Relative Validity of the Food Recording Smartphone App Libro in Young People Vulnerable to Eating Disorder: A Preliminary Cross-Over Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Customization of the Libro Recording Program
2.2. Validation of Intake24
2.3. Participants for the Validation Study
2.4. Experimental Design
2.5. Use of Libro and Intake24
2.6. Measures
2.7. Data Processing and Statistical Analysis
2.7.1. Assessment of Adherence
2.7.2. Data Quality Check and Data Cleaning
2.8. Statistical Analysis
2.8.1. Quantification of Single Recalls and Test–Retest Reliability
2.8.2. Assessment of Individual and Group Agreement Between Methods
3. Results
3.1. Participants
3.2. Adherence
3.3. Results on Energy Intake
Single Recalls and Test–Retest Reliability
3.4. Individual and Group Agreement Between Methods
3.5. Results on Nutrient Intake
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
24HRs | 24 h recalls |
EI | Energy intake |
FFQ | Food frequency questionnaire |
FR | Food recording |
NDNS | National Diet and Nutrition Survey |
NI | Nutrient intake |
References
- Jenab, M.; Slimani, N.; Bictash, M.; Ferrari, P.; Bingham, S.A. Biomarkers in nutritional epidemiology: Applications, needs and new horizons. Hum Genet. 2009, 125, 507–525. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.-S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Miki, A.J.; Blanchard, C.M.; Sazonov, E.; Gilhooly, C.H.; Dey, S.; Wolk, C.B.; Khoo, C.S.H.; Hill, J.O.; Shook, R.P. Perspective: Opportunities and Challenges of Technology Tools in Dietary and Activity Assessment: Bridging Stakeholder Viewpoints. Adv. Nutr. 2022, 13, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, S.I.; Baranowski, T.; Subar, A.F.; Tooze, J.A.; Frongillo, E.A. Best Practices for Conducting and Interpreting Studies to Validate Self-Report Dietary Assessment Methods. J. Acad. Nutr. Diet. 2019, 119, 1801–1816. [Google Scholar] [CrossRef] [PubMed]
- Swanson, S.A.; Crow, S.J.; Le Grange, D.; Swendsen, J.; Merikangas, K.R. Prevalence and correlates of eating disorders in adolescents. Results from the national comorbidity survey replication adolescent supplement. Arch. Gen. Psychiatry 2011, 68, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Stice, E.; Marti, C.N.; Durant, S. Risk factors for onset of eating disorders: Evidence of multiple risk pathways from an 8-year prospective study. Behav. Res. Ther. 2011, 49, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Misir, A.; Boshuizen, H.; Ocke, M. A Systematic Review and Meta-Analysis of Validation Studies Performed on Dietary Record Apps. Adv. Nutr. 2021, 12, 2321–2332. [Google Scholar] [CrossRef] [PubMed]
- University of Cambridge NSR. National Diet and Nutrition Survey. [Data Series] 7th Release. UK Data Service. 2019. SN: 2000033. Available online: https://beta.ukdataservice.ac.uk/datacatalogue/series/doi/?id=2000033 (accessed on 14 March 2024).
- Jones, L.; Ness, A.; Emmett, P. Misreporting of Energy Intake from Food Records Completed by Adolescents: Associations with Sex, Body Image, Nutrient, and Food Group Intake. Front. Nutr. 2021, 8, 749007. [Google Scholar] [CrossRef] [PubMed]
- Eldridge, A.L.; Piernas, C.; Illner, A.K.; Gibney, M.J.; Gurinović, M.A.; De Vries, J.H.; Cade, J.E. Evaluation of New Technology-Based Tools for Dietary Intake Assessment-An ILSI Europe Dietary Intake and Exposure Task Force Evaluation. Nutrients 2018, 11, 55. [Google Scholar] [CrossRef] [PubMed]
- Boushey, C.J.; Harray, A.J.; Kerr, D.A.; Schap, T.E.; Paterson, S.; Aflague, T.; Ruiz, M.B.; Ahmad, Z.; Delp, E.J. How Willing Are Adolescents to Record Their Dietary Intake? The Mobile Food Record. JMIR Mhealth Uhealth 2015, 3, e47. [Google Scholar] [CrossRef] [PubMed]
- Boushey, C.J.; Kerr, D.A.; Wright, J.; Lutes, K.D.; Ebert, D.S.; Delp, E.J. Use of technology in children’s dietary assessment. Eur. J. Clin. Nutr. 2009, 63, S50–S57. [Google Scholar] [CrossRef] [PubMed]
- Casperson, S.L.; Sieling, J.; Moon, J.; Johnson, L.; Roemmich, J.N.; Whigham, L. A Mobile Phone Food Record App to Digitally Capture Dietary Intake for Adolescents in a Free-Living Environment: Usability Study. JMIR Mhealth Uhealth 2015, 3, e30. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Xu, X.; Li, X.; He, X.; Yang, Y.; Zhu, S. Emerging trends of technology-based dietary assessment: A perspective study. Eur. J. Clin. Nutr. 2021, 75, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Hochsmann, C.; Martin, C.K. Review of the validity and feasibility of image-assisted methods for dietary assessment. Int. J. Obes. 2020, 44, 2358–2371. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.S.; Wong, J.E.; Ayob, A.F.; Othman, N.E.; Poh, B.K. Can Malaysian Young Adults Report Dietary Intake Using a Food Diary Mobile Application? A Pilot Study on Acceptability and Compliance. Nutrients 2017, 9, 62. [Google Scholar] [CrossRef] [PubMed]
- Ocke, M.; Dinnissen, C.; Stafleu, A.; de Vries, J.; van Rossum, C. Relative Validity of MijnEetmeter: A Food Diary App for Self-Monitoring of Dietary Intake. Nutrients 2021, 13, 1135. [Google Scholar] [CrossRef] [PubMed]
- Publich Health England (PHE). Composition of Foods Integrated Dataset (CoFID). Available online: https://www.gov.uk/government/publications/composition-of-foods-integrated-dataset-cofid (accessed on 7 March 2024).
- Pinchen, H.; Zhang, L.; Roe, M.; Church, S.; Traka, M.; Finglas, P. UK Composition of Foods Labelling Dataset. Available online: https://fnnbri.quadram.ac.uk/labelling/ (accessed on 7 March 2024).
- Arab, L.; Tseng, C.H.; Ang, A.; Jardack, P. Validity of a multipass, web-based, 24-h self-administered recall for assessment of total energy intake in blacks and whites. Am. J. Epidemiol. 2011, 174, 1256–1265. [Google Scholar] [CrossRef]
- Simpson, E.; Bradley, J.; Poliakov, I.; Jackson, D.; Olivier, P.; Adamson, A.J.; Foster, E. Iterative Development of an Online Dietary Recall Tool: INTAKE24. Nutrients 2017, 9, 118. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.; Simpson, E.; Poliakov, I.; Matthews, J.N.; Olivier, P.; Adamson, A.J.; Foster, E. Comparison of INTAKE24 (an Online 24-h Dietary Recall Tool) with Interviewer-Led 24-h Recall in 11–24 Year-Old. Nutrients 2016, 8, 358. [Google Scholar] [CrossRef] [PubMed]
- Foster, E.; Lee, C.; Imamura, F.; Hollidge, S.E.; Westgate, K.L.; Venables, M.C.; Poliakov, I.; Rowland, M.K.; Osadchiy, T.; Bradley, J.C.; et al. Validity and reliability of an online self-report 24-h dietary recall method (Intake24): A doubly labelled water study and repeated-measures analysis. J. Nutr. Sci. 2019, 8, e29. [Google Scholar] [CrossRef] [PubMed]
- Rowland, M.K.; Adamson, A.J.; Poliakov, I.; Bradley, J.; Simpson, E.; Olivier, P.; Foster, E. Field Testing of the Use of Intake24-An Online 24-Hour Dietary Recall System. Nutrients 2018, 10, 1690. [Google Scholar] [CrossRef] [PubMed]
- Momen, N.C.; Plana-Ripoll, O.; Yilmaz, Z.; Thornton, L.M.; McGrath, J.J.; Bulik, C.M.; Petersen, L.V. Comorbidity between eating disorders and psychiatric disorders. Int. J. Eat. Disord. 2022, 55, 505–517. [Google Scholar] [CrossRef] [PubMed]
- Kasson, E.; Szlyk, H.S.; Li, X.; Constantino-Pettit, A.; Smith, A.C.; Vázquez, M.M.; Cavazos-Rehg, P. Eating disorder symptoms and comorbid mental health risk among teens recruited to a digital intervention research study via two online approaches. Int. J. Eat. Disord. 2024, 57, 1518–1531. [Google Scholar] [CrossRef]
- Mescoloto, S.B.; Caivano, S.; Domene, S.M.Á. Evaluation of a mobile application for estimation of food intake. Rev. Nutr. 2017, 30, 91–98. [Google Scholar] [CrossRef]
- Anderson, J.W.; Baird, P.; Davis, R.H., Jr; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Dhaka, V.; Gulia, N.; Ahlawat, K.S.; Khatkar, B.S. Trans fats-sources, health risks and alternative approach—A review. J. Food Sci. Technol. 2011, 48, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, Z.; Chen, B.; Li, J.; Yuan, X.; Li, J.; Wang, W.; Dai, T.; Chen, H.; Wang, Y.; et al. Dietary sugar consumption and health: Umbrella review. BMJ. 2023, 381, e071609. [Google Scholar] [CrossRef] [PubMed]
- Willett, W. Nutritional Epidemiology; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Trafimow, D. The attenuation of correlation coefficients: A statistical literacy issue. Teach. Stat. 2015, 38, 25–28. [Google Scholar] [CrossRef]
- Lombard, M.J.; Steyn, N.P.; Charlton, K.E.; Senekal, M. Application and interpretation of multiple statistical tests to evaluate validity of dietary intake assessment methods. Nutr. J. 2015, 14, 40. [Google Scholar] [CrossRef] [PubMed]
- Tomova, G.D.; Arnold, K.F.; Gilthorpe, M.S.; Tennant, P.W.G. Adjustment for energy intake in nutritional research: A causal inference perspective. Am. J. Clin. Nutr. 2022, 115, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Team R. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com (accessed on 22 May 2025).
- Gamer, M.; Lemon, J. irr: Various Coefficients of Interrater Reliability and Agreement, R package version 0.84.1; IFPS: Cherry Hill, NJ, USA, 2019; Available online: https://CRAN.R-project.org/package=irr (accessed on 22 May 2025).
- Allaire, J.; Gandrud, C.; Russell, K.; Yetman, C. networkD3: D3 JavaScript Network Graphs from R, R package version 0.4; 2017. Available online: https://CRAN.R-project.org/package=networkD3 (accessed on 22 May 2025).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression_, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019; Available online: https://cran.r-project.org/web/packages/car/index.html (accessed on 22 May 2025).
- Douglas, B.; Martin, M.; Ben, B.; Steve, W. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar]
- Basso, M. FRvalidation_against24HRs. Available online: https://github.com/BMelissa/FRvalidation_against24HRs (accessed on 22 May 2025).
- Braga, B.C.; Nguyen, P.H.; Aberman, N.-L.; Doyle, F.; Folson, G.; Hoang, N.; Huynh, P.; Koch, B.; McCloskey, P.; Tran, L.; et al. Exploring an Artificial Intelligence–Based, Gamified Phone App Prototype to Track and Improve Food Choices of Adolescent Girls in Vietnam: Acceptability, Usability, and Likeability Study. JMIR Form. Res. 2022, 6, e35197. [Google Scholar] [CrossRef] [PubMed]
- Svensson, Å.; Magnusson, M.; Larsson, C. Overcoming Barriers: Adolescents’ Experiences Using a Mobile Phone Dietary Assessment App. JMIR Mhealth Uhealth 2016, 4, e92. [Google Scholar] [CrossRef] [PubMed]
- Thornton, L.; Gardner, L.A.; Osman, B.; Green, O.; Champion, K.E.; Bryant, Z.; Teesson, M.; Kay-Lambkin, F.; Chapman, C.; Health4Life Team. A Multiple Health Behavior Change, Self-Monitoring Mobile App for Adolescents: Development and Usability Study of the Health4Life App. JMIR Form. Res. 2021, 5, e25513. [Google Scholar] [CrossRef] [PubMed]
- Sardi, L.; Idri, A.; Fernandez-Aleman, J.L. A systematic review of gamification in e-Health. J. Biomed. Inf. 2017, 71, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Chotwanvirat, P.; Prachansuwan, A.; Sridonpai, P.; Kriengsinyos, W. Advancements in Using AI for Dietary Assessment Based on Food Images: Scoping Review. J. Med. Internet Res. 2024, 26, e51432. [Google Scholar] [CrossRef] [PubMed]
- Castro-Quezada, I.; Ruano-Rodríguez, C.; Ribas-Barba, L.; Serra-Majem, L. Misreporting in nutritional surveys: Methodological implications. Nutr. Hosp. 2015, 31, 119–127. [Google Scholar]
- Tooze, J.A.; Subar, A.F.; Thompson, F.E.; Troiano, R.; Schatzkin, A.; Kipnis, V. Psychosocial predictors of energy underreporting in a large doubly labeled water study. Am. J. Clin. Nutr. 2004, 79, 795–804. [Google Scholar] [CrossRef]
- Schebendach, J.E.; Porter, K.J.; Wolper, C.; Walsh, B.T.; Mayer, L.E. Accuracy of self-reported energy intake in weight-restored patients with anorexia nervosa compared with obese and normal weight individuals. Int. J. Eat. Disord. 2012, 45, 570–574. [Google Scholar] [CrossRef]
- Amoutzopoulos, B.; Steer, T.; Roberts, C.; Collins, D.; Trigg, K.; Barratt, R.; Abraham, S.; Cole, D.J.; Mulligan, A.; Foreman, J.; et al. Rationalisation of the UK Nutrient Databank for Incorporation in a Web-Based Dietary Recall for Implementation in the UK National Diet and Nutrition Survey Rolling Programme. Nutrients 2022, 14, 4551. [Google Scholar] [CrossRef] [PubMed]
- Wong, L. Data analysis in qualitative research: A brief guide to using nvivo. Malays. Fam. Physician 2008, 3, 14–20. [Google Scholar] [PubMed]
Final Sample | Males | Females | |
---|---|---|---|
n = 47 | n = 33 (70.2%) | n = 14 (29.8%) | |
Mean age (mean) | 23.2 (±2.4) | 23.6 (±1.7) | 22.8 (±2.8) |
Age range (mean) | 19.1–27.1 | 20–27 | 19.1–27.1 |
Weight (Kg) | 63 (±9.6) | 65.2 (±7.9) | 57.6 (±11.4) |
Height (cm) | 163.65 (±17.5) | 164.6 (±19.8) | 161.3 (±10.2) |
BMI (Kg/m2) | 24.3 (±7.4) | 25.2 (±8.3) | 22.2 (±4.4) |
STAI-t (mean) | 43.1 (±9.6) | 42.7 (±8.2) | 44.0 (±12.5) |
STAI-s (mean) | 40.5 (±11.8) | 40.1 (±10.5) | 41.2 (±14.8) |
PANAS-p (mean) | 34.9 (±8.8) | 36.1 (±9.1) | 32.0 (±7.8) |
PANAS-n (mean) | 22.7 (±7.1) | 22.7 (±6.9) | 22.5 (±7.7) |
Intake24 Mean (SD) | Median (Lower-Upper 2.5 Percentile) | Libro Mean (SD) | Median (Lower-Upper 2.5 Percentile) | NDNS Mean (SD) | Median (Lower-Upper 2.5 Percentile) | |
---|---|---|---|---|---|---|
Energy (Kcal) | 2094 (828) | 2031 (704–3691) | 1512 (673) | 1542 (386–2698) | 1882 (628) | 1815 (864–3176) |
Protein (%) | 17.1 (4.0) | 17.0 (9.7–24.9) | 20.8 (7.9) | 19.4 (11.4–41.9) | 16.5 (4.2) | 16.0 (10.3–25.6) |
Fat (%) | 31.9 (5.5) | 33.1 (22.5–39.9) | 34.0 (6.4) | 33.8 (24.4–47.1) | 32.9 (6.6) | 33.4 (18.9–44.9) |
Carbohydrate (%) | 49.8 (7.5) | 49.5 (37.5–66.4) | 43.3 (10.7) | 45.8 (11.6–58.8) | 45.5 (7.7) | 45.5 (30.0–60.5) |
Fibre (%) | 1.5 (0.5) | 1.4 (1.0–2.9) | 2.3 (0.9) | 2.3 (0.9–3.9) | - | - |
Free sugars (%) | 11.8 (5.8) | 11.2 (4.6–22.2) | 5.4 (4.1) | 4.3 (0.0–14.6) | 11.6 (6.2) | 10.7 (2.4–25.0) |
Trans-fatty acids (%) | 0.4 (0.1) | 0.4 (0.2–0.6) | 0.7 (0.5) | 0.5 (0.1–2.2) | 0.7 (0.3) | 0.6 (0.2–1.3) |
Intake24 Median (IQR) | Libro Median (IQR) | Median Difference (95% CI) | Wilcoxon Signed Rank (p-Value) | Spearman (95% CI) | Cross-Classification % Same Quartiles | Cross-Classification % Opposite Quartiles | Weighted Kappa Stat (95% CI) | |
---|---|---|---|---|---|---|---|---|
Protein (g) | 90.2 (76.0–99.8) | 67.5 (59.9–82.6) | −17.9 (−23.4–13.9) | <0.001 | 0.27 (−0.02–0.51) | 38.30 | 8.5 | 0.29 (−0.01, 0.56) |
Fat (g) | 76.3 (67.8–81.5) | 56.5 (51.9–61.7) | −20.6 (−26.8–13.8) | <0.001 | −0.04 (−0.33–0.25) | 12.77 | 10.6 | −0.09 (−0.35, 0.17) |
Carbohydrate (g) | 273.7 (253.7–293.8) | 179.8 (162.9–192.1) | −93.9 (−107.9–83.6) | <0.001 | 0.21 (−0.08–0.47) | 34.04 | 12.8 | 0.19 (−0.16, 0.51) |
Fibre (g) | 14.3 (12.5–16.2) | 16.6 (13.3–20.2) | 2.1 (0.5–3.5) | 0.009 | 0.20 (−0.1–0.46) | 34.04 | 8.5 | 0.22 (−0.08, 0.52) |
Free sugars (g) | 61.7 (42.2–79.9) | 20.3 (10.8–30.4) | −41.4 (−49.9–32.1) | <0.001 | 0.21 (−0.08–0.47) | 31.91 | 8.5 | 0.19 (−0.08, 0.47) |
Trans-fatty acids (g) | 0.9 (0.8–1.0) | 0.4 (0.3–0.6) | −0.4 (−0.6–0.3) | <0.001 | 0.16 (−0.13–0.43) | 38.3 | 8.5 | 0.19 (−0.11, 0.46) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basso, M.; Zhang, L.; Savva, G.M.; Cohen Kadosh, K.; Traka, M.H. Relative Validity of the Food Recording Smartphone App Libro in Young People Vulnerable to Eating Disorder: A Preliminary Cross-Over Study. Nutrients 2025, 17, 1823. https://doi.org/10.3390/nu17111823
Basso M, Zhang L, Savva GM, Cohen Kadosh K, Traka MH. Relative Validity of the Food Recording Smartphone App Libro in Young People Vulnerable to Eating Disorder: A Preliminary Cross-Over Study. Nutrients. 2025; 17(11):1823. https://doi.org/10.3390/nu17111823
Chicago/Turabian StyleBasso, Melissa, Liangzi Zhang, George M. Savva, Kathrin Cohen Kadosh, and Maria H. Traka. 2025. "Relative Validity of the Food Recording Smartphone App Libro in Young People Vulnerable to Eating Disorder: A Preliminary Cross-Over Study" Nutrients 17, no. 11: 1823. https://doi.org/10.3390/nu17111823
APA StyleBasso, M., Zhang, L., Savva, G. M., Cohen Kadosh, K., & Traka, M. H. (2025). Relative Validity of the Food Recording Smartphone App Libro in Young People Vulnerable to Eating Disorder: A Preliminary Cross-Over Study. Nutrients, 17(11), 1823. https://doi.org/10.3390/nu17111823