/nu17132144
Chicago/Turabian StyleKua, Pei San, Musfirah Albakri, Su Mei Tay, Phoebe Si-En Thong, Olivia Jiawen Xia, Wendelynn Hui Ping Chua, Kevin Chong, Nicholas Wei Kiat Tan, Xin Hui Loh, Jia Hui Tan, and et al. 2025. "Novel Resting Energy Expenditure Prediction Equations for Multi-Ethnic Asian Older Adults with Multimorbidity" Nutrients 17, no. 13: 2144. https://doi.org/10.3390/nu17132144
APA StyleKua, P. S., Albakri, M., Tay, S. M., Thong, P. S.-E., Xia, O. J., Chua, W. H. P., Chong, K., Tan, N. W. K., Loh, X. H., Tan, J. H., & Low, L. L. (2025). Novel Resting Energy Expenditure Prediction Equations for Multi-Ethnic Asian Older Adults with Multimorbidity. Nutrients, 17(13), 2144. https://doi.org/10.3390/nu17132144