Skeletal Muscle Mass Index and Body Fat Percentage Reflect Different Nutritional Markers Independent of BMI in Underweight Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Patient Backgrounds Were Classified by Age, SMI, and Body Fat Percentage
3.1.1. BMI, BMI at 20 Years, and BMI Ratio (Present-to-Age 20 Ratio) by Age, SMI, and Body Fat Percentage
3.1.2. Vitamin Levels and Frequency of Vitamin Deficiency by Age, SMI, and Body Fat Percentage
3.1.3. Albumin, Lymphocyte, Cholesterol, CONUT Score, Prealbumin, and Anemia by Age, SMI, and Body Fat Percentage
3.2. Multivariate Analysis of the Associations Between Body Size and Nutritional Markers
3.2.1. Body Fat Percentage Rather than SMI Is Associated with the BMI Ratio (Present-to-Age 20 Ratio)
3.2.2. SMI and Body Fat Percentage Are Associated with Grip Strength and Lymphocytes, Respectively
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SMI | Skeletal muscle mass index |
BF% | Body fat percentage |
CONUT | CONtrolling NUTritional status |
References
- Kodama, H. Problems of Underweight in Young Females and Pregnant Women in Japan. Jpn. Med. Assoc. J. 2010, 53, 285–289. [Google Scholar]
- Available online: https://www.mhlw.go.jp/content/10900000/001296359.pdf (accessed on 4 May 2025).
- Iizuka, K.; Kobae, K.; Yanagi, K.; Yamada, Y.; Deguchi, K.; Ushiroda, C.; Seino, Y.; Suzuki, A.; Saitoh, E.; Naruse, H. Differing Effects of Body Size on Circulating Lipid Concentrations and Hemoglobin A1c Levels in Young and Middle-Aged Japanese Women. Healthcare 2024, 12, 465. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, K.; Sato, H.; Kobae, K.; Yanagi, K.; Yamada, Y.; Ushiroda, C.; Hirano, K.; Ichimaru, S.; Seino, Y.; Ito, A.; et al. Young Japanese Underweight Women with “Cinderella Weight” Are Prone to Malnutrition, including Vitamin Deficiencies. Nutrients 2023, 15, 2216. [Google Scholar] [CrossRef]
- Tatsumi, Y.; Higashiyama, A.; Kubota, Y.; Sugiyama, D.; Nishida, Y.; Hirata, T.; Kadota, A.; Nishimura, K.; Imano, H.; Miyamatsu, N.; et al. Underweight Young Women without Later Weight Gain Are at High Risk for Osteopenia after Midlife: The KOBE Study. J. Epidemiol. 2016, 26, 572–578. [Google Scholar] [CrossRef]
- Boutari, C.; Pappas, P.D.; Mintziori, G. The effect of underweight on female and male reproduction. Metabolism 2020, 107, 154229. [Google Scholar] [CrossRef]
- Jauch-Chara, K.; Schmoller, A.; Oltmanns, K.M. Impaired glucose tolerance in healthy men with low body weight. Nutr. J. 2011, 10, 16. [Google Scholar] [CrossRef]
- Yamamoto, S.; Wada, Y. Awareness, use and information sources of folic acid supplementation to prevent neural tube defects in pregnant Japanese women. Public Health Nutr. 2018, 21, 732–739. [Google Scholar] [CrossRef]
- Tabara, Y.; Setoh, K.; Kawaguchi, T.; Matsuda, F. Skeletal muscle mass index is independently associated with all-cause mortality in men: The Nagahama study. Geriatr. Gerontol. Int. 2022, 22, 956–960. [Google Scholar] [CrossRef]
- Fukuoka, Y.; Narita, T.; Fujita, H.; Morii, T.; Sato, T.; Sassa, M.H.; Yamada, Y. Importance of physical evaluation using skeletal muscle mass index and body fat percentage to prevent sarcopenia in elderly Japanese diabetes patients. J. Diabetes Investig. 2019, 10, 322–330. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, D.; Liu, J.; Song, Y.; Jiang, B.; Jiang, H. Low skeletal muscle mass index and all-cause mortality risk in adults: A systematic review and meta-analysis of prospective cohort studies. PLoS ONE 2023, 18, e0286745. [Google Scholar] [CrossRef]
- Chai, L.; Zhang, D.; Fan, J. Comparison of grip strength measurements for predicting all-cause mortality among adults aged 20+ years from the NHANES 2011–2014. Sci. Rep. 2024, 14, 29245. [Google Scholar] [CrossRef] [PubMed]
- Arai, H.; Ikegawa, N.; Nozoe, M.; Kamiya, K.; Matsumoto, S. Association between Skeletal Muscle Mass Index and Convalescent Rehabilitation Ward Achievement Index in Older Patients. Prog. Rehabil. Med. 2022, 7, 20220003. [Google Scholar] [CrossRef]
- Tanaka, K.I.; Morisato, Y.; Nakajima, H.; Kanasaki, K.; Sugimoto, T.; Kanazawa, I. Which Is a Better Skeletal Muscle Mass Index for the Evaluation of Physical Abilities: The Present Height or Maximum Height? Intern. Med. 2021, 60, 1191–1196. [Google Scholar] [CrossRef]
- Saldanha, N.; Fisher, M. Menstrual disorders in adolescents and young adults with eating disorders. Curr. Probl. Pediatr. Adolesc. Health Care. 2022, 52, 101240. [Google Scholar] [CrossRef]
- Baker, E.R. Body weight and the initiation of puberty. Clin. Obstet. Gynecol. 1985, 28, 573–579. [Google Scholar] [CrossRef]
- Frisch, R.E. Body fat, menarche, fitness and fertility. Hum. Reprod. 1987, 2, 521–533. [Google Scholar] [CrossRef]
- Wei, S.; Nguyen, T.T.; Zhang, Y.; Ryu, D.; Gariani, K. Sarcopenic obesity: Epidemiology, pathophysiology, cardiovascular disease, mortality, and management. Front. Endocrinol. 2023, 14, 1185221. [Google Scholar] [CrossRef]
- Donini, L.M.; Busetto, L.; Bischoff, S.C.; Cederholm, T.; Ballesteros-Pomar, M.D.; Batsis, J.A.; Bauer, J.M.; Boirie, Y.; Cruz-Jentoft, A.J.; Dicker, D.; et al. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obes. Facts. 2022, 15, 321–335. [Google Scholar] [CrossRef]
- Ignacio de Ulíbarri, J.; González-Madroño, A.; de Villar, N.G.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar] [PubMed]
- Rinninella, E.; Borriello, R.; D’Angelo, M.; Galasso, T.; Cintoni, M.; Raoul, P.; Impagnatiello, M.; Annicchiarico, B.E.; Gasbarrini, A.; Mele, M.C. COntrolling NUTritional Status (CONUT) as Predictive Score of Hospital Length of Stay (LOS) and Mortality: A Prospective Cohort Study in an Internal Medicine and Gastroenterology Unit in Italy. Nutrients 2023, 15, 1472. [Google Scholar] [CrossRef]
- Hao, R.; Qi, X.; Xia, X.; Wang, L.; Li, X. Malnutrition on admission increases the in-hospital mortality and length of stay in elder adults with acute ischemic stroke. J. Clin. Lab. Anal. 2022, 36, e24132. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhu, M.; Yang, X.; Cui, H.; Li, Z.; Wei, J. Controlling Nutritional Status Score as a Predictive Marker of In-hospital Mortality in Older Adult Patients. Front. Nutr. 2021, 8, 738045. [Google Scholar] [CrossRef]
- Muraki, I. Muscle Mass Assessment in Sarcopenia: A Narrative Review. JMA J. 2023, 6, 381–386. [Google Scholar] [PubMed]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Keller, U. Nutritional Laboratory Markers in Malnutrition. J. Clin. Med. 2019, 8, 775. [Google Scholar] [CrossRef]
- Available online: https://www.verywellhealth.com/body-fat-percentage-chart-8550202#:~:text=Athletes:%2014–20%25,obese):%2032%25%20and%20over (accessed on 1 May 2025).
- Sun, G.; French, C.R.; Martin, G.R.; Younghusband, B.; Green, R.C.; Xie, Y.G.; Mathews, M.; Barron, J.R.; Fitzpatrick, D.G.; Gulliver, W.; et al. Comparison of multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of percentage body fat in a large, healthy population. Am. J. Clin. Nutr. 2005, 81, 74–78. [Google Scholar] [CrossRef]
- Fujioka, S.; Matsuzawa, Y.; Tokunaga, K.; Tarui, S. Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism 1987, 36, 54–59. [Google Scholar] [CrossRef]
- Matsuzawa, Y.; Nakamura, T.; Shimomura, I.; Kotani, K. Visceral fat accumulation and cardiovascular disease. Obes. Res. 1995, 3 (Suppl. S5), 645S–647S. [Google Scholar] [CrossRef]
- Potter, A.W.; Chin, G.C.; Looney, D.P.; Friedl, K.E. Defining Overweight and Obesity by Percent Body Fat Instead of Body Mass Index. J. Clin. Endocrinol. Metab. 2025, 110, e1103–e1107. [Google Scholar] [CrossRef]
- Iizuka, K.; Yanagi, K.; Deguchi, K.; Ushiroda, C.; Yamamoto-Wada, R.; Kobae, K.; Yamada, Y.; Naruse, H. Sex and Age Differences in the Effects of Food Frequency on Metabolic Parameters in Japanese Adults. Nutrients 2024, 16, 2931. [Google Scholar] [CrossRef]
- Available online: https://www.nhs.uk/conditions/vitamin-b12-or-folate-deficiency-anaemia/ (accessed on 1 May 2025).
- Black, M.M. Effects of vitamin B12 and folate deficiency on brain development in children. Food Nutr Bull. 2008, 29 (Suppl. S2), S126–S131. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Available online: https://www.oist.jp/resource-center/milk (accessed on 1 May 2024).
- Suzuki, Y.; Maruyama-Nagao, A.; Sakuraba, K.; Kawai, S. Milk fortified with vitamin D could reduce the prevalence of vitamin D deficiency among Japanese female college students. Arch. Osteoporos. 2014, 9, 188. [Google Scholar] [CrossRef]
- Barendregt, K.; Soeters, P.; Allison, S.; Sobotka, L. Basics in clinical nutrition: Simple and stress starvation. E-Spen Eur. E-J. Clin. Nutr. Metab. 2018, 3, e267–e271. [Google Scholar] [CrossRef]
- Moreau, J.; Ordan, M.A.; Barbe, C.; Mazza, C.; Perrier, M.; Botsen, D.; Brasseur, M.; Portefaix, C.; Renard, Y.; Tallière, B.; et al. Correlation between muscle mass and handgrip strength in digestive cancer patients undergoing chemotherapy. Cancer Med. 2019, 8, 3677–3684. [Google Scholar] [CrossRef]
- De, A.; Kumari, S.; Kaur, A.; Singh, A.; Kalra, N.; Singh, V. Hand-grip strength as a screening tool for sarcopenia in males with decompensated cirrhosis. Indian J. Gastroenterol. 2022, 41, 284–291. [Google Scholar] [CrossRef]
- Meerkerk, C.D.A.; Chargi, N.; de Jong, P.A.; van den Bos, F.; de Bree, R. Sarcopenia measured with handgrip strength and skeletal muscle mass to assess frailty in older patients with head and neck cancer. J. Geriatr. Oncol. 2021, 12, 434–440. [Google Scholar] [CrossRef]
- Benavides-Rodríguez, L.; García-Hermoso, A.; Rodrigues-Bezerra, D.; Izquierdo, M.; Correa-Bautista, J.E.; Ramírez-Vélez, R. Relationship between Handgrip Strength and Muscle Mass in Female Survivors of Breast Cancer: A Mediation Analysis. Nutrients 2017, 9, 695. [Google Scholar] [CrossRef]
- Lo Buglio, A.; Bellanti, F.; Carmignano, D.F.P.; Serviddio, G.; Vendemiale, G. Association between Controlling Nutritional Status (CONUT) Score and Body Composition, Inflammation and Frailty in Hospitalized Elderly Patients. Nutrients 2024, 16, 576. [Google Scholar] [CrossRef]
- Nishida, T.; Sakakibara, H. Association between underweight and low lymphocyte count as an indicator of malnutrition in Japanese women. J. Womens Health 2010, 19, 1377–1383. [Google Scholar] [CrossRef]
- What Is Lymphopenia. Available online: https://www.nhlbi.nih.gov/health/lymphopenia (accessed on 1 May 2025).
- Ryder, E.; Diez-Ewald, M.; Mosquera, J.; Fernández, E.; Pedreañez, A.; Vargas, R.; Peña, C.; Fernández, N. Association of obesity with leukocyte count in obese individuals without metabolic syndrome. Diabetes Metab. Syndr. 2014, 8, 197–204. [Google Scholar] [CrossRef]
- Kintscher, U.; Hartge, M.; Hess, K.; Foryst-Ludwig, A.; Clemenz, M.; Wabitsch, M.; Fischer-Posovszky, P.; Barth, T.F.; Dragun, D.; Skurk, T.; et al. T-lymphocyte infiltration in visceral adipose tissue: A primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1304–1310. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Qin, W.; Zheng, Y.; Pang, J.; Zhong, N.; Fei, J.; Li, Y.; Jian, X.; Hou, X.; Hu, Z.; et al. Malnutrition Contributes to Low Lymphocyte Count in Early-Stage Coronavirus Disease-2019. Front. Nutr. 2022, 8, 739216. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saito, H.; Nomura, K.; Hotta, M.; Takano, K. Malnutrition induces dissociated changes in lymphocyte count and subset proportion in patients with anorexia nervosa. Int. J. Eat. Disord. 2007, 40, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Fukasawa, H.; Yamawaki, M.; Furuya, J.; Omata, K.; Kaneko, M.; Matsuyama, T.; Yasuda, H.; Furuya, R. The effects of zinc supplementation on body fat mass in hemodialysis patients: An open-label randomized controlled trial. Ther. Apher. Dial. 2025, 29, 170–177. [Google Scholar] [CrossRef]
- Heaney, R.P.; Horst, R.L.; Cullen, D.M.; Armas, L.A. Vitamin D3 distribution and status in the body. J. Am. Coll Nutr. 2009, 28, 252–256. [Google Scholar] [CrossRef]
- Combs, G.F. The Vitamins: Fundamental Aspects in Nutrition and Health, 3rd ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Akamatsu, Y.; Kusakabe, T.; Arai, H.; Yamamoto, Y.; Nakao, K.; Ikeue, K.; Ishihara, Y.; Tagami, T.; Yasoda, A.; Ishii, K.; et al. Phase angle from bioelectrical impedance analysis is a useful indicator of muscle quality. J. Cachexia Sarcopenia Muscle 2022, 13, 180–189. [Google Scholar] [CrossRef]
Age | SMI | BF% | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total (n = 102) | 20–29 yo (n = 64) | 30–39 yo (n = 20) | 40–65 yo (n = 18) | p | Q1 (n = 26) | Q2 (n = 25) | Q3 (n = 25) | Q4 (n = 26) | p | Q1 (n = 26) | Q2 (n = 26) | Q3 (n = 24) | Q4 (n = 26) | p | |
Age (years) | 30.9 (10.2) | 24.6 (1.7) | 33.4 (3.0) | 50.3 (6.8) | <0.001 | 28.6 (9.9) | 31.0 (9.2) | 32.3 (10.6) | 31.8 (11.3) | 0.58 | 33.0 (10.3) | 31.8 (12.7) | 28.0 (5.6) | 30.5 (10.7) | 0.36 |
BMI (kg/m2) | 17.0 (0.7) | 17.0 (0.7) | 16.8 (0.7) | 17.2 (0.6) | 0.32 | 16.6 (0.8) | 16.8 (0.8) | 17.3 (0.6) | 17.3 (0.4) | <0.001 | 16.7 (0.8) | 17.0 (0.6) | 17.0 (0.8) | 17.3 (0.6) | 0.04 |
BMI at 20 years (kg/m2) | 17.4 (1.4) | 17.3 (1.2) | 17.2 (1.7) | 18.1 (1.6) | 0.09 | 16.5 (1.0) | 17.2 (1.1) | 17.7 (0.1) | 18.1 (7.8) | <0.001 | 17.6 (1.7) | 17.5 (1.4) | 17.1 (1.4) | 17.3 (1.0) | 0.5 |
BMI ratio (%) | 98.3 (6.7) | 98.8 (5.6) | 98.5 (8.1) | 96.2 (8.7) | 0.36 | 100.6 (5.1) | 98.4 (6.2) | 98.0 (7.1) | 96.3 (7.8) | 0.15 | 95.3 (7.3) | 97.8 (6.4) | 100.0 (5.6) | 100.4 (6.5) | 0.032 |
SMI (kg/m2) | 7.1 (0.4) | 7.0 (0.5) | 7.1 (0.4) | 7.2 (0.4) | 0.2 | 6.5 (0.2) | 7.0 (0.07) | 7.2 (0.1) | 7.6 (0.2) | <0.001 | 7.4 (0.4) | 7.2 (0.4) | 7.0 (0.3) | 6.7 (3.2) | <0.001 |
BF% | 22.0 (4.0) | 22.6 (4.1) | 20.8 (2.6) | 21.2 (4.5) | 0.13 | 25.2 (4.1) | 22.4 (3.9) | 21.6 (2.6) | 18.9 (2.3) | <0.001 | 17.5 (1.4) | 20.4 (0.5) | 22.7 (1.2) | 27.5 (2.2) | <0.001 |
Grip strength (kg) | 22.5 (4.8) | 22.3 (5.0) | 21.4 (4.6) | 24.1 (3.7) | 0.2 | 20.0 (3.6) | 22.0 (4.4) | 23.2 (4.1) | 24.7 (5.6) | 0.03 | 23.9 (4.6) | 23.3 (5.0) | 21.2 (4.4) | 21.5 (4.7) | 0.12 |
Age | SMI | BF% | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total (n = 102) | 20–29 yo (n = 64) | 30–39 yo (n = 20) | 40–65 yo (n = 18) | p | Q1 (n = 26) | Q2 (n = 25) | Q3 (n = 25) | Q4 (n = 26) | p | Q1 (n = 26) | Q2 (n = 26) | Q3 (n = 24) | Q4 (n = 26) | p | |
Β1 [24–66] (ng/mL) | 30.1 (6.6) | 30.7 (6.3) | 30.0 (7.7) | 28.1 (6.1) | 0.33 | 32.0 (8.1) | 28.9 (4.8) | 29.3 (7.1) | 30.0 (5.6) | 0.32 | 31.2 (9.2) | 29.2 (4.6) | 27.3 (4.1) | 32.3 (6.29) | 0.032 |
Normal | 94 (92%) | 60 (94%) | 20 (100%) | 14 (78%) | 0.03 | 25 (96%) | 23 (92%) | 23 (92%) | 23 (89%) | 0.79 | 22 (85%) | 25 (96%) | 21 (87%) | 26 (100%) | 0.14 |
Deficiency | 8 (8%) | 4 (6%) | 0 (0%) | 4 (22%) | 1 (4%) | 2 (8%) | 2 (8%) | 3 (11%) | 4 (15%) | 1 (4%) | 3 (13%) | 0 (0%) | |||
Folate [≥4] (ng/mL) | 8.1 (4.8) | 7.4 (4.4) | 9.7 (5.9) | 8.7 (4.3) | 0.13 | 8.0 (4.1) | 8.1 (5.8) | 8.8 (5.1) | 7.3 (4.1) | 0.73 | 8.6 (4.3) | 6.8 (3.8) | 8.2 (5.8) | 8.7 (5.2) | 0.47 |
Normal | 90 (88%) | 53 (83%) | 20 (100%) | 17 (94%) | 0.08 | 23 (89%) | 21 (84%) | 24 (96%) | 22 (85%) | 0.53 | 23 (88%) | 23 (88%) | 22 (92%) | 22 (85%) | 0.9 |
Deficiency | 12 (12%) | 11 (17%) | 0 (0%) | 1 (6%) | 3 (12%) | 4 (16%) | 1 (4%) | 4 (15%) | 3 (12%) | 3 (12%) | 2 (8%) | 4 (15%) | |||
B12 [200–914] (pg/mL) | 289.4 (131.0) | 271.1 (115.8) | 338.1 (148.6) | 299.3 (152.4) | 0.13 | 267.8 (99.6) | 277.2 (144.7) | 323.9 (141.9) | 288.7 (133.6) | 0.46 | 294.2 (118.3) | 262.3 (94.2) | 346.3 (181.3) | 258.1 (104.8) | 0.066 |
Normal | 77 (76%) | 47 (73%) | 16 (80%) | 14 (78%) | 0.81 | 20 (77%) | 16 (64%) | 21 (84%) | 20 (77%) | 0.42 | 19 (73%) | 21 (81%) | 20 (83%) | 17 (65%) | 0.44 |
Deficiency | 25 (24%) | 17 (27%) | 4 (20%) | 4 (22%) | 6 (23%) | 9 (36%) | 4 (16%) | 6 (23%) | 7 (27%) | 5 (19%) | 4 (17%) | 9 (35%) | |||
25OHD [≥30] (ng/mL) | 11.2 (5.0) | 11.0 (4.7) | 12.1 (5.3) | 11.0 (6.1) | 0.7 | 10.4 (3.9) | 10.6 (4.9) | 13.2 (6.0) | 10.8 (4.9) | 0.16 | 12.7 (6.5) | 10.6 (4.5) | 10.5 (4.0) | 11.2 (4.8) | 0.39 |
Normal | 6 (6%) | 3 (5%) | 1 (5%) | 2 (11%) | 0.58 | 0 (0%) | 1 (4%) | 3 (12%) | 2 (8%) | 0.30 | 23 (88%) | 24 (92%) | 24 (100%) | 25 (96%) | 0.34 |
Deficiency | 96 (94%) | 61 (95%) | 19 (95%) | 16 (89%) | 26 (100%) | 24 (96%) | 22 (88%) | 24 (92%) | 3 (12%) | 2 (8%) | 0 | 1 (4%) |
Age | SMI | BF% | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total (n = 102) | 20–29 yo (n = 64) | 30–39 yo (n = 20) | 40–65 yo (n = 18) | p | Q1 (n = 26) | Q2 (n = 25) | Q3 (n = 25) | Q4 (n = 26) | p | Q1 (n = 26) | Q2 (n = 26) | Q3 (n = 24) | Q4 (n = 26) | p | |
Total cholesterol [120–219] (mg/dL) | 179.2 (39.5) | 174.8 (26.7) | 166.1 (16.5) | 209.4 (71.2) | <0.001 | 183.9 (27.6) | 169.2 (19.4) | 180.6 (26.2) | 182.8 (66.1) | 0.53 | 186.3 (62.3) | 181.2 (33.8) | 170.8 (19.4) | 177.9 (28.2) | 0.57 |
Albumin (g/dL) | 4.5 (0.3) | 4.5 (0.3) | 4.5 (0.2) | 4.4 (0.3) | 0.4 | 4.5 (0.2) | 4.5 (0.3) | 4.5 (0.4) | 4.5 (0.3) | 0.97 | 4.5 (0.3) | 4.4 (0.3) | 4.5 (0.3) | 4.5 (0.3) | 0.35 |
Lymphocyte [1000–4800] (/μL) | 1760.0 (510.2) | 1859.3 (493.8) | 1739.0 (503.4) | 1429.6 (454.1) | 0.006 | 1846.1 (530.5) | 1787.7 (485.0) | 1683.6 (567.8) | 1720.2 (467.8) | 0.68 | 1620.2 (385.8) | 1732.1 (522.9) | 1751.3 (320.4) | 1935.3 (694.0) | 0.16 |
CONUT score | |||||||||||||||
Normal (0–1) | 62 (61%) | 45 (70%) | 10 (50%) | 7 (39%) | 0.03 | 19 (73%) | 16 (64%) | 14 (56%) | 13 (50%) | 0.35 | 12 (46%) | 16 (62%) | 18 (75%) | 16 (62%) | 0.22 |
Mild (2–4) | 40 (39%) | 19 (30%) | 10( 50%) | 11 (61%) | 7 (27%) | 9 (36%) | 11 (44%) | 13 (50%) | 14 (54%) | 10 (38%) | 6 (25%) | 10 (38%) | |||
Prealbumin [22–40] (mg/dL) | 23.6 (4.1) | 23.4 (4.3) | 23.7 (3.6) | 24.0 (4.0) | 0.84 | 23.3 (4.0) | 23.2 (4.4) | 24.5 (4.2) | 23.3 (3.8) | 0.65 | 23.2 (4.0) | 24.0 (4.7) | 22.1 (3.9) | 24.8 (3.4) | 0.12 |
HbA1c [4.6–6.2] (%) | 5.4 (0.2) | 5.4 (0.2) | 5.5 (0.2) | 5.5 (0.2) | 0.51 | 5.4 (0.3) | 5.4 (0.2) | 5.5 (0.2) | 5.5 (0.2) | 0.049 | 5.5 (0.2) | 5.5 (0.2) | 5.5 (0.2) | 5.4 (0.2) | 0.19 |
Hb [11.4–14.6] (g/dL) | 13.0 (1.0) | 13.0 (0.8) | 12.4 (1.5) | 13.4 (0.9) | 0.006 | 13.0 (0.9) | 12.7 (1.4) | 12.9 (0.9) | 13.1 (0.8) | 0.65 | 13.1 (1.1) | 12.7 (0.9) | 12.8 (1.2) | 13.3 (0.9) | 0.13 |
Normal | 91 (89%) | 58 (91%) | 15 (75%) | 18 (100%) | 0.039 | 22 (85%) | 22 (88%) | 22 (88%) | 25 (96%) | 0.58 | 25 (96%) | 21 (81%) | 21 (87%) | 24 (92%) | 0.31 |
Anemia | 11 (11%) | 6 (9%) | 5 (25%) | 0 (0%) | 4 (15%) | 3 (12%) | 3 (12%) | 1 (4%) | 1 (4%) | 5 (19%) | 3 (13%) | 2 (8%) |
Independent Variable | Dependent Variable | β (95% CI) | p |
---|---|---|---|
BMI (kg/m2) | Age | 0.007 [−0.001, 0.02] | 0.099 |
SMI (kg/m2) | 1.6 [1.4, 1.9] | <0.001 | |
BF% | 0.2 [0.1, 0.2] | <0.001 | |
BMI (kg/m2) at 20 yo | Age | 0.03 [0.006, 0.06] | 0.014 |
SMI (kg/m2) | 1.77 [1.06, 2.5] | <0.001 | |
BF% | 1.77 [0.01, 0.2] | 0.027 | |
BMI ratio (vs. 20 yo) | Age | −0.1 [−0.2, 0.01] | 0.08 |
SMI (kg/m2) | −0.4 [−4.2, 3.6] | 0.83 | |
BF% | 0.5 [0.05, 0.9] | 0.03 |
MODEL 1 | MODEL 2 | ||||
---|---|---|---|---|---|
Independent Variable | Dependent Variable | β (95% CI) | p | β (95% CI) | p |
Grip strength (kg) | Age | 0.05 [−0.04, 0.1] | 0.24 | 0.07 [−0.02, 0.2] | 0.13 |
SMI (kg/m2) | 4.0 [1.4, 6.6] | 0.003 | |||
BF% | 0.06 [−0.2, 0.3] | 0.68 | |||
BMI | 0.8 [−0.5, 2.1] | 0.22 | |||
B1 (ng/mL) | Age | −0.07 [−0.2, 0.06] | 0.32 | −0.08 [−0.2, 0.05] | 0.22 |
SMI (kg/m2) | −0.7 [−4.5, 3.1] | 0.61 | |||
BF% | 0.1 [−0.3, 0.5] | 0.72 | |||
BMI | 0.5 [−1.3, 2.3] | 0.6 | |||
Total cholesterol (mg/dL) | Age | 1.2 [0.5, 2.0] | 0.001 | 1.3 [0.6, 2.0] | <0.001 |
SMI (kg/m2) | −2.3 [−24.2, 19.5] | 0.83 | |||
BF% | −1.0 [−3.4, 1.4] | 0.4 | |||
BMI | −1.7 [−12.0, 8.6] | 0.74 | |||
Lymphocyte (/μL) | Age | −13.9 [−23.3, −4.5] | 0.004 | −15.9[−25.4, −6.4] | 0.001 |
SMI (kg/m2) | 118.5 [−158.7, 395.8] | 0.4 | |||
BF% | 36.2 [6.0, 66.5] | 0.02 | |||
BMI | 90.7 [−42.5, 224.0] | 0.18 | |||
HbA1c (%) | Age | 0.002 [−0.003, 0.006] | 0.46 | 0.002 [−0.002, 0.007] | 0.27 |
SMI (kg/m2) | 0.05 [−0.08, 0.2] | 0.48 | |||
BF% | −0.006 [−0.02, 0.008] | 0.39 | |||
BMI | 0.002 [−0.06,0.06] | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiraiwa, E.; Yamamoto-Wada, R.; Deguchi, K.; Ushiroda, C.; Naruse, H.; Iizuka, K. Skeletal Muscle Mass Index and Body Fat Percentage Reflect Different Nutritional Markers Independent of BMI in Underweight Women. Nutrients 2025, 17, 1766. https://doi.org/10.3390/nu17111766
Hiraiwa E, Yamamoto-Wada R, Deguchi K, Ushiroda C, Naruse H, Iizuka K. Skeletal Muscle Mass Index and Body Fat Percentage Reflect Different Nutritional Markers Independent of BMI in Underweight Women. Nutrients. 2025; 17(11):1766. https://doi.org/10.3390/nu17111766
Chicago/Turabian StyleHiraiwa, Eri, Risako Yamamoto-Wada, Kanako Deguchi, Chihiro Ushiroda, Hiroyuki Naruse, and Katsumi Iizuka. 2025. "Skeletal Muscle Mass Index and Body Fat Percentage Reflect Different Nutritional Markers Independent of BMI in Underweight Women" Nutrients 17, no. 11: 1766. https://doi.org/10.3390/nu17111766
APA StyleHiraiwa, E., Yamamoto-Wada, R., Deguchi, K., Ushiroda, C., Naruse, H., & Iizuka, K. (2025). Skeletal Muscle Mass Index and Body Fat Percentage Reflect Different Nutritional Markers Independent of BMI in Underweight Women. Nutrients, 17(11), 1766. https://doi.org/10.3390/nu17111766