Nutrient-Driven Antioxidant Interventions for Prevention of Age-Related and Diabetic Cataracts
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Age-Related Cataractogenesis
3.1.1. Trimetazidine
3.1.2. Moringa Oleifera Stem Extract
3.1.3. L-Cysteine
3.1.4. Lanosterol Nanoparticles
3.1.5. Ginsenoside Rg1
3.1.6. N-Acetylcysteine
3.2. Diabetic Cataractogenesis
3.2.1. β-Casomorphin-7
3.2.2. Rapamycin
3.2.3. Cerium Oxide Nanoparticles and Resveratrol
4. Discussion
4.1. Oxidative Stress in Cataractogenesis
4.2. Challenges Related to Bioavailability and Delivery
4.3. Evidence from Laboratory Studies
4.4. Evidence from Observational Studies
4.5. Evidence from Intervention Trials
4.6. Additional Considerations: Broader Dietary Bioactives and Past Reviews
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DC | diabetic cataract |
AGEs | advanced glycation end products |
UV | ultraviolet |
ROS | reactive oxygen species |
RCTs | randomized controlled trials |
TMZ | trimetazidine |
HLEB3 | human lens epithelial B3 |
SOD | superoxide dismutase |
GPx | glutathione peroxidase |
CAT | catalase |
MDA | malondialdehyde |
NO | nitric oxide |
H2O2 | hydrogen peroxide |
MOSE | Moringa oleifera stem extract |
GSH | glutathione |
DPPH | 2,2-Diphenyl-1-1-picrylhydrazyl |
DMEM | Dulbecco’s Modified Eagle’s medium |
AA | ascorbic acid |
LAN-NPs | lanosterol nanoparticles |
SCRs | Shumiya Cataract Rats |
HLEC | human lens epithelial cells |
LPO | lipid peroxidation |
LECs | lens epithelial cells |
WSP | water-soluble protein |
NAC | N-acetylcysteine |
NACA | N-acetylcysteine amide |
MLECs | mouse lens epithelial cells |
TXNIP | thioredoxin-interacting protein |
β-CM-7 | β-casomorphin-7 |
MTT | 4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolimol/L bromide |
CeO2 NPs | cerium oxide nanoparticles |
RSV | resveratrol |
miRNAs | microRNAs |
Appendix A
Agent | Study Model(s) | Key Outcomes | Mechanism of Action | Relative Efficacy | GRADE 1 | OCEM Level 2 |
---|---|---|---|---|---|---|
Trimetazidine (TMZ) | In vivo (rat), In vitro (HLECs) | Reduced lens opacity, decreased ROS, preserved Bcl-2/Bax ratio | Epigenetic modulation (Keap1 demethylation), Nrf2 pathway activation | High | Low | 4 |
Moringa oleifera | Ex vivo (mouse lens) | Maintained lens transparency, improved antioxidant enzyme levels | Upregulation of PPARα, increased GSH, SOD, and CAT | Moderate–High | Low | 4 |
L-Cysteine | Ex vivo (bovine lens) | Preserved light transmittance, restored GSH and SOD activity | Restored sulfhydryl pools, stabilized antioxidant enzymes | Moderate | Low | 4 |
Lanosterol NPs | In vivo (Shumiya Cataract Rats) | Reversed early lens collapse, reduced biochemical markers of cataract | Prevented crystallin aggregation, reduced LPO and calcium accumulation | Moderate | Low | 4 |
Ginsenoside Rg1 | Ex vivo (rat lens), In vitro (HLECs) | Reduced lipid peroxidation, increased soluble proteins, protected lens cells | Enhanced antioxidant enzyme activity, reduced MDA, increased GSH and SOD | High | Low | 4 |
NACA/NAC | In vitro, ex vivo, in vivo (aged mice) | Preserved lens clarity, reduced TXNIP expression, improved redox balance | Suppressed inflammasome activation, restored thioredoxin system | Very High | Low | 4 |
β-Casomorphin-7 | In vitro (HLECs under hyperglycemia) | Reduced ROS and MDA, restored FoxO1 and Sp1 expression | Activation of nuclear transcription factors, enhancement of antioxidant enzymes | Moderate–High | Very Low | 5 |
Rapamycin | In vivo (diabetic mice), in vitro (mouse lens epithelial cells) | ROS reduction and preserved mitochondrial integrity | Autophagy modulation by rapamycin | Moderate–High | Low | 4 |
References
- Hashemi, H.; Pakzad, R.; Yekta, A.; Aghamirsalim, M.; Pakbin, M.; Ramin, S.; Khabazkhoob, M. Global and regional prevalence of age-related cataract: A comprehensive systematic review and meta-analysis. Eye 2020, 34, 1357–1370. [Google Scholar] [CrossRef] [PubMed]
- Sella, R.; Afshari, N.A. Nutritional effect on age-related cataract formation and progression. Curr. Opin. Ophthalmol. 2019, 30, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Afshari, N.A.; Shaw, P.X. Oxidative stress and antioxidants in cataract development. Curr. Opin. Ophthalmol. 2024, 35, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Ma, X.; Zhang, R.X.; Yan, H. Oxidative stress, epigenetic regulation and pathological processes of lens epithelial cells underlying diabetic cataract. Adv. Ophthalmol. Pract. Res. 2023, 3, 180–186. [Google Scholar] [CrossRef]
- Jiang, H.; Yin, Y.; Wu, C.R.; Liu, Y.; Guo, F.; Li, M.; Ma, L. Dietary vitamin and carotenoid intake and risk of age-related cataract. Am. J. Clin. Nutr. 2019, 109, 43–54. [Google Scholar] [CrossRef]
- Braakhuis, A.J.; Donaldson, C.I.; Lim, J.C.; Donaldson, P.J. Nutritional Strategies to Prevent Lens Cataract: Current Status and Future Strategies. Nutrients 2019, 11, 1186. [Google Scholar] [CrossRef]
- Kottler, U.B.; Dick, H.B.; Augustin, A.J. Is a cataract avoidable? Current status with special emphasis on the pathophysiology of oxidative lens damage, nutritional factors, and the ARED study. Ophthalmologe 2003, 100, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Howick, J.; Glasziou, P.; Aronson, J.K. Evidence-based mechanistic reasoning. J. R. Soc. Med. 2010, 103, 433–441. [Google Scholar] [CrossRef]
- Guyatt, G.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H.; et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef]
- Fang, W.; Ye, Q.; Yao, Y.; Xiu, Y.; Gu, F.; Zhu, Y. Protective Effects of Trimetazidine in Retarding Selenite-Induced Lens Opacification. Curr. Eye Res. 2019, 44, 1325–1336. [Google Scholar] [CrossRef]
- Qi, L.; Zhou, Y.; Li, W.; Zheng, M.; Zhong, R.; Jin, X.; Lin, Y. Effect of Moringa oleifera stem extract on hydrogen peroxide-induced opacity of cultured mouse lens. BMC Complement. Altern. Med. 2019, 19, 144. [Google Scholar] [CrossRef] [PubMed]
- Heruye, S.; Maffofou, N.L.N.; Singh, N.U.; Munt, D.; Njie-Mbye, Y.F.; Ohia, S.E.; Opere, C.A. Standardization of a new method for assessing the development of cataract in cultured bovine lenses. J. Pharmacol. Toxicol. Methods 2019, 98, 106592. [Google Scholar] [CrossRef] [PubMed]
- Nagai, N.; Fukuoka, Y.; Sato, K.; Otake, H.; Taga, A.; Oka, M.; Hiramatsu, N.; Yamamoto, N. The Intravitreal Injection of Lanosterol Nanoparticles Rescues Lens Structure Collapse at an Early Stage in Shumiya Cataract Rats. Int. J. Mol. Sci. 2020, 21, 1048. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhang, M.; Yu, J.; Kang, L.; Guan, H. Ginsenoside Rg1 Prevents H2O2-induced Lens Opacity. Curr. Eye Res. 2021, 46, 1159–1165. [Google Scholar] [CrossRef]
- Ishida, H.; Sasaki, Y.; Shibata, T.; Sasaki, H.; Chhunchha, B.; Singh, D.P.; Kubo, E. Topical Instillation of N-Acetylcysteine and N-Acetylcysteine Amide Impedes Age-Related Lens Opacity in Mice. Biomolecules 2025, 15, 442. [Google Scholar] [CrossRef]
- Zhu, L.; Li, J.; Wu, D.; Li, B. The protective effect of beta-casomorphin-7 via promoting Foxo1 activity and nuclear translocation in human lens epithelial cells. Cutan. Ocul. Toxicol. 2018, 37, 267–274. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, X.; Cheng, R.; Huang, Y. Autophagy attenuates high glucose-induced oxidative injury to lens epithelial cells. Biosci. Rep. 2020, 40, BSR20193006. [Google Scholar] [CrossRef]
- Chen, X.; Xi, Q.; Sun, F.; Zou, L.; Li, Y. Facile fabrication of redox nanoparticles loaded with exosomal-miRNAs and resveratrol as glycation inhibitor in alleviating the progression and development of diabetic cataract. Naunyn Schmiedebergs Arch. Pharmacol. 2025, 398, 4247–4263. [Google Scholar] [CrossRef]
- Tan, J.S.L.; Wang, J.J.; Flood, V.M.; Rochtchina, E.; Smith, W.; Mitchell, P. Antioxidant nutrient intake and the long-term incidence of age-related cataract: The Blue Mountains Eye Study. Am. J. Clin. Nutr. 2008, 87, 1899–1905. [Google Scholar] [CrossRef]
- Taylor, A. Nutritional and environmental influences on risk for cataract. Int. Ophthalmol. Clin. 2005, 45, 17–36. [Google Scholar]
- Zhang, Q.; Xia, X. Association between composite dietary antioxidant index and cataract in American adults aged ≥50 years: A cross-sectional study from NHANES 2003–2008. Medicine 2025, 104, e42425. [Google Scholar] [CrossRef] [PubMed]
- Kijlstra, A.; Tian, Y.; Kelly, E.R.; Berendschot, T.T. Lutein: More than just a filter for blue light. Prog. Retin. Eye Res. 2012, 31, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.R.; Lawrenson, J.G. Antioxidant vitamin and mineral supplements for preventing age-related macular degeneration. Cochrane Database Syst. Rev. 2017, 7, CD000253. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J. Agric. Food Chem. 2006, 54, 4069–4075. [Google Scholar] [CrossRef] [PubMed]
- Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv. Nutr. 2020, 11, 224–236. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hodge, W.; Barnes, D.; Schachter, H.M.; Pan, Y.; Lowcock, E.C.; Zhang, L.; Sampson, M.; Morrison, A.; Tran, K.; Miguelez, M.; et al. Effects of omega-3 fatty acids on eye health. Evid. Rep. Technol. Assess. 2005, 117, 1–6. [Google Scholar] [PubMed] [PubMed Central]
- Chong, E.W.; Kreis, A.J.; Wong, T.Y.; Simpson, J.A.; Guymer, R.H. Dietary omega-3 fatty acid and fish intake in the primary prevention of age-related macular degeneration: A systematic review and meta-analysis. Arch. Ophthalmol. 2008, 126, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Lim, V.; Schneider, E.; Wu, H.; Pang, I.H. Cataract Preventive Role of Isolated Phytoconstituents: Findings from a Decade of Research. Nutrients 2018, 10, 1580. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giglio, R.; Milan, S.; Inferrera, L.; Tognetto, D.; D’Esposito, F.; Visalli, F.; Gagliano, C.; Zeppieri, M. Nutrient-Driven Antioxidant Interventions for Prevention of Age-Related and Diabetic Cataracts. Nutrients 2025, 17, 1885. https://doi.org/10.3390/nu17111885
Giglio R, Milan S, Inferrera L, Tognetto D, D’Esposito F, Visalli F, Gagliano C, Zeppieri M. Nutrient-Driven Antioxidant Interventions for Prevention of Age-Related and Diabetic Cataracts. Nutrients. 2025; 17(11):1885. https://doi.org/10.3390/nu17111885
Chicago/Turabian StyleGiglio, Rosa, Serena Milan, Leandro Inferrera, Daniele Tognetto, Fabiana D’Esposito, Federico Visalli, Caterina Gagliano, and Marco Zeppieri. 2025. "Nutrient-Driven Antioxidant Interventions for Prevention of Age-Related and Diabetic Cataracts" Nutrients 17, no. 11: 1885. https://doi.org/10.3390/nu17111885
APA StyleGiglio, R., Milan, S., Inferrera, L., Tognetto, D., D’Esposito, F., Visalli, F., Gagliano, C., & Zeppieri, M. (2025). Nutrient-Driven Antioxidant Interventions for Prevention of Age-Related and Diabetic Cataracts. Nutrients, 17(11), 1885. https://doi.org/10.3390/nu17111885