Diet–Gene Interaction Between Fruit Intake and CMIP rs2925979 Polymorphism in Relation to Type 2 Diabetes: A Family-Based Study in Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Dietary Assessment
2.3. Genotyping and Basic Information on Polymorphic Loci
2.4. Definition and Standards of Relevant Indicators
2.5. Statistical Analysis
3. Results
3.1. Basic Characteristics
3.2. Association Between Dietary Intake and T2DM
3.3. Interaction Between Dietary Factors and Genetic Polymorphisms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation. The IDF Diabetes Atlas, 10th ed.; 2021. Available online: https://diabetesatlas.org/resources/previous-editions/ (accessed on 13 December 2024).
- Hu, C.; Jia, W. Diabetes in China: Epidemiology and Genetic Risk Factors and Their Clinical Utility in Personalized Medication. Diabetes 2017, 67, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Peng, W.; Zhao, Z.; Zhang, M.; Shi, Z.; Song, Z.; Zhang, X.; Li, C.; Huang, Z.; Sun, X.; et al. Prevalence and Treatment of Diabetes in China, 2013–2018. JAMA 2021, 326, 2498–2506. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. The IDF Diabetes Atlas, Diabetes Country Report 2000–2050; 2021. Available online: https://diabetesatlas.org/data-by-location/country/china/?utm_source=chatgpt.com (accessed on 21 May 2025).
- Guo, Y.; Huang, Z.; Sang, D.; Gao, Q.; Li, Q. The Role of Nutrition in the Prevention and Intervention of Type 2 Diabetes. Front. Bioeng. Biotechnol. 2020, 8, 575442. [Google Scholar] [CrossRef]
- Deng, W.; Zhao, L.; Chen, C.; Ren, Z.; Jing, Y.; Qiu, J.; Liu, D. National burden and risk factors of diabetes mellitus in China from 1990 to 2021: Results from the Global Burden of Disease study 2021. J. Diabetes 2024, 16, e70012. [Google Scholar] [CrossRef]
- Zhu, D.; Zhou, D.; Li, N.; Han, B. Predicting Diabetes and Estimating Its Economic Burden in China Using Autoregressive Integrated Moving Average Model. Int. J. Public Health 2021, 66, 1604449. [Google Scholar] [CrossRef]
- Li, Y.; Teng, D.I.; Shi, X.; Qin, G.; Qin, Y.; Quan, H.; Shi, B.; Sun, H.; Ba, J.; Chen, B.; et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: National cross sectional study. BMJ 2020, 369, 997. [Google Scholar] [CrossRef]
- An, K.; Zhang, J.; Wang, X.; Qiao, R.; An, Z. The burden of type 2 diabetes in China from 1990 to 2021: A comparative analysis with G20 countries using the global burden of disease study 2021. Diabetes Res. Clin. Pract. 2025, 224, 112188. [Google Scholar] [CrossRef]
- Ma, A.; Lyu, J.; Dong, Z.; Nie, L.; Xie, C.; Jiang, B.; Han, X.; Dong, J.; Zhao, Y.; Li, L. Trends of diabetes in Beijing, China. Chin. Med. J. 2025, 138, 713–720. [Google Scholar] [CrossRef]
- Gao, Z.; Pu, C.; Lin, L.; Ou, Q.; Quan, H. Genome-wide association study of blood lipid levels in Southern Han Chinese adults with prediabetes. Front. Endocrinol. 2024, 14, 1334893. [Google Scholar] [CrossRef]
- Lagou, V.; Jiang, L.; Ulrich, A.; Zudina, L.; González, K.S.G.; Balkhiyarova, Z.; Faggian, A.; Maina, J.G.; Chen, S.; Todorov, P.V.; et al. GWAS of random glucose in 476,326 individuals provide insights into diabetes pathophysiology, complications and treatment stratification. Nat. Genet. 2023, 55, 1448–1461. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, T.; Wu, Y.; Juan, J.; Qin, X.; Tang, X.; Wu, T.; Hu, Y. Opposite Genetic Effects of CMIP Polymorphisms on the Risk of Type 2 Diabetes and Obesity: A Family-Based Study in China. Int. J. Mol. Sci. 2018, 19, 1011. [Google Scholar] [CrossRef] [PubMed]
- Adebo, D.O.; Olaniyan, M.F.; Ugege, C.O.; Odegbemi, O.B. Association between CAPN-10 gene variant and diabetes mellitus in Nigeria: A review. Egypt. J. Med. Hum. Genet. 2025, 26, 25. [Google Scholar] [CrossRef]
- Ramos-Lopez, O. Genotype-based precision nutrition strategies for the prediction and clinical management of type 2 diabetes mellitus. World J. Diabetes 2024, 15, 142–153. [Google Scholar] [CrossRef]
- Jia, X.; Xuan, L.; Dai, H.; Zhu, W.; Deng, C.; Wang, T.; Li, M.; Zhao, Z.; Xu, Y.; Lu, J.; et al. Fruit intake, genetic risk and type 2 diabetes: A population-based gene–diet interaction analysis. Eur. J. Nutr. 2021, 60, 2769–2779. [Google Scholar] [CrossRef]
- Niu, K.; Lyu, Q.; Zhang, S.; Wang, C.; Mao, Z.; Cui, S.; Gu, R.; Li, L. The dose-response relationship of fruit and vegetable intake and risk of type 2 diabetes among rural China: The Henan Rural Cohort study. Prim. Care Diabetes 2023, 17, 161–167. [Google Scholar] [CrossRef]
- Geravand, F.; Montazer, M.; Mousavi, S.M.; Azadbakht, L. Fruit and Vegetable Consumption and Risk of All-Cause and Cause-Specific Mortality in Individuals with Type 2 Diabetes: A Systematic Review and Dose–Response Meta-analysis of Prospective Cohort Studies. Nutr. Rev. 2025, nuaf013. [Google Scholar] [CrossRef]
- Halvorsen, R.E.; Elvestad, M.; Molin, M.; Aune, D. Fruit and vegetable consumption and the risk of type 2 diabetes: A systematic review and dose–response meta-analysis of prospective studies. BMJ Nutr. Prev. Health 2021, 4, 519–531. [Google Scholar] [CrossRef]
- Wu, C.; Liu, P.; Yuan, Z. Prospective association between fruit and vegetable intake and the risk of type 2 diabetes amongst Chinese adults: The China Health and Nutrition Survey. Int. J. Food Sci. Nutr. 2024, 75, 81–91. [Google Scholar] [CrossRef]
- Biswas, S.; Hilser, J.R.; Woodward, N.C.; Wang, Z.; Gukasyan, J.; Nemet, I.; Schwartzman, W.S.; Huang, P.; Han, Y.; Fouladian, Z.; et al. Effect of Genetic and Dietary Perturbation of Glycine Metabolism on Atherosclerosis in Humans and Mice. medRxiv 2023, preprint. [Google Scholar] [CrossRef]
- Chen, L.; Yao, Y.; Jin, C.; Wu, S.; Liu, Q.; Li, J.; Ma, Y.; Xu, Y.; Zhong, Y. Integrative genomic analysis identified common regulatory networks underlying the correlation between coronary artery disease and plasma lipid levels. BMC Cardiovasc. Disord. 2019, 19, 310. [Google Scholar] [CrossRef]
- Florez, J.C.; Udler, M.S.; Hanson, R.L. Genetics of Type 2 Diabetes. In Diabetes in America, 3rd ed.; Cowie, C.C., Ed.; National Institute of Diabetes and Digestive and Kidney Diseases (US): Bethesda, MD, USA, 2018. [Google Scholar]
- Xu, P.; Wang, M.; Sharma, N.K.; Comeau, M.E.; Wabitsch, M.; Langefeld, C.D.; Civelek, M.; Zhang, B.; Das, S.K. Multi-omic integration reveals cell-type-specific regulatory networks of insulin resistance in distinct ancestry populations. Cell Syst. 2023, 14, 41–57.e8. [Google Scholar] [CrossRef] [PubMed]
- McAllan, L.; Baranasic, D.; Villicaña, S.; Brown, S.; Zhang, W.; Lehne, B.; Adamo, M.; Jenkinson, A.; Elkalaawy, M.; Mohammadi, B.; et al. Integrative genomic analyses in adipocytes implicate DNA methylation in human obesity and diabetes. Nat. Commun. 2023, 14, 2784. [Google Scholar] [CrossRef] [PubMed]
- del Bosque-Plata, L.; Martínez-Martínez, E.; Espinoza-Camacho, M.Á.; Gragnoli, C. The Role of TCF7L2 in Type 2 Diabetes. Diabetes 2021, 70, 1220–1228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Meng, X.-H.; Qiu, C.; Shen, H.; Zhao, Q.; Zhao, L.-J.; Tian, Q.; Sun, C.-Q.; Deng, H.-W. Integrative analysis of multi-omics data to detect the underlying molecular mechanisms for obesity in vivo in humans. Hum. Genom. 2021, 16, 15. [Google Scholar] [CrossRef]
- Dos Santos, C.; Blanc, C.; Elahouel, R.; Prescott, M.; Carpentier, G.; Ori, A.; Courty, J.; Hamma-Kourbali, Y.; Fernig, D.G.; Delbé, J. Proliferation and migration activities of fibroblast growth factor-2 in endothelial cells are modulated by its direct interaction with heparin affin regulatory peptide. Biochimie 2014, 107 Pt B, 350–357. [Google Scholar] [CrossRef]
- The GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef]
- Qian, X.; Liu, X.; Mao, Z.; Abdulai, T.; Dong, X.; Tu, R.; Wang, Y.; Liu, X.; Luo, Z.; Qiao, D.; et al. Fruit and vegetable intake modifies the associations between suppressor of cytokine signaling 3 genetic variants and type 2 diabetes. Eur. J. Nutr. 2020, 59, 3441–3449. [Google Scholar] [CrossRef]
- Unwin, D.; Khalid, A.A.; Unwin, J.; Crocombe, D.; Delon, C.; Martyn, K.; Golubic, R.; Ray, S. Insights from a general practice service evaluation supporting a lower carbohydrate diet in patients with type 2 diabetes mellitus and prediabetes: A secondary analysis of routine clinic data including HbA1c, weight and prescribing over 6 years. BMJ Nutr. Prev. Health 2020, 3, 285–294. [Google Scholar] [CrossRef]
- Santos, B.; Minho, L.A.C.; Silva, E.F.R.; Sauthier, M.C.d.S.; Caldas, J.d.C.; da Silva, E.G.P.; Santana, D.d.A.; dos Santos, W.N.L. Chemometric Tools Applied to Evaluation of Fruit Bioactive Compounds Extraction. Food Anal. Methods 2020, 13, 1176–1189. [Google Scholar] [CrossRef]
- Sheikhpour, M.; Abolfathi, H.; Khatami, S.; Meshkani, R.; Barghi, T.S. The interaction between gene profile and obesity in type 2 diabetes: A review. Obes. Med. 2020, 18, 100197. [Google Scholar] [CrossRef]
- Jiang, Z.; Sun, T.-Y.; He, Y.; Gou, W.; Zuo, L.-S.; Fu, Y.; Miao, Z.; Shuai, M.; Xu, F.; Xiao, C.; et al. Dietary fruit and vegetable intake, gut microbiota, and type 2 diabetes: Results from two large human cohort studies. BMC Med. 2020, 18, 371. [Google Scholar] [CrossRef] [PubMed]
- Gudise, V.; Chowdhury, B. Molecular mechanisms and the vital roles of resistin, TLR 4, and NF-κB in treating type 2 diabetic complications. Beni-Suef Univ. J. Basic Appl. Sci. 2020, 9, 54. [Google Scholar] [CrossRef]
- Huang, X.; Liu, G.; Guo, J.; Su, Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 2018, 14, 1483–1496. [Google Scholar] [CrossRef]
- Islam, S.; Wei, P.; Suzauddula; Nime, I.; Feroz, F.; Acharjee, M.; Pan, F. The interplay of factors in metabolic syndrome: Understanding its roots and complexity. Mol. Med. 2024, 30, 279. [Google Scholar] [CrossRef]
- Park, G.; Jung, S.; Wellen, K.E.; Jang, C. The interaction between the gut microbiota and dietary carbohydrates in nonalcoholic fatty liver disease. Exp. Mol. Med. 2021, 53, 809–822. [Google Scholar] [CrossRef]
- Al-Sharshani, D.; Velayutham, D.; Samara, M.; Gazal, R.; Zen, A.A.H.; Ismail, M.A.; Ahmed, M.; Nasrallah, G.; Younes, S.; Rizk, N.; et al. Association of single nucleotide polymorphisms with dyslipidemia and risk of metabolic disorders in the State of Qatar. Mol. Genet. Genom. Med. 2023, 11, e2178. [Google Scholar] [CrossRef]
- Wong, S.K.; Ramli, F.F.; Ali, A.; Ibrahim, N. Genetics of Cholesterol-Related Genes in Metabolic Syndrome: A Review of Current Evidence. Biomedicines 2022, 10, 3239. [Google Scholar] [CrossRef]
- Hindy, G.; Sonestedt, E.; Ericson, U.; Jing, X.-J.; Zhou, Y.; Hansson, O.; Renström, E.; Wirfält, E.; Orho-Melander, M. Role of TCF7L2 risk variant and dietary fibre intake on incident type 2 diabetes. Diabetologia 2012, 55, 2646–2654. [Google Scholar] [CrossRef]
- Poosri, S.; Boonyuen, U.; Chupeerach, C.; Soonthornworasiri, N.; Kwanbunjan, K.; Prangthip, P. Association of FTO variants rs9939609 and rs1421085 with elevated sugar and fat consumption in adult obesity. Sci. Rep. 2024, 14, 25618. [Google Scholar] [CrossRef]
- Hosseinpour-Niazi, S.; Mirmiran, P.; Hosseini, S.; Hadaegh, F.; Ainy, E.; Daneshpour, M.S.; Azizi, F. Effect of TCF7L2 on the relationship between lifestyle factors and glycemic parameters: A systematic review. Nutr. J. 2022, 21, 59. [Google Scholar] [CrossRef]
Basic Characteristics | Total Number (n = 1747) | T2DM (n = 1138) | Non-T2DM (n = 609) | p Value |
---|---|---|---|---|
Age, years, mean (SD) | 58.7 ± 8.6 | 59.1 ± 8.5 | 57.9 ± 8.8 | 0.006 |
Gender, n (%) | 0.996 | |||
Male | 677 (38.8) | 441 (38.8) | 236 (38.8) | |
Female | 1070 (61.2) | 697 (61.2) | 373 (61.2) | |
Occupation, n (%) | 0.306 | |||
Farmer | 538 (30.8) | 341 (30.0) | 197 (32.3) | |
Non-Farmer | 1209 (69.2) | 797 (70.0) | 412 (67.7) | |
Education level, n (%) | 0.654 | |||
Junior high school and below | 1465 (83.9) | 951 (83.6) | 514 (84.4) | |
High school and above | 282 (16.1) | 187 (16.4) | 95 (15.6) | |
Marital status, n (%) | 0.607 | |||
Married | 1522 (87.1) | 988 (86.8) | 534 (87.7) | |
Unmarried | 225 (12.9) | 150 (13.2) | 75 (12.3) | |
Waist circumference (cm), mean (SD) | 92.5 ± 9.4 | 93.4 ± 9.4 | 91.0 ± 9.3 | <0.001 |
Hip circumference (cm), mean (SD) | 99.7 ± 7.2 | 99.8 ± 7.4 | 99.6 ± 6.8 | 0.675 |
BMI (kg/m2), n (%) | 0.534 | |||
<18.5 | 25 (1.4) | 15 (1.3) | 10 (1.6) | |
18.50~23.99 | 446 (25.5) | 281 (24.7) | 165 (27.1) | |
24.00~27.99 | 767 (43.9) | 506 (44.5) | 261 (42.9) | |
≥28.00 | 509 (29.1) | 336 (29.5) | 173 (28.4) | |
Systolic blood pressure (mmHg), mean (SD) | 135.4 ± 19.0 | 135.7 ± 18.7 | 134.9 ± 19.6 | 0.356 |
Diastolic blood pressure (mmHg), mean (SD) | 80.0 ± 11.2 | 79.4 ± 11.1 | 81.2 ± 11.3 | 0.001 |
Fasting blood glucose (mmol/L), mean (SD) | 6.0 ± 2.9 | 6.7 ± 3.1 | 4.7 ± 2.1 | <0.001 |
Total cholesterol (mmol/L), mean (SD) | 2.8 ± 1.2 | 2.8 ± 1.2 | 2.9 ± 1.1 | 0.154 |
HbA1c (%, mean (SD)) | 7.2 ± 1.8 | 7.8 ± 1.7 | 6.0 ± 1.1 | <0.001 |
Stroke history, n (%) | 0.202 | |||
Yes | 297 (17.0) | 184 (16.2) | 113 (18.6) | |
No | 1450 (83.0) | 954 (83.3) | 496 (81.4) | |
Hypertension, n (%) | 0.002 | |||
Yes | 1222 (69.9) | 824 (72.4) | 398 (65.4) | |
No | 525 (30.1) | 314 (27.6) | 211 (34.6) | |
Smoking, n (%) | 0.872 | |||
Never smoked | 1097 (62.8) | 713 (62.7) | 384 (63.1) | |
Smoking | 650 (37.2) | 425 (37.3) | 225 (36.9) | |
Drinking, n (%) | 0.015 | |||
Never drank | 1148 (65.7) | 771 (67.8) | 377 (61.9) | |
Drank | 599 (34.3) | 367 (32.2) | 232 (38.1) | |
Regular exercise, n (%) | 0.015 | |||
Yes | 308 (17.6) | 182 (16.0) | 126 (20.7) | |
No | 1439 (82.4) | 956 (84.0) | 483 (79.3) |
Intake Level | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | |
Q1 | 1.00 | 1.00 | 1.00 | |||
Q2 | 0.45 (0.34, 0.61) | <0.001 | 0.45 (0.34, 0.61) | <0.001 | 0.44 (0.33, 0.60) | <0.001 |
Q3 | 0.47 (0.35, 0.62) | <0.001 | 0.46 (0.40, 0.61) | <0.001 | 0.46 (0.33, 0.62) | <0.001 |
Q4 | 0.60 (0.44, 0.81) | <0.001 | 0.59 (0.43, 0.79) | <0.001 | 0.58 (0.43, 0.80) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, L.; Tan, Y.; Wu, Y.; Qin, X.; Gong, H.; Zhao, Y.; Wu, T.; Chen, D.; Wang, M.; Wang, J.; et al. Diet–Gene Interaction Between Fruit Intake and CMIP rs2925979 Polymorphism in Relation to Type 2 Diabetes: A Family-Based Study in Northern China. Nutrients 2025, 17, 1789. https://doi.org/10.3390/nu17111789
Kuo L, Tan Y, Wu Y, Qin X, Gong H, Zhao Y, Wu T, Chen D, Wang M, Wang J, et al. Diet–Gene Interaction Between Fruit Intake and CMIP rs2925979 Polymorphism in Relation to Type 2 Diabetes: A Family-Based Study in Northern China. Nutrients. 2025; 17(11):1789. https://doi.org/10.3390/nu17111789
Chicago/Turabian StyleKuo, Liangchun, Yinxi Tan, Yiqun Wu, Xueying Qin, Haiying Gong, Yao Zhao, Tao Wu, Dafang Chen, Mengying Wang, Junbo Wang, and et al. 2025. "Diet–Gene Interaction Between Fruit Intake and CMIP rs2925979 Polymorphism in Relation to Type 2 Diabetes: A Family-Based Study in Northern China" Nutrients 17, no. 11: 1789. https://doi.org/10.3390/nu17111789
APA StyleKuo, L., Tan, Y., Wu, Y., Qin, X., Gong, H., Zhao, Y., Wu, T., Chen, D., Wang, M., Wang, J., & Hu, Y. (2025). Diet–Gene Interaction Between Fruit Intake and CMIP rs2925979 Polymorphism in Relation to Type 2 Diabetes: A Family-Based Study in Northern China. Nutrients, 17(11), 1789. https://doi.org/10.3390/nu17111789