Effect of Iodine Nutrition During Pregnancy and Lactation on Child Cognitive Outcomes: A Review
Abstract
:1. Introduction
Search Methodology
2. Physiology of Iodine During Pregnancy and Lactation
3. Maternal Iodine Deficiency
3.1. Prevalence
3.2. Pathophysiological Effects
3.3. Cognitive and Developmental Consequences
4. Maternal Excessive Iodine Intake
4.1. Prevalence
4.2. Pathophysiological Effects
Thyroidal Adaptation to an Excessive Iodine Intake
4.3. Cognitive and Developmental Consequences
5. Future Directions and Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, Z.F.; Skeaff, S.A. Assessment of Population Iodine Status. In Iodine Deficiency Disorders and Their Elimination; Pearce, E.N., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 15–28. [Google Scholar]
- Daniel, K.S.; Mangano, K.M. Resurgence of Iodine Deficiency in the United States During Pregnancy: Potential Implications for Cognitive Development in Children. Nutr. Rev. 2025, nuaf025. [Google Scholar] [CrossRef]
- WHO; UNICEF; IGD. Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination: A Guide for Programme Managers; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- Bath, S.C. Thyroid function and iodine intake: Global recommendations and relevant dietary trends. Nat. Rev. Endocrinol. 2024, 20, 474–486. [Google Scholar] [CrossRef]
- Bath, S.C.; Steer, C.D.; Golding, J.; Emmett, P.; Rayman, M.P. Effect of inadequate iodine status in UK pregnant women on cognitive outcomes in their children: Results from the Avon Longitudinal Study of Parents and Children (ALSPAC). Lancet 2013, 382, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Brough, L.; Jin, Y.; Shukri, N.H.; Wharemate, Z.R.; Weber, J.L.; Coad, J. Iodine intake and status during pregnancy and lactation before and after government initiatives to improve iodine status, in Palmerston North, New Zealand: A pilot study. Matern. Child. Health 2015, 11, 646–655. [Google Scholar] [CrossRef]
- Yu, Z.; Zheng, C.; Zheng, W.; Wan, Z.; Bu, Y.; Zhang, G.; Ding, S.; Wang, E.; Zhai, D.; Ma, Z.F. Mild-to-moderate iodine deficiency in a sample of pregnant women and salt iodine concentration from Zhejiang province, China. Environ. Geochem. Health 2020, 42, 3811–3818. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Yin, Z.; Zhan, B.; Xu, W.; Ma, Z.F. Pregnant women at risk for iodine deficiency but adequate iodine intake in school-aged children of Zhejiang Province, China. Environ. Geochem. Health 2024, 46, 204. [Google Scholar] [CrossRef] [PubMed]
- Charlton, K.; Yeatman, H.; Lucas, C.; Axford, S.; Gemming, L.; Houweling, F.; Goodfellow, A.; Ma, G. Poor knowledge and practices related to iodine nutrition during pregnancy and lactation in Australian women: Pre- and post-iodine fortification. Nutrients 2012, 4, 1317–1327. [Google Scholar] [CrossRef]
- O’Kane, S.M.; Pourshahidi, L.K.; Farren, K.M.; Mulhern, M.S.; Strain, J.J.; Yeates, A.J. Iodine knowledge is positively associated with dietary iodine intake among women of childbearing age in the UK and Ireland. Br. J. Nutr. 2016, 116, 1728–1735. [Google Scholar] [CrossRef]
- Garnweidner-Holme, L.; Aakre, I.; Lilleengen, A.M.; Brantsæter, A.L.; Henjum, S. Knowledge about Iodine in Pregnant and Lactating Women in the Oslo Area, Norway. Nutrients 2017, 9, 493. [Google Scholar] [CrossRef]
- Jin, Y.; Coad, J.; Zhou, S.J.; Skeaff, S.; Benn, C.; Brough, L. Use of Iodine Supplements by Breastfeeding Mothers Is Associated with Better Maternal and Infant Iodine Status. Biol. Trace Elem. Res. 2021, 199, 2893–2903. [Google Scholar] [CrossRef]
- Aakre, I.; Morseth, M.S.; Dahl, L.; Henjum, S.; Kjellevold, M.; Moe, V.; Smith, L.; Markhus, M.W. Iodine status during pregnancy and at 6 weeks, 6, 12 and 18 months post-partum. Matern. Child. Nutr. 2021, 17, e13050. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Y.; Li, W.; Duan, Y.; Li, F.; Cui, Y. Iodine status and knowledge among pregnant and lactating women in Large City in Northern China after nearly 30 years of the universal salt iodization. Eur. J. Nutr. 2024, 63, 2753–2766. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Bao, C.; Tian, W.; Sun, W. Assessment of the Iodine Status of Lactating Women and Infants in Shanghai, China. Biol. Trace Elem. Res. 2023, 201, 5512–5520. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhu, L.; Li, X.; Zheng, H.; Wang, Z.; Hao, Z.; Liu, Y. Maternal iodine status during lactation and infant weight and length in Henan Province, China. BMC Pregnancy Childbirth 2017, 17, 383. [Google Scholar] [CrossRef]
- Fuzi, S.F.A.; Loh, S.P. Iodine: A Critical Micronutrient in Brain Development. In Role of Micronutrients in Brain Health; Mohamed, W., Yamashita, T., Eds.; Springer: Singapore, 2022; pp. 49–67. [Google Scholar]
- Redman, K.; Ted, R.; Penelope, F.; Skeaff, S. Iodine Deficiency and the Brain: Effects and Mechanisms. Crit. Rev. Food Sci. Nutr. 2016, 56, 2695–2713. [Google Scholar] [CrossRef]
- Hatch-McChesney, A.; Lieberman, H.R. Iodine and iodine deficiency: A comprehensive review of a re-emerging issue. Nutrients 2022, 14, 3474. [Google Scholar] [CrossRef] [PubMed]
- Moleti, M.; Trimarchi, F.; Vermiglio, F. Thyroid Physiology in Pregnancy. Endocr. Pract. 2014, 20, 589–596. [Google Scholar] [CrossRef]
- Bizhanova, A.; Kopp, P. Minireview: The sodium-iodide symporter NIS and pendrin in iodide homeostasis of the thyroid. Endocrinology 2009, 150, 1084–1090. [Google Scholar] [CrossRef]
- Andersson, M.; Braegger, C.P. The Role of Iodine for Thyroid Function in Lactating Women and Infants. Endocr. Rev. 2022, 43, 469–506. [Google Scholar] [CrossRef]
- Sohn, S.Y.; Inoue, K.; Rhee, C.M.; Leung, A.M. Risks of Iodine Excess. Endocr. Rev. 2024, 45, 858–879. [Google Scholar] [CrossRef]
- Standing Committee on the Scientific Evaluation of Dietary Reference Intakes; Subcommittee of Interpretation; Uses of Dietary Reference Intakes; Subcommittee on Upper Reference Levels of Nutrients; Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2002. [Google Scholar]
- EFSA Panel on Dietetic Products; Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for iodine. EFSA J. 2014, 12, 3660. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, Y.; Wang, W. The burden of iodine deficiency. Arch. Med. Sci. 2024, 20, 1484–1494. [Google Scholar] [CrossRef] [PubMed]
- Patriota, E.S.O.; Lima, I.C.C.; Nilson, E.A.F.; Franceschini, S.C.C.; Gonçalves, V.S.S.; Pizato, N. Prevalence of insufficient iodine intake in pregnancy worldwide: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2022, 76, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, J.H. Iodine status in europe in 2014. Eur. Thyroid J. 2014, 3, 3–6. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Gizak, M.; Abbott, K.; Andersson, M.; Lazarus, J.H. Iodine deficiency in pregnant women in Europe. Lancet Diabetes Endocrinol. 2015, 3, 672–674. [Google Scholar] [CrossRef]
- Andersen, S.L.; Sørensen, L.K.; Krejbjerg, A.; Møller, M.; Laurberg, P. Iodine deficiency in Danish pregnant women. Dan. Med. J. 2013, 60, A4657. [Google Scholar]
- Vandevijvere, S.; Amsalkhir, S.; Mourri, A.B.; Van Oyen, H.; Moreno-Reyes, R. Iodine deficiency among Belgian pregnant women not fully corrected by iodine-containing multivitamins: A national cross-sectional survey. Br. J. Nutr. 2013, 109, 2276–2284. [Google Scholar] [CrossRef]
- Moreno-Reyes, R.; Glinoer, D.; Van Oyen, H.; Vandevijvere, S. High prevalence of thyroid disorders in pregnant women in a mildly iodine-deficient country: A population-based study. J. Clin. Endocrinol. Metab. 2013, 98, 3694–3701. [Google Scholar] [CrossRef]
- Bath, S.C.; Walter, A.; Taylor, A.; Wright, J.; Rayman, M.P. Iodine deficiency in pregnant women living in the South East of the UK: The influence of diet and nutritional supplements on iodine status. Br. J. Nutr. 2014, 111, 1622–1631. [Google Scholar] [CrossRef]
- Pearce, E.N.; Lazarus, J.H.; Moreno-Reyes, R.; Zimmermann, M.B. Consequences of iodine deficiency and excess in pregnant women: An overview of current knowns and unknowns. Am. J. Clin. Nutr. 2016, 104 (Suppl. S3), 918s–923s. [Google Scholar] [CrossRef]
- van der Haar, F.; Gerasimov, G.; Tyler, V.Q.; Timmer, A. Universal salt iodization in the Central and Eastern Europe, Commonwealth of Independent States (CEE/CIS) Region during the decade 2000-09: Experiences, achievements, and lessons learned. Food Nutr. Bull. 2011, 32, S175–S294. [Google Scholar] [CrossRef] [PubMed]
- Abel, M.H.; Korevaar, T.I.M.; Erlund, I.; Villanger, G.D.; Caspersen, I.H.; Arohonka, P.; Alexander, J.; Meltzer, H.M.; Brantsæter, A.L. Iodine Intake is Associated with Thyroid Function in Mild to Moderately Iodine Deficient Pregnant Women. Thyroid 2018, 28, 1359–1371. [Google Scholar] [CrossRef] [PubMed]
- Rostami, R.; Beiranvend, A.; Nourooz-Zadeh, J. Nutritional iodine status in gestation and its relation to geographic features in Urmia County of northwest Iran. Food Nutr. Bull. 2012, 33, 267–272. [Google Scholar] [CrossRef]
- Businge, C.B.; Longo-Mbenza, B.; Kengne, A.P. Iodine nutrition status in Africa: Potentially high prevalence of iodine deficiency in pregnancy even in countries classified as iodine sufficient. Public Health Nutr. 2021, 24, 3581–3586. [Google Scholar] [CrossRef]
- Dunn, J. Iodine nutrition in Africa. IDD Newsl. 2003, 19, 1–6. [Google Scholar]
- Chiamolera, M.I.; Wondisford, F.E. Minireview: Thyrotropin-releasing hormone and the thyroid hormone feedback mechanism. Endocrinology 2009, 150, 1091–1096. [Google Scholar] [CrossRef]
- Connelly, K.J.; Park, J.J.; LaFranchi, S.H. History of the Thyroid. Horm. Res. Paediatr. 2022, 95, 546–556. [Google Scholar] [CrossRef]
- Lee, S.Y.; Pearce, E.N. Assessment and treatment of thyroid disorders in pregnancy and the postpartum period. Nat. Rev. Endocrinol. 2022, 18, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Shaji, B.; Joel, J.J. Impact of hypothyroidism on metabolic and cognitive dysfunction: A comprehensive review. J. Young Pharm. 2022, 14, 349–354. [Google Scholar] [CrossRef]
- Anifantaki, F.; Pervanidou, P.; Lambrinoudaki, I.; Panoulis, K.; Vlahos, N.; Eleftheriades, M. Maternal Prenatal Stress, Thyroid Function and Neurodevelopment of the Offspring: A Mini Review of the Literature. Front. Neurosci. 2021, 15, 692446. [Google Scholar] [CrossRef]
- Grossklaus, R.; Liesenkötter, K.P.; Doubek, K.; Völzke, H.; Gaertner, R. Iodine Deficiency, Maternal Hypothyroxinemia and Endocrine Disrupters Affecting Fetal Brain Development: A Scoping Review. Nutrients 2023, 15, 2249. [Google Scholar] [CrossRef] [PubMed]
- de Escobar, G.M.; Obregón, M.J.; del Rey, F.E. Iodine deficiency and brain development in the first half of pregnancy. Public Health Nutr. 2007, 10, 1554–1570. [Google Scholar] [CrossRef]
- Hay, I.; Hynes, K.L.; Burgess, J.R. Mild-to-Moderate Gestational Iodine Deficiency Processing Disorder. Nutrients 2019, 11, 1974. [Google Scholar] [CrossRef]
- Azizi, F.; Smyth, P. Breastfeeding and maternal and infant iodine nutrition. Clin. Endocrinol. 2009, 70, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Velasco, I.; Bath, S.C.; Rayman, M.P. Iodine as Essential Nutrient during the First 1000 Days of Life. Nutrients 2018, 10, 290. [Google Scholar] [CrossRef]
- Andersson, M.; de Benoist, B.; Rogers, L. Epidemiology of iodine deficiency: Salt iodisation and iodine status. Best. Pract. Res. Clin. Endocrinol. Metab. 2010, 24, 1–11. [Google Scholar] [CrossRef]
- Toloza, F.J.K.; Motahari, H.; Maraka, S. Consequences of severe iodine deficiency in pregnancy: Evidence in humans. Front. Endocrinol. 2020, 11, 409. [Google Scholar] [CrossRef]
- Caron, P. Neurocognitive outcomes of children secondary to mild iodine deficiency in pregnant women. Ann. Endocrinol. 2015, 76, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Björnholm, L.; Orell, O.; Kerkelä, M.; Honka, U.; Laasonen, S.; Riekki, T.; Surcel, H.M.; Suvanto, E.; Veijola, J. Maternal Thyroid Function During Pregnancy and Offspring White Matter Microstructure in Early Adulthood: A Prospective Birth Cohort Study. Thyroid 2023, 33, 1245–1254. [Google Scholar] [CrossRef]
- Henrichs, J.; Bongers-Schokking, J.J.; Schenk, J.J.; Ghassabian, A.; Schmidt, H.G.; Visser, T.J.; Hooijkaas, H.; de Muinck Keizer-Schrama, S.M.; Hofman, A.; Jaddoe, V.V.; et al. Maternal thyroid function during early pregnancy and cognitive functioning in early childhood: The generation R study. J. Clin. Endocrinol. Metab. 2010, 95, 4227–4234. [Google Scholar] [CrossRef]
- Haddow, J.E.; Palomaki, G.E.; Allan, W.C.; Williams, J.R.; Knight, G.J.; Gagnon, J.; O’Heir, C.E.; Mitchell, M.L.; Hermos, R.J.; Waisbren, S.E.; et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N. Engl. J. Med. 1999, 341, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Pop, V.J.; Kuijpens, J.L.; van Baar, A.L.; Verkerk, G.; van Son, M.M.; de Vijlder, J.J.; Vulsma, T.; Wiersinga, W.M.; Drexhage, H.A.; Vader, H.L. Low maternal free thyroxine concentrations during early pregnancy are associated with impaired psychomotor development in infancy. Clin. Endocrinol. 1999, 50, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Velasco, I.; Carreira, M.; Santiago, P.; Muela, J.A.; García-Fuentes, E.; Sánchez-Muñoz, B.; Garriga, M.J.; González-Fernández, M.C.; Rodríguez, A.; Caballero, F.F.; et al. Effect of iodine prophylaxis during pregnancy on neurocognitive development of children during the first two years of life. J. Clin. Endocrinol. Metab. 2009, 94, 3234–3241. [Google Scholar] [CrossRef]
- Hynes, K.L.; Otahal, P.; Hay, I.; Burgess, J.R. Mild iodine deficiency during pregnancy is associated with reduced educational outcomes in the offspring: 9-year follow-up of the gestational iodine cohort. J. Clin. Endocrinol. Metab. 2013, 98, 1954–1962. [Google Scholar] [CrossRef]
- Abel, M.H.; Caspersen, I.H.; Meltzer, H.M.; Haugen, M.; Brandlistuen, R.E.; Aase, H.; Alexander, J.; Torheim, L.E.; Brantsaeter, A.L. Suboptimal maternal iodine intake is associated with impaired child neurodevelopment at 3 years of age in the Norwegian Mother and Child Cohort Study. J. Nutr. 2017, 147, 1314–1324. [Google Scholar] [CrossRef]
- Murcia, M.; Rebagliato, M.; Iñiguez, C.; Lopez-Espinosa, M.J.; Estarlich, M.; Plaza, B.; Barona-Vilar, C.; Espada, M.; Vioque, J.; Ballester, F. Effect of iodine supplementation during pregnancy on infant neurodevelopment at 1 year of age. Am. J. Epidemiol. 2011, 173, 804–812. [Google Scholar] [CrossRef]
- Rebagliato, M.; Murcia, M.; Alvarez-Pedrerol, M.; Espada, M.; Fernández-Somoano, A.; Lertxundi, N.; Navarrete-Muñoz, E.M.; Forns, J.; Aranbarri, A.; Llop, S.; et al. Iodine supplementation during pregnancy and infant neuropsychological development. INMA Mother and Child Cohort Study. Am. J. Epidemiol. 2013, 177, 944–953. [Google Scholar] [CrossRef] [PubMed]
- Kampouri, M.; Margetaki, K.; Koutra, K.; Kyriklaki, A.; Daraki, V.; Roumeliotaki, T.; Bempi, V.; Vafeiadi, M.; Kogevinas, M.; Chatzi, L.; et al. Urinary iodine concentrations in preschoolers and cognitive development at 4 and 6 years of age, the Rhea mother-child cohort on Crete, Greece. J. Trace Elem. Med. Biol. 2024, 85, 127486. [Google Scholar] [CrossRef]
- Berbel, P.; Mestre, J.L.; Santamaría, A.; Palazón, I.; Franco, A.; Graells, M.; González-Torga, A.; de Escobar, G.M. Delayed neurobehavioral development in children born to pregnant women with mild hypothyroxinemia during the first month of gestation: The importance of early iodine supplementation. Thyroid 2009, 19, 511–519. [Google Scholar] [CrossRef]
- Candido, A.C.; Vieira, A.A.; de Souza Ferreira, E.; Moreira, T.R.; do Carmo Castro Franceschini, S.; Cotta, R.M.M. Prevalence of Excessive Iodine Intake in Pregnancy and Its Health Consequences: Systematic Review and Meta-analysis. Biol. Trace Elem. Res. 2023, 201, 2784–2794. [Google Scholar] [CrossRef]
- Wang, D.; Wan, S.; Liu, P.; Meng, F.; Zhang, X.; Ren, B.; Qu, M.; Wu, H.; Shen, H.; Liu, L. Relationship between excess iodine, thyroid function, blood pressure, and blood glucose level in adults, pregnant women, and lactating women: A cross-sectional study. Ecotoxicol. Environ. Saf. 2021, 208, 111706. [Google Scholar] [CrossRef]
- Sang, Z.; Wei, W.; Zhao, N.; Zhang, G.; Chen, W.; Liu, H.; Shen, J.; Liu, J.; Yan, Y.; Zhang, W. Thyroid dysfunction during late gestation is associated with excessive iodine intake in pregnant women. J. Clin. Endocrinol. Metab. 2012, 97, E1363–E1369. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, J.; Wang, D.; Shen, H.; Jia, Q. Effect of Urinary Iodine Concentration in Pregnant and Lactating Women, and in Their Infants Residing in Areas with Excessive Iodine in Drinking Water in Shanxi Province, China. Biol. Trace Elem. Res. 2020, 193, 326–333. [Google Scholar] [CrossRef]
- Manousou, S.; Stål, M.; Eggertsen, R.; Hoppe, M.; Hulthén, L.; Filipsson Nyström, H. Correlations of water iodine concentration to earlier goitre frequency in Sweden-an iodine sufficient country with long-term iodination of table salt. Environ. Health Prev. Med. 2019, 24, 73. [Google Scholar] [CrossRef] [PubMed]
- Leung, A.M.; Braverman, L.E. Consequences of excess iodine. Nat. Rev. Endocrinol. 2014, 10, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Khudair, A.; Khudair, A.; Niinuma, S.A.; Habib, H.; Butler, A.E. From deficiency to excess: The impact of iodine excess on reproductive health. Front. Endocrinol. 2025, 16, 1568059. [Google Scholar] [CrossRef]
- Nøhr, S.B.; Laurberg, P. Opposite variations in maternal and neonatal thyroid function induced by iodine supplementation during pregnancy. J. Clin. Endocrinol. Metab. 2000, 85, 623–627. [Google Scholar] [CrossRef]
- Moleti, M.; Di Bella, B.; Giorgianni, G.; Mancuso, A.; De Vivo, A.; Alibrandi, A.; Trimarchi, F.; Vermiglio, F. Maternal thyroid function in different conditions of iodine nutrition in pregnant women exposed to mild-moderate iodine deficiency: An observational study. Clin. Endocrinol. 2011, 74, 762–768. [Google Scholar] [CrossRef]
- Rebagliato, M.; Murcia, M.; Espada, M.; Alvarez-Pedrerol, M.; Bolúmar, F.; Vioque, J.; Basterrechea, M.; Blarduni, E.; Ramón, R.; Guxens, M.; et al. Iodine intake and maternal thyroid function during pregnancy. Epidemiology 2010, 21, 62–69. [Google Scholar] [CrossRef]
- Orito, Y.; Oku, H.; Kubota, S.; Amino, N.; Shimogaki, K.; Hata, M.; Manki, K.; Tanaka, Y.; Sugino, S.; Ueta, M.; et al. Thyroid function in early pregnancy in Japanese healthy women: Relation to urinary iodine excretion, emesis, and fetal and child development. J. Clin. Endocrinol. Metab. 2009, 94, 1683–1688. [Google Scholar] [CrossRef]
- Zhang, L.; Teng, W.; Liu, Y.; Li, J.; Mao, J.; Fan, C.; Wang, H.; Zhang, H.; Shan, Z. Effect of maternal excessive iodine intake on neurodevelopment and cognitive function in rat offspring. BMC Neurosci. 2012, 13, 121. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, B.; Cui, Y.; Hou, C.; Zeng, Q.; Gao, T.; Zhang, Z.; Yu, J.; Wang, Y.; Wang, A.; et al. 3-Methyladenine alleviates excessive iodine-induced cognitive impairment via suppression of autophagy in rat hippocampus. Environ. Toxicol. 2019, 34, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.J.; Condo, D.; Ryan, P.; Skeaff, S.A.; Howell, S.; Anderson, P.J.; McPhee, A.J.; Makrides, M. Association Between Maternal Iodine Intake in Pregnancy and Childhood Neurodevelopment at Age 18 Months. Am. J. Epidemiol. 2019, 188, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, T.R.; Best, K.P.; Gould, J.; Zhou, S.J.; Makrides, M.; Green, T.J. Too Much Too Little: Clarifying the Relationship Between Maternal Iodine Intake and Neurodevelopmental Outcomes. J. Nutr. 2024, 154, 185–190. [Google Scholar] [CrossRef]
- Kampouri, M.; Tofail, F.; Rahman, S.M.; Gustin, K.; Vahter, M.; Kippler, M. Gestational and childhood urinary iodine concentrations and children’s cognitive function in a longitudinal mother-child cohort in rural Bangladesh. Int. J. Epidemiol. 2023, 52, 144–155. [Google Scholar] [CrossRef]
- Apirajkamol, N.; Panamonta, O.; Panamonta, M. Increased levels of median urinary iodine excretion of primary school children in the suburban area, Khon Kaen, Thailand. Southeast. Asian J. Trop. Med. Public Health 2016, 47, 101–108. [Google Scholar]
- Cui, Y.; Yu, J.; Zhang, B.; Guo, B.; Gao, T.; Liu, H. The relationships between thyroid-stimulating hormone and/or dopamine levels in peripheral blood and IQ in children with different urinary iodine concentrations. Neurosci. Lett. 2020, 729, 134981. [Google Scholar] [CrossRef]
- Li, F.; Wan, S.; Zhang, L.; Li, B.; He, Y.; Shen, H.; Liu, L. A Meta-Analysis of the Effect of Iodine Excess on the Intellectual Development of Children in Areas with High Iodine Levels in their Drinking Water. Biol. Trace Elem. Res. 2022, 200, 1580–1590. [Google Scholar] [CrossRef]
- Santiago, P.; Velasco, I.; Muela, J.A.; Sánchez, B.; Martínez, J.; Rodriguez, A.; Berrio, M.; Gutierrez-Repiso, C.; Carreira, M.; Moreno, A.; et al. Infant neurocognitive development is independent of the use of iodised salt or iodine supplements given during pregnancy. Br. J. Nutr. 2013, 110, 831–839. [Google Scholar] [CrossRef]
- Brucker-Davis, F.; Ganier-Chauliac, F.; Gal, J.; Panaïa-Ferrari, P.; Pacini, P.; Fénichel, P.; Hiéronimus, S. Neurotoxicant exposure during pregnancy is a confounder for assessment of iodine supplementation on neurodevelopment outcome. Neurotoxicology Teratol. 2015, 51, 45–51. [Google Scholar] [CrossRef]
- Zhou, S.J.; Skeaff, S.A.; Ryan, P.; Doyle, L.W.; Anderson, P.J.; Kornman, L.; McPhee, A.J.; Yelland, L.N.; Makrides, M. The effect of iodine supplementation in pregnancy on early childhood neurodevelopment and clinical outcomes: Results of an aborted randomised placebo-controlled trial. Trials 2015, 16, 563. [Google Scholar] [CrossRef] [PubMed]
- Gowachirapant, S.; Winichagoon, P.; Wyss, L.; Tong, B.; Baumgartner, J.; Melse-Boonstra, A.; Zimmermann, M.B. Urinary iodine concentrations indicate iodine deficiency in pregnant Thai women but iodine sufficiency in their school-aged children. J. Nutr. 2009, 139, 1169–1172. [Google Scholar] [CrossRef] [PubMed]
- Dineva, M.; Fishpool, H.; Rayman, M.P.; Mendis, J.; Bath, S.C. Systematic review and meta-analysis of the effects of iodine supplementation on thyroid function and child neurodevelopment in mildly-to-moderately iodine-deficient pregnant women. Am. J. Clin. Nutr. 2020, 112, 389–412. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B. Iodine deficiency. Endocr. Rev. 2009, 30, 376–408. [Google Scholar] [CrossRef]
- Piek, J.P.; Dawson, L.; Smith, L.M.; Gasson, N. The role of early fine and gross motor development on later motor and cognitive ability. Hum. Mov. Sci. 2008, 27, 668–681. [Google Scholar] [CrossRef]
Population Group | Median UIC (µg/L) | Iodine Intake Status |
---|---|---|
Children aged <2 years | <100 | Insufficient iodine intake |
≥100 | Adequate iodine intake | |
Children aged 6–12 years | <100 | Insufficient iodine intake |
100–199 | Adequate iodine intake | |
200–299 | More than adequate iodine intake | |
≥300 | Excessive iodine intake | |
Pregnant women | <150 | Insufficient iodine intake |
150–249 | Adequate iodine intake | |
250–499 | More than adequate iodine intake | |
≥500 | Excessive iodine intake | |
Lactating women | <100 | Insufficient iodine intake |
≥100 | Adequate iodine intake |
Life Stage | Daily Iodine Intake (µg/Day) | Tolerable Upper Intake Level (UL) (µg/day) | |||
---|---|---|---|---|---|
US IOM EAR/RDA/AI | UK RNI | WHO/UNICEF/IGN Recommended Intake | US IOM UL | EFSA UL | |
Infants 0–6 months | 110 (AI) | 50 | 90 | Not established | Not established |
Infants 7–12 months | 130 (AI) | 60 | – | Not established | Not established |
Children 1–3 years | 65 (EAR)/90 (RDA) | 70 | – | 200 | 200 |
Children 4–5 years | – | 100 | 90 | – | – |
Children 4–8 years | 65 (EAR)/90 (RDA) | 110 | – | 300 | 250 |
Children 6–12 years | – | 130 | 120 | – | – |
Children 9–13 years | 75 (EAR)/120 (RDA) | 140 | – | 600 | 450 |
Adolescents > 12 years | 95 (EAR)/150 (RDA) | 140 | 150 | 900 | 500 |
Pregnant women | 160 (EAR)/220 (RDA) | 140 | 250 | 1100 | 600 |
Lactating women | 200 (EAR)/290 (RDA) | 140 | 250 | 1100 | 600 |
Population Affected | Stage | Consequences |
---|---|---|
Mother | Pregnancy |
|
Mother | Lactation |
|
Foetus | Pregnancy |
|
Infant | Neonatal period |
|
Child | Early childhood |
|
Authors (Year) | Country | Iodine Supplementation (Dosage and Timing) | Infants (n) | Child Age at Assessment | Cognitive Tests | Domains Assessed | Main Findings |
---|---|---|---|---|---|---|---|
Velasco et al. (2009) [57] | Spain | 300 µg KI vs. control (first trimester of pregnancy) | 194 | 3–18 months | Bayley scales of infant development-I | BDS; PDS; MDS | Higher scores on BDS and PDS (p = 0.02) in the iodine-supplemented group. |
Santiago et al. (2013) [83] | Spain | Iodised salt in cooking and at the table vs. 200 µg KI vs. 300 µg KI (first trimester of pregnancy) | 111 | 6–18 months | Bayley scales of infant development-III | BDS; PDS; MDS | No significant differences between groups. |
Brucker-Davis et al. (2015) [84] | France | Iodine-enriched pregnancy vitamins (150 μg iodine/day) vs. pregnancy vitamins without iodine (first trimester of pregnancy) | 44 | 2 years | Bayley scales of infant development-III | Language, cognitive, and motor | No significant differences between groups. |
Zhou et al. (2015) [85] | Australia | 150 µg KI vs. placebo (second trimester of pregnancy) | 53 | 18 months | Bayley scales of infant development-III | Language, cognitive, and motor | No significant differences between groups. |
Gowachirapant et al. (2009) [86] | India and Thailand | 200 µg of potassium iodide (KI) vs. placebo (first trimester of pregnancy) | 330 | 5–6 years | Wechsler preschool and primary scale of intelligence-III | Processing speed, verbal, performance, and full-scale IQ | No significant differences between groups. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.F.; Brough, L. Effect of Iodine Nutrition During Pregnancy and Lactation on Child Cognitive Outcomes: A Review. Nutrients 2025, 17, 2016. https://doi.org/10.3390/nu17122016
Ma ZF, Brough L. Effect of Iodine Nutrition During Pregnancy and Lactation on Child Cognitive Outcomes: A Review. Nutrients. 2025; 17(12):2016. https://doi.org/10.3390/nu17122016
Chicago/Turabian StyleMa, Zheng Feei, and Louise Brough. 2025. "Effect of Iodine Nutrition During Pregnancy and Lactation on Child Cognitive Outcomes: A Review" Nutrients 17, no. 12: 2016. https://doi.org/10.3390/nu17122016
APA StyleMa, Z. F., & Brough, L. (2025). Effect of Iodine Nutrition During Pregnancy and Lactation on Child Cognitive Outcomes: A Review. Nutrients, 17(12), 2016. https://doi.org/10.3390/nu17122016