Sweet Taste Receptors’ Genetic Variability in Advanced Potential Targets of Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Descriptive Data of the Sample
2.2.1. Anthropometric Measurements and Vital Constants
2.2.2. Dietary Assessment
2.2.3. Biochemical Parameters
2.2.4. Lifestyle
2.3. Systematic Search for Gene Selection of the Glucosensing Chip
2.4. Genotyping of the Sample
2.5. Statistical Analysis
3. Results
3.1. Design of the Glucosensing Chip
3.2. Genetic and Phenotypic Associations in the Sample
4. Discussion
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Annexe 1
References
- Ordovas, J.M.; Mooser, V. Nutrigenomics and nutrigenetics. Curr. Opin. Lipidol. 2004, 15, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Fenech, M.; El-Sohemy, A.; Cahill, L.; Ferguson, L.R.; French, T.-A.C.; Tai, E.S.; Milner, J.; Koh, W.-P.; Xie, L.; Zucker, M.; et al. Nutrigenetics and Nutrigenomics: Viewpoints on the Current Status and Applications in Nutrition Research and Practice. J. Nutr. Nutr. 2011, 4, 69–89. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, L.R.; De Caterina, R.; Görman, U.; Allayee, H.; Kohlmeier, M.; Prasad, C.; Choi, M.S.; Curi, R.; de Luis, D.A.; Gil, Á.; et al. Guide and Position of the International Society of Nutrigenetics/Nutrigenomics on Personalised Nutrition: Part 1—Fields of Precision Nutrition. Lifestyle Genom. 2016, 9, 12–27. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Nutrigenetics/Nutrigenomics. Annu. Rev. Public Health 2010, 31, 53–68. [Google Scholar] [CrossRef]
- McCarthy, M.I. Genomics, Type 2 Diabetes, and Obesity. N. Engl. J. Med. 2010, 363, 2339–2350. [Google Scholar] [CrossRef]
- Fall, T.; Ingelsson, E. Genome-wide association studies of obesity and metabolic syndrome. Mol. Cell. Endocrinol. 2014, 382, 740–757. [Google Scholar] [CrossRef]
- The LifeLines Cohort Study; The ADIPOGen Consortium; The AGEN-BMI Working Group; The CARDIOGRAMplusC4D Consortium; The CKDGen Consortium; The GLGC; The ICBP; The MAGIC Investigators; The MuTHER Consortium; The MIGen Consortium; et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015, 518, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Chu, A.Y.; Kang, J.H.; Huang, J.; Rose, L.M.; Jensen, M.K.; Liang, L.; Curhan, G.C.; Pasquale, L.R.; Wiggs, J.L.; et al. Fried food consumption, genetic risk, and body mass index: Gene-diet interaction analysis in three US cohort studies. BMJ 2014, 348, g1610. [Google Scholar] [CrossRef]
- Casas-Agustench, P.; Arnett, D.K.; Smith, C.E.; Lai, C.-Q.; Parnell, L.D.; Borecki, I.B.; Frazier-Wood, A.C.; Allison, M.; Chen, Y.-D.I.; Taylor, K.D.; et al. Saturated Fat Intake Modulates the Association between an Obesity Genetic Risk Score and Body Mass Index in Two US Populations. J. Acad. Nutr. Diet. 2014, 114, 1954–1966. [Google Scholar] [CrossRef]
- Celis-Morales, C.; Lyall, D.M.; Guo, Y.; Steell, L.; Llanas, D.; Ward, J.; Mackay, D.F.; Biello, S.M.; Bailey, M.E.; Pell, J.P.; et al. Sleep characteristics modify the association of genetic predisposition with obesity and anthropometric measurements in 119,679 UK Biobank participants. Am. J. Clin. Nutr. 2017, 105, 980–990. [Google Scholar] [CrossRef]
- Tyrrell, J.; Wood, A.R.; Ames, R.M.; Yaghootkar, H.; Beaumont, R.N.; Jones, S.E.; Tuke, M.A.; Ruth, K.S.; Freathy, R.M.; Davey Smith, G.; et al. Gene–obesogenic environment interactions in the UK Biobank study. Int. J. Epidemiol. 2017, 46, 559–575. [Google Scholar] [CrossRef]
- Qi, Q.; Li, Y.; Chomistek, A.K.; Kang, J.H.; Curhan, G.C.; Pasquale, L.R.; Willett, W.C.; Rimm, E.B.; Hu, F.B.; Qi, L. Television Watching, Leisure Time Physical Activity, and the Genetic Predisposition in Relation to Body Mass Index in Women and Men. Circulation 2012, 126, 1821–1827. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Rukh, G.; Varga, T.V.; Ali, A.; Kurbasic, A.; Shungin, D.; Ericson, U.; Koivula, R.W.; Chu, A.Y.; Rose, L.M.; et al. Gene × Physical Activity Interactions in Obesity: Combined Analysis of 111,421 Individuals of European Ancestry. PLoS Genet. 2013, 9, e1003607. [Google Scholar] [CrossRef]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Després, J.-P.; Hu, F.B. Sugar-Sweetened Beverages, Obesity, Type 2 Diabetes Mellitus, and Cardiovascular Disease Risk. Circulation 2010, 121, 1356–1364. [Google Scholar] [CrossRef]
- Te Morenga, L.; Mallard, S.; Mann, J. Dietary sugars and body weight: Systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ 2012, 346, e7492. [Google Scholar] [CrossRef]
- Malik, V.S.; Pan, A.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages and weight gain in children and adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2013, 98, 1084–1102. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Chu, A.Y.; Kang, J.H.; Jensen, M.K.; Curhan, G.C.; Pasquale, L.R.; Ridker, P.M.; Hunter, D.J.; Willett, W.C.; Rimm, E.B.; et al. Sugar-sweetened beverages and genetic risk of obesity. N. Engl. J. Med. 2012, 367, 1387–1396. [Google Scholar] [CrossRef] [PubMed]
- Brunkwall, L.; Chen, Y.; Hindy, G.; Rukh, G.; Ericson, U.; Barroso, I.; Johansson, I.; Franks, P.W.; Orho-Melander, M.; Renström, F. Sugar-sweetened beverage consumption and genetic predisposition to obesity in 2 Swedish cohorts. Am. J. Clin. Nutr. 2016, 104, 809–815. [Google Scholar] [CrossRef]
- Laffitte, A.; Neiers, F.; Briand, L. Functional roles of the sweet taste receptor in oral and extraoral tissues. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 379–385. [Google Scholar] [CrossRef]
- Folgueira, C.; Seoane, L.M.; Casanueva, F.F. The Brain-Stomach Connection. In Frontiers of Hormone Research; Delhanty, P.J.D., van der Lely, A.J., Eds.; S. Karger AG: Basel, Switzerland, 2014; Volume 42, pp. 83–92. ISBN 978-3-318-02638-2. [Google Scholar]
- Štimac, D.; Klobučar Majanović, S.; Franjić, N. Stomach—Key Player in the Regulation of Metabolism. Dig. Dis. 2014, 32, 192–201. [Google Scholar] [CrossRef]
- Takai, S.; Yasumatsu, K.; Inoue, M.; Iwata, S.; Yoshida, R.; Shigemura, N.; Yanagawa, Y.; Drucker, D.J.; Margolskee, R.F.; Ninomiya, Y. Glucagon-like peptide-1 is specifically involved in sweet taste transmission. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2015, 29, 2268–2280. [Google Scholar] [CrossRef] [PubMed]
- Hira, T.; Pinyo, J.; Hara, H. What Is GLP-1 Really Doing in Obesity? Trends Endocrinol. Metab. TEM 2020, 31, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Su, Z.; Li, Y.-C.; Cao, B.-Y.; Su, C.; Gong, C.-X. Relationship of Glucagon-like Peptide 1 and Peptide YY with Catch-up Growth in Children Born Small for Gestational Age. J. Clin. Res. Pediatr. Endocrinol. 2024, 16, 69–75. [Google Scholar] [CrossRef]
- Ponnusamy, V.; Subramanian, G.; Vasanthakumar, K.; Muthuswamy, K.; Panneerselvan, P.; Krishnan, V.; Subramaniam, S. T1R2/T1R3 polymorphism affects sweet and fat perception: Correlation between SNP and BMI in the context of obesity development | Request PDF. Hum. Genet. 2025, 144, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Keast, R.S.J.; Roura, E. Salivary leptin and TAS1R2/TAS1R3 polymorphisms are related to sweet taste sensitivity and carbohydrate intake from a buffet meal in healthy young adults. Br. J. Nutr. 2017, 118, 763–770. [Google Scholar] [CrossRef]
- Pang, M.D.; Goossens, G.H.; Blaak, E.E. The Impact of Artificial Sweeteners on Body Weight Control and Glucose Homeostasis. Front. Nutr. 2021, 7. [Google Scholar] [CrossRef]
- Toews, I.; Lohner, S.; Küllenberg de Gaudry, D.; Sommer, H.; Meerpohl, J.J. Association between intake of non-sugar sweeteners and health outcomes: Systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies. BMJ 2019, 364, k4718. [Google Scholar] [CrossRef]
- Kurshed, A.A.M.; Ádány, R.; Diószegi, J. The Impact of Taste Preference-Related Gene Polymorphisms on Alcohol Consumption Behavior: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 15989. [Google Scholar] [CrossRef]
- Espinosa-Salinas, I.; de la Iglesia, R.; Colmenarejo, G.; Molina, S.; Reglero, G.; Martinez, J.A.; Loria-Kohen, V.; Ramirez de Molina, A. GCKR rs780094 Polymorphism as A Genetic Variant Involved in Physical Exercise. Genes 2019, 10, 570. [Google Scholar] [CrossRef]
- Peeters, A.; Beckers, S.; Mertens, I.; Van Hul, W.; Van Gaal, L. The G1422A variant of the cannabinoid receptor gene (CNR1) is associated with abdominal adiposity in obese men. Endocrine 2007, 31, 138–141. [Google Scholar] [CrossRef]
- Gazzerro, P.; Caruso, M.G.; Notarnicola, M.; Misciagna, G.; Guerra, V.; Laezza, C.; Bifulco, M. Association between cannabinoid type-1 receptor polymorphism and body mass index in a southern Italian population. Int. J. Obes. 2007, 31, 908–912. [Google Scholar] [CrossRef]
- Ahmed, R.H.; Huri, H.Z.; Al-Hamodi, Z.; Salem, S.D.; Al-absi, B.; Muniandy, S. Association of DPP4 Gene Polymorphisms with Type 2 Diabetes Mellitus in Malaysian Subjects. PLoS ONE 2016, 11, e0154369. [Google Scholar] [CrossRef] [PubMed]
- Sauber, J.; Grothe, J.; Behm, M.; Scherag, A.; Grallert, H.; Illig, T.; Hinney, A.; Hebebrand, J.; Wiegand, S.; Grüters, A.; et al. Association of variants in gastric inhibitory polypeptide receptor gene with impaired glucose homeostasis in obese children and adolescents from Berlin. Eur. J. Endocrinol. 2010, 163, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Vogel, C.I.; Scherag, A.; Brönner, G.; Nguyen, T.T.; Wang, H.-J.; Grallert, H.; Bornhorst, A.; Rosskopf, D.; Völzke, H.; Reinehr, T.; et al. Gastric inhibitory polypeptide receptor: Association analyses for obesity of several polymorphisms in large study groups. BMC Med. Genet. 2009, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Felder, T.K.; Oberkofler, H.; Weitgasser, R.; Mackevics, V.; Krempler, F.; Paulweber, B.; Patsch, W. The SREBF-1 locus is associated with type 2 diabetes and plasma adiponectin levels in a middle-aged Austrian population. Int. J. Obes. 2007, 31, 1099–1103. [Google Scholar] [CrossRef]
- Durand, E.; Lecoeur, C.; Delplanque, J.; Benzinou, M.; Degraeve, F.; Boutin, P.; Marre, M.; Balkau, B.; Charpentier, G.; Froguel, P.; et al. Evaluating the Association of FAAH Common Gene Variation with Childhood, Adult Severe Obesity and Type 2 Diabetes in the French Population. Obes. Facts 2008, 1, 305–309. [Google Scholar] [CrossRef]
- Zhang, Y.; Sonnenberg, G.E.; Baye, T.M.; Littrell, J.; Gunnell, J.; DeLaForest, A.; MacKinney, E.; Hillard, C.J.; Kissebah, A.H.; Olivier, M.; et al. Obesity-related dyslipidemia associated with FAAH, independent of insulin response, in multigenerational families of Northern European descent. Pharmacogenomics 2009, 10, 1929–1939. [Google Scholar] [CrossRef]
- Han, P.; Keast, R.; Roura, E. TAS1R1 and TAS1R3 Polymorphisms Relate to Energy and Protein-Rich Food Choices from a Buffet Meal Respectively. Nutrients 2018, 10, 1906. [Google Scholar] [CrossRef]
- Esberg, A.; Haworth, S.; Hasslöf, P.; Lif Holgerson, P.; Johansson, I. Oral Microbiota Profile Associates with Sugar Intake and Taste Preference Genes. Nutrients 2020, 12, 681. [Google Scholar] [CrossRef]
- Segrè, A.V.; Wei, N.; DIAGRAM Consortium; MAGIC Investigators; Altshuler, D.; Florez, J.C. Pathways Targeted by Antidiabetes Drugs Are Enriched for Multiple Genes Associated With Type 2 Diabetes Risk. Diabetes 2015, 64, 1470–1483. [Google Scholar] [CrossRef]
- Frayling, T.M.; Beaumont, R.N.; Jones, S.E.; Yaghootkar, H.; Tuke, M.A.; Ruth, K.S.; Casanova, F.; West, B.; Locke, J.; Sharp, S.; et al. A Common Allele in FGF21 Associated with Sugar Intake Is Associated with Body Shape, Lower Total Body-Fat Percentage, and Higher Blood Pressure. Cell Rep. 2018, 23, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Søberg, S.; Sandholt, C.H.; Jespersen, N.Z.; Toft, U.; Madsen, A.L.; Von Holstein-Rathlou, S.; Grevengoed, T.J.; Christensen, K.B.; Bredie, W.L.P.; Potthoff, M.J.; et al. FGF21 Is a Sugar-Induced Hormone Associated with Sweet Intake and Preference in Humans. Cell Metab. 2017, 25, 1045–1053.e6. [Google Scholar] [CrossRef] [PubMed]
- Chu, A.Y.; Workalemahu, T.; Paynter, N.P.; Rose, L.M.; Giulianini, F.; Tanaka, T.; Ngwa, J.S.; Qi, Q.; Curhan, G.C.; Rimm, E.B.; et al. Novel locus including FGF21 is associated with dietary macronutrient intake. Hum. Mol. Genet. 2013, 22, 1895–1902. [Google Scholar] [CrossRef]
- Kanai, M.; Akiyama, M.; Takahashi, A.; Matoba, N.; Momozawa, Y.; Ikeda, M.; Iwata, N.; Ikegawa, S.; Hirata, M.; Matsuda, K.; et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 2018, 50, 390–400. [Google Scholar] [CrossRef]
- Dias, A.G.; Eny, K.M.; Cockburn, M.; Chiu, W.; Nielsen, D.E.; Duizer, L.; El-Sohemy, A. Variation in the TAS1R2 Gene, Sweet Taste Perception and Intake of Sugars. J. Nutr. Nutr. 2015, 8, 81–90. [Google Scholar] [CrossRef]
- Robino, A.; Bevilacqua, L.; Pirastu, N.; Situlin, R.; Di Lenarda, R.; Gasparini, P.; Navarra, C.O. Polymorphisms in sweet taste genes (TAS1R2 and GLUT2), sweet liking, and dental caries prevalence in an adult Italian population. Genes Nutr. 2015, 10, 34. [Google Scholar] [CrossRef] [PubMed]
- Al-Daghri, N.M.; Alkharfy, K.M.; Al-Attas, O.S.; Krishnaswamy, S.; Mohammed, A.K.; Albagha, O.M.; Alenad, A.M.; Chrousos, G.P.; Alokail, M.S. Association between type 2 diabetes mellitus-related SNP variants and obesity traits in a Saudi population. Mol. Biol. Rep. 2014, 41, 1731–1740. [Google Scholar] [CrossRef]
- Emilsson, V.; Ilkov, M.; Lamb, J.R.; Finkel, N.; Gudmundsson, E.F.; Pitts, R.; Hoover, H.; Gudmundsdottir, V.; Horman, S.R.; Aspelund, T.; et al. Co-regulatory networks of human serum proteins link genetics to disease. Science 2018, 361, 769–773. [Google Scholar] [CrossRef]
- Zavarella, S.; Petrone, A.; Zampetti, S.; Gueorguiev, M.; Spoletini, M.; Mein, C.A.; Leto, G.; Korbonits, M.; Buzzetti, R. A new variation in the promoter region, the −604 C>T, and the Leu72Met polymorphism of the ghrelin gene are associated with protection to insulin resistance. Int. J. Obes. 2008, 32, 663–668. [Google Scholar] [CrossRef]
- May-Wilson, S.; Matoba, N.; Wade, K.H.; Hottenga, J.-J.; Concas, M.P.; Mangino, M.; Grzeszkowiak, E.J.; Menni, C.; Gasparini, P.; Timpson, N.J.; et al. Large-scale GWAS of food liking reveals genetic determinants and genetic correlations with distinct neurophysiological traits. Nat. Commun. 2022, 13, 2743. [Google Scholar] [CrossRef]
- Gaulton, K.J.; Willer, C.J.; Li, Y.; Scott, L.J.; Conneely, K.N.; Jackson, A.U.; Duren, W.L.; Chines, P.S.; Narisu, N.; Bonnycastle, L.L.; et al. Comprehensive Association Study of Type 2 Diabetes and Related Quantitative Traits With 222 Candidate Genes. Diabetes 2008, 57, 3136–3144. [Google Scholar] [CrossRef] [PubMed]
- for the GDS Group; Rathmann, W.; Strassburger, K.; Bongaerts, B.; Kuss, O.; Müssig, K.; Burkart, V.; Szendroedi, J.; Kotzka, J.; Knebel, B.; et al. A variant of the glucose transporter gene SLC2A2 modifies the glycaemic response to metformin therapy in recently diagnosed type 2 diabetes. Diabetologia 2019, 62, 286–291. [Google Scholar] [CrossRef]
- Xi, C.; Miyaki, K.; Ikeda, S.; Song, Y.; Sinbo, T.; Muramatsu, M. Association of GLUT4 gene variants with HbA1c level in Japanese men. Endocr. J. 2012, 59, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Liu, F.; Li, X.-M.; Zhao, Q.; Luo, J.-Y.; Zhang, J.-Y.; Yang, Y.-N. GLUT4 gene rs5418 polymorphism is associated with increased coronary heart disease risk in a Uygur Chinese population. BMC Cardiovasc. Disord. 2022, 22, 191. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, Z.; Davis, C.; Loxton, N.J.; Kaplan, A.S.; Levitan, R.D.; Carter, J.C.; Kennedy, J.L. Association between MC4R rs17782313 polymorphism and overeating behaviors. Int. J. Obes. 2015, 39, 114–120. [Google Scholar] [CrossRef]
- Gueorguiev, M.; Lecoeur, C.; Meyre, D.; Benzinou, M.; Mein, C.A.; Hinney, A.; Vatin, V.; Weill, J.; Heude, B.; Hebebrand, J.; et al. Association Studies on Ghrelin and Ghrelin Receptor Gene Polymorphisms with Obesity. Obesity 2009, 17, 745–754. [Google Scholar] [CrossRef]
- Abadi, A.; Alyass, A.; Robiou Du Pont, S.; Bolker, B.; Singh, P.; Mohan, V.; Diaz, R.; Engert, J.C.; Yusuf, S.; Gerstein, H.C.; et al. Penetrance of Polygenic Obesity Susceptibility Loci across the Body Mass Index Distribution. Am. J. Hum. Genet. 2017, 101, 925–938. [Google Scholar] [CrossRef]
- Depoortere, I. Taste receptors of the gut: Emerging roles in health and disease. Gut 2014, 63, 179–190. [Google Scholar] [CrossRef]
- Shirazi-Beechey, S.P.; Daly, K.; Al-Rammahi, M.; Moran, A.W.; Bravo, D. Role of nutrient-sensing taste 1 receptor (T1R) family members in gastrointestinal chemosensing. Br. J. Nutr. 2014, 111, S8–S15. [Google Scholar] [CrossRef]
- Widmayer, P.; Küper, M.; Kramer, M.; Königsrainer, A.; Breer, H. Altered expression of gustatory-signaling elements in gastric tissue of morbidly obese patients. Int. J. Obes. 2012, 36, 1353–1359. [Google Scholar] [CrossRef]
- Young, R.L.; Sutherland, K.; Pezos, N.; Brierley, S.M.; Horowitz, M.; Rayner, C.K.; Blackshaw, L.A. Expression of taste molecules in the upper gastrointestinal tract in humans with and without type 2 diabetes. Gut 2009, 58, 337–346. [Google Scholar] [CrossRef]
- Gómez De Cedrón, M.; Wagner, S.; Reguero, M.; Menéndez-Rey, A.; Ramírez De Molina, A. Miracle Berry as a Potential Supplement in the Control of Metabolic Risk Factors in Cancer. Antioxidants 2020, 9, 1282. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.K.; Devi, L.A. The Highs and Lows of Cannabinoid Receptor Expression in Disease: Mechanisms and Their Therapeutic Implications. Pharmacol. Rev. 2011, 63, 461–470. [Google Scholar] [CrossRef]
- Viveros, M.; De Fonseca, F.; Bermudez-Silva, F.; McPartland, J. Critical Role of the Endocannabinoid System in the Regulation of Food Intake and Energy Metabolism, with Phylogenetic, Developmental, and Pathophysiological Implications. Endocrine‚ Metab. Immune Disord.-Drug Targets 2008, 8, 220–230. [Google Scholar] [CrossRef]
- Buraczynska, M.; Wacinski, P.; Zukowski, P.; Dragan, M.; Ksiazek, A. Common polymorphism in the cannabinoid type 1 receptor gene (CNR1) is associated with microvascular complications in type 2 diabetes. J. Diabetes Complicat. 2014, 28, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.-C.; Feng, P. G1359A Polymorphism in the Cannabinoid Receptor-1 Gene Is Associated with Metabolic Syndrome in the Chinese Han Population. Arch. Med. Res. 2010, 41, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Sadeghian, M.; Rahmani, S.; Mansoori, A. G1359A Variant of the Cannabinoid Receptor Gene (rs1049353) and Obesity-Related Traits and Related Endophenotypes: A Meta-Analysis. Ann. Nutr. Metab. 2018, 73, 76–85. [Google Scholar] [CrossRef]
- De Luis, D.A.; Izaola, O.; Aller, R.; Lopez, J.J.; Torres, B.; Diaz, G.; Gomez, E.; Romero, E. Association of G1359A polymorphism of the cannabinoid receptor gene (CNR1) with macronutrient intakes in obese females. J. Hum. Nutr. Diet. 2016, 29, 118–123. [Google Scholar] [CrossRef]
- De Luis, D.A.; Sagrado, M.G.; Aller, R.; Izaola, O.; Conde, R. Relation of G1359A polymorphism of the cannabinoid receptor (CB1) gene with metabolic syndrome by ATP III classification. Diabetes Metab. Res. Rev. 2011, 27, 506–511. [Google Scholar] [CrossRef]
- De Luis, D.A.; González Sagrado, M.; Aller, R.; Izaola, O.; Conde, R. Influence of G1359A polymorphism of the cannabinoid receptor gene on anthropometric parameters and insulin resistance in women with obesity. Metabolism 2011, 60, 272–276. [Google Scholar] [CrossRef]
- Frost, M.; Nielsen, T.L.; Wraae, K.; Hagen, C.; Piters, E.; Beckers, S.; De Freitas, F.; Brixen, K.; Van Hul, W.; Andersen, M. Polymorphisms in the endocannabinoid receptor 1 in relation to fat mass distribution. Eur. J. Endocrinol. 2010, 163, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Doris, J.M.; Millar, S.A.; Idris, I.; O’Sullivan, S.E. Genetic polymorphisms of the endocannabinoid system in obesity and diabetes. Diabetes Obes. Metab. 2019, 21, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Lamers, D.; Famulla, S.; Wronkowitz, N.; Hartwig, S.; Lehr, S.; Ouwens, D.M.; Eckardt, K.; Kaufman, J.M.; Ryden, M.; Müller, S.; et al. Dipeptidyl Peptidase 4 Is a Novel Adipokine Potentially Linking Obesity to the Metabolic Syndrome. Diabetes 2011, 60, 1917–1925. [Google Scholar] [CrossRef] [PubMed]
- Sell, H.; Blüher, M.; Klöting, N.; Schlich, R.; Willems, M.; Ruppe, F.; Knoefel, W.T.; Dietrich, A.; Fielding, B.A.; Arner, P.; et al. Adipose Dipeptidyl Peptidase-4 and Obesity. Diabetes Care 2013, 36, 4083–4090. [Google Scholar] [CrossRef]
- Zhao, T.; Parikh, P.; Bhashyam, S.; Bolukoglu, H.; Poornima, I.; Shen, Y.-T.; Shannon, R.P. Direct Effects of Glucagon-Like Peptide-1 on Myocardial Contractility and Glucose Uptake in Normal and Postischemic Isolated Rat Hearts. J. Pharmacol. Exp. Ther. 2006, 317, 1106–1113. [Google Scholar] [CrossRef]
- Zheng, T.; Chen, T.; Liu, Y.; Gao, Y.; Tian, H. Increased plasma DPP4 activity predicts new-onset hypertension in Chinese over a 4-year period: Possible associations with inflammation and oxidative stress. J. Hum. Hypertens. 2015, 29, 424–429. [Google Scholar] [CrossRef]
- Mulvihill, E.E.; Drucker, D.J. Pharmacology, Physiology, and Mechanisms of Action of Dipeptidyl Peptidase-4 Inhibitors. Endocr. Rev. 2014, 35, 992–1019. [Google Scholar] [CrossRef]
- Aghili, N.; Devaney, J.M.; Alderman, L.O.; Zukowska, Z.; Epstein, S.E.; Burnett, M.S. Polymorphisms in dipeptidyl peptidase IV gene are associated with the risk of myocardial infarction in patients with atherosclerosis. Neuropeptides 2012, 46, 367–371. [Google Scholar] [CrossRef]
- Vargas-Alarcón, G.; González-Salazar, M.D.C.; Vázquez-Vázquez, C.; Hernández-Díaz Couder, A.; Sánchez-Muñoz, F.; Reyes-Barrera, J.; Criales-Vera, S.A.; Sánchez-Guerra, M.; Osorio-Yáñez, C.; Posadas-Sánchez, R. The rs12617336 and rs17574 Dipeptidyl Peptidase-4 Polymorphisms Are Associated With Hypoalphalipoproteinemia and Dipeptidyl Peptidase-4 Serum Levels: A Case-Control Study of the Genetics of Atherosclerotic Disease (GEA) Cohort. Front. Genet. 2021, 12, 592646. [Google Scholar] [CrossRef]
- Teymoori, F.; Mokhtari, E.; Salehi, P.; Hosseini-Esfahani, F.; Mirmiran, P.; Azizi, F. A nutrient pattern characterized by vitamin A, C, B6, potassium, and fructose is associated with reduced risk of insulin-related disorders: A prospective study among participants of Tehran lipid and glucose study. Diabetol. Metab. Syndr. 2021, 13, 12. [Google Scholar] [CrossRef]
- Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in Prevention and Therapy. Nutrients 2015, 7, 8199–8226. [Google Scholar] [CrossRef]
- Firouzi, A.; Maadani, M.; Kiani, R.; Shakerian, F.; Sanati, H.R.; Zahedmehr, A.; Nabavi, S.; Heidarali, M. Intravenous magnesium sulfate: New method in prevention of contrast-induced nephropathy in primary percutaneous coronary intervention. Int. Urol. Nephrol. 2015, 47, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Abib, B.; Qin, Z.; Ze, X.; Ali, S.E. Dietary macrominerals: Updated review of their role and orchestration in human nutrition throughout the life cycle with sex differences. Curr. Res. Food Sci. 2023, 6, 100450. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.W.; Rucker, R.B. Pantothenic Acid. In Present Knowledge in Nutrition; Erdman, J.W., Macdonald, I.A., Zeisel, S.H., Eds.; Wiley: Hoboken, NJ, USA, 2012; pp. 375–390. ISBN 978-0-470-95917-6. [Google Scholar]
- Hodges, R.E.; Ohlson, M.A.; Bean, W.B. Pantothenic Acid Deficiency in Man1. J. Clin. Investig. 1958, 37, 1642–1657. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Patassini, S.; Begley, P.; Church, S.; Waldvogel, H.J.; Faull, R.L.M.; Unwin, R.D.; Cooper, G.J.S. Cerebral deficiency of vitamin B5 (d-pantothenic acid; pantothenate) as a potentially-reversible cause of neurodegeneration and dementia in sporadic Alzheimer’s disease. Biochem. Biophys. Res. Commun. 2020, 527, 676–681. [Google Scholar] [CrossRef]
- Marty, V.N.; Farokhnia, M.; Munier, J.J.; Mulpuri, Y.; Leggio, L.; Spigelman, I. Long-Acting Glucagon-Like Peptide-1 Receptor Agonists Suppress Voluntary Alcohol Intake in Male Wistar Rats. Front. Neurosci. 2020, 14, 599646. [Google Scholar] [CrossRef]
- Eren-Yazicioglu, C.Y.; Yigit, A.; Dogruoz, R.E.; Yapici-Eser, H. Can GLP-1 Be a Target for Reward System Related Disorders? A Qualitative Synthesis and Systematic Review Analysis of Studies on Palatable Food, Drugs of Abuse, and Alcohol. Front. Behav. Neurosci. 2021, 14, 614884. [Google Scholar] [CrossRef]
- Seino, Y.; Fukushima, M.; Yabe, D. GIP and GLP-1, the two incretin hormones: Similarities and differences: Similarities and differences of GIP and GLP-1. J. Diabetes Investig. 2010, 1, 8–23. [Google Scholar] [CrossRef]
- Klausen, M.K.; Thomsen, M.; Wortwein, G.; Fink-Jensen, A. The role of glucagon-like peptide 1 (GLP-1) in addictive disorders. Br. J. Pharmacol. 2022, 179, 625–641. [Google Scholar] [CrossRef]
- Tsermpini, E.E.; Goričar, K.; Kores Plesničar, B.; Plemenitaš Ilješ, A.; Dolžan, V. Genetic Variability of Incretin Receptors and Alcohol Dependence: A Pilot Study. Front. Mol. Neurosci. 2022, 15, 908948. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; Li, P.; Xie, X.; Guo, Q.; Tian, L.; Ma, X.; Zhang, J.; Liu, J.; Gao, J. Association of sterol regulatory element-binding protein-1c gene polymorphism with type 2 diabetes mellitus, insulin resistance and blood lipid levels in Chinese population. Diabetes Res. Clin. Pract. 2008, 82, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.M.; Iqbal, S.; Naseem, I. Ameliorative effect of riboflavin on hyperglycemia, oxidative stress and DNA damage in type-2 diabetic mice: Mechanistic and therapeutic strategies. Arch. Biochem. Biophys. 2015, 584, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Legaki, E.; Tsaklakidou, D.; Hatzimanolis, A.; Segredou, E.; Petalotis, M.; Moularogiorgou, G.; Mouchtouri, V.; Lykouras, L.; Stefanis, N.C.; Gazouli, M. Association of Alcohol Use Disorder Risk with ADH1B, DRD2, FAAH, SLC39A8, GCKR, and PDYN Genetic Polymorphisms. In Vivo 2022, 36, 2092–2104. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.D.; Brönner, G.; Wandolski, M.; Carrie, J.; Nguyen, T.T.; Greene, B.H.; Scherag, A.; Grallert, H.; Vogel, C.I.; Scherag, S.; et al. Mutation screen and association studies for the fatty acid amide hydrolase (FAAH) gene and early onset and adult obesity. BMC Med. Genet. 2010, 11, 2. [Google Scholar] [CrossRef]
- Sipe, J.C.; Waalen, J.; Gerber, A.; Beutler, E. Overweight and obesity associated with a missense polymorphism in fatty acid amide hydrolase (FAAH). Int. J. Obes. 2005, 29, 755–759. [Google Scholar] [CrossRef]
- Shigemura, N.; Shirosaki, S.; Sanematsu, K.; Yoshida, R.; Ninomiya, Y. Genetic and Molecular Basis of Individual Differences in Human Umami Taste Perception. PLoS ONE 2009, 4, e6717. [Google Scholar] [CrossRef]
- Rawal, S.; Hayes, J.E.; Wallace, M.R.; Bartoshuk, L.M.; Duffy, V.B. Do Polymorphisms in the TAS1R1 Gene Contribute to Broader Differences in Human Taste Intensity? Chem. Senses 2013, 38, 719–728. [Google Scholar] [CrossRef]
- Tanaka, M. Molecular mechanism of obesity-induced adipose tissue inflammation; the role of Mincle in adipose tissue fibrosis and ectopic lipid accumulation. Endocr. J. 2020, 67, 107–111. [Google Scholar] [CrossRef]
(A) Anthropometry, Vital signs | BMI | <25 | BMI | 25–30 | BMI | >30 | ||||||||||
n | Min | Max | Mean | SD | n | Min | Max | Mean | SD | n | Min | Max | Mean | SD | ||
Weight (Kg) | 217 | 42.3 | 95.2 | 63.87 | 8.99 | 256 | 144.6 | 199.5 | 166.97 | 9.37 | 198 | 145.5 | 194.5 | 166.93 | 9.06 | |
Height (cm) | 215 | 150 | 195.8 | 168.62 | 8.82 | 256 | 52.7 | 114 | 77.36 | 9.57 | 198 | 64.3 | 131.5 | 92.49 | 13.01 | |
BMI | 217 | 18.2 | 24.9 | 22.41 | 1.65 | 256 | 25 | 30 | 27.57 | 1.45 | 198 | 30.1 | 43.4 | 33.03 | 2.47 | |
% Total fat | 218 | 7.7 | 40.8 | 26.54 | 8.06 | 254 | 11.4 | 46.7 | 35.89 | 8.04 | 196 | 26.5 | 58.7 | 42.72 | 7.43 | |
% Muscle mass | 218 | 23.2 | 46.7 | 32.54 | 5.89 | 254 | 21.5 | 44.4 | 28.37 | 4.97 | 196 | 18.2 | 35.9 | 25.44 | 4.02 | |
Visceral fat (BIA) | 218 | 2 | 9 | 4.76 | 1.59 | 254 | 4.5 | 17 | 8.9 | 2.37 | 196 | 6 | 24 | 12.38 | 4.21 | |
Waist circumference (cm) | 218 | 62 | 96.5 | 77.37 | 6.71 | 255 | 72 | 114.5 | 91.41 | 7.42 | 198 | 81.2 | 132.6 | 105.03 | 10.51 | |
Hip circumference (cm) | 150 | 67 | 121 | 97.5 | 5.74 | 152 | 93.8 | 121 | 107.99 | 5.33 | 153 | 102 | 150 | 117.75 | 7.83 | |
SBP (mmHg) | 208 | 49.5 | 169 | 116.44 | 13.82 | 249 | 71.5 | 170 | 122.08 | 14.86 | 194 | 95 | 190 | 128.65 | 15.22 | |
DBP (mmHg) | 216 | 27.5 | 113 | 71.99 | 10.91 | 255 | 38.5 | 149 | 77.18 | 11.56 | 197 | 61 | 163 | 82.84 | 12.84 | |
(B) Macronutrient | BMI | <25 | BMI | 25–30 | BMI | >30 | ||||||||||
intake | ||||||||||||||||
n | Min | Max | Mean | SD | n | Min | Max | Mean | SD | n | Min | Max | Mean | SD | RDA | |
Calories (Kcal) | 214 | 1004.6 | 4406.9 | 2221.8 | 609.86 | 252 | 986.56 | 4299.12 | 2175.7 | 564.1 | 195 | 1016.93 | 5152.4 | 2144.6 | 541.77 | 1500/2500 |
Carbohydrates (%TEI) | 213 | 74.04 | 525.12 | 214.77 | 69.9 | 242 | 69.12 | 407.87 | 208.79 | 59.33 | 189 | 78.04 | 432.98 | 201.43 | 60.92 | 55 |
Simple sugars (%TEI) | 213 | 19.78 | 221 | 94.3 | 34.8 | 245 | 8.1 | 229.43 | 90.6 | 34.29 | 190 | 21.08 | 195.72 | 84.44 | 32.03 | 10 |
Proteins (%TEI) | 213 | 45.97 | 213.71 | 94.29 | 28.05 | 242 | 39.6 | 195.81 | 92.88 | 24.83 | 189 | 28.09 | 222.63 | 94.5 | 24.09 | 15 |
Lipids (%TEI) | 213 | 31.1 | 282.17 | 99.65 | 33.19 | 242 | 36.55 | 206.38 | 96.37 | 31.73 | 189 | 33.55 | 264.49 | 96.89 | 31.14 | 30 |
Cholesterol (mg/day) | 214 | 88.31 | 884.24 | 341.31 | 134.71 | 252 | 76.4 | 766.33 | 332.28 | 129.69 | 195 | 72.41 | 1013.5 | 355.29 | 149.68 | <300 |
SFA (%TEI) | 213 | 10.04 | 91.22 | 31.7 | 11.78 | 242 | 10.6 | 93.43 | 30.18 | 11.67 | 189 | 8.63 | 99.59 | 30.5 | 11.8 | <10 |
MUFA (%TEI) | 213 | 11.5 | 113.24 | 44.19 | 15.58 | 242 | 13.75 | 101.68 | 43.17 | 15.07 | 189 | 9.4 | 99.22 | 43.24 | 14.28 | 15–30 |
Micronutrient intake | BMI | <25 | BMI | 25–30 | BMI | >30 | ||||||||||
n | Min | Max | Mean | SD | n | Min | Max | Mean | SD | n | Min | Max | Mean | SD | RDA | |
Biotin (µg) | 198 | 4.97 | 75.89 | 30.51 | 12.77 | 221 | 3.51 | 145.89 | 30.17 | 15.01 | 182 | 6.25 | 59.05 | 28.1 | 10.22 | 50 |
Potassium (mg) | 199 | 1157.7 | 7333.7 | 3205.3 | 925.6 | 222 | 1122.4 | 6468.2 | 3136.55 | 869.22 | 182 | 1584.69 | 5548.17 | 2997.73 | 764.71 | 2000 |
Magnesium (mg) | 199 | 127.84 | 726.85 | 323.03 | 102.04 | 222 | 115.46 | 672.27 | 317.27 | 95.09 | 182 | 145.76 | 598.63 | 303.28 | 76.76 | 375 |
Iron (mg) | 213 | 7.34 | 37.85 | 15.24 | 4.78 | 251 | 4.27 | 34.31 | 14.93 | 4.39 | 192 | 7.41 | 29.24 | 14.63 | 4.12 | 14 |
Calcium (mg) | 213 | 235 | 2124 | 935.5 | 309.1 | 251 | 229 | 2481.74 | 902.46 | 299.83 | 192 | 317.03 | 2151.19 | 879.67 | 297.86 | 800 |
Folic acid (µg) | 213 | 97.15 | 1111.8 | 278.22 | 112.96 | 251 | 85.84 | 1003.89 | 288.98 | 112.8 | 192 | 91.53 | 692.98 | 276.73 | 100.74 | 200 |
Vit A (µg) | 212 | 122 | 3600.3 | 978.69 | 454.39 | 250 | 175.37 | 19631.4 | 1079.68 | 1576.07 | 192 | 193.58 | 37,063.68 | 1190.02 | 3173.61 | 700/900 |
Vit B1 (mg) | 199 | 0.75 | 3.77 | 1.54 | 0.52 | 228 | 0.57 | 3.16 | 1.49 | 0.5 | 184 | 0.53 | 3.09 | 1.43 | 0.44 | 1.1 |
Vit B2 (mg) | 199 | 0.62 | 4.63 | 1.98 | 0.6 | 228 | 0.58 | 5.03 | 1.91 | 0.63 | 184 | 0.65 | 4.84 | 1.88 | 0.61 | 1.4 |
Vit B3 (mg) | 198 | 14.83 | 803.49 | 42.97 | 55.64 | 221 | 16.72 | 76.6 | 38.23 | 10.34 | 182 | 12.71 | 86.77 | 38.29 | 10.91 | 16 |
Vit B5 (mg) | 198 | 1.46 | 10.88 | 5.58 | 1.46 | 221 | 2.13 | 15.21 | 5.66 | 1.72 | 182 | 2.44 | 19.03 | 5.52 | 1.79 | 5 |
Vit B12 (mg) | 199 | 1.66 | 50.57 | 6.8 | 4.93 | 228 | 1.07 | 74.2 | 7.3 | 7.03 | 184 | 1.26 | 42.04 | 6.81 | 4.84 | 2.5 |
Vit C (mg) | 213 | 25.21 | 391.77 | 141.07 | 68.91 | 251 | 12.85 | 455.76 | 147.18 | 75.82 | 192 | 18.92 | 351.58 | 132.87 | 71.73 | 80 |
Vit D (mg) | 213 | 0.04 | 24.12 | 3.87 | 3.73 | 251 | 0.12 | 43.6 | 3.56 | 4.34 | 192 | 0.05 | 29.51 | 3.38 | 3.22 | 5 |
(C) Biochemical data | BMI | <25 | BMI | 25–30 | BMI | >30 | ||||||||||
n | Min | Max | Mean | SD | n | Min | Max | Mean | SD | n | Min | Max | Mean | SD | RDA | |
Glucose (mg/dL) | 118 | 65 | 121 | 83.75 | 9.02 | 238 | 62 | 212.75 | 86.81 | 13.2 | 197 | 63 | 170 | 88.5 | 12.81 | 74–115 |
Cholesterol (mg/dL) | 189 | 124.21 | 291.2 | 191.01 | 32.65 | 256 | 118.2 | 309.5 | 203.8 | 36.32 | 196 | 123.7 | 316.7 | 209.89 | 38.2 | <200 |
HDL (mg/dL) | 189 | 31.97 | 94 | 58.26 | 12.72 | 256 | 31.1 | 109.6 | 53.78 | 12.9 | 196 | 21.7 | 97.3 | 50.7 | 11.63 | <50 |
LDL (mg/dL) | 189 | 44.32 | 196.9 | 115.39 | 29.41 | 254 | 65.15 | 214 | 128.3 | 31.92 | 196 | 62 | 233 | 135.08 | 33.33 | <160 |
Triglycerides (mg/dL) | 189 | 25 | 200 | 74.06 | 32.01 | 255 | 26 | 516 | 104.89 | 57.25 | 196 | 37 | 605 | 115.44 | 62.76 | <150 |
Insulin (ng/dL) | 80 | 2.4 | 18.4 | 5.84 | 2.66 | 196 | 1.8 | 39.8 | 7.89 | 3.8 | 181 | 2.7 | 37.4 | 11.14 | 5.45 | 5–15 |
Leptin (ng/dL) | 31 | 0.11 | 88.19 | 17.21 | 17.81 | 15 | 0.89 | 55.9 | 18.91 | 16.22 | 197 | 9 | 77 | 19.63 | 7.22 | 1–15 |
GOT (units/L) | 162 | 8 | 34 | 18.52 | 4.89 | 241 | 11 | 45 | 18.78 | 5.6 | 197 | 6 | 156 | 25.02 | 14.96 | <31 |
GPT (units/L) | 162 | 6 | 47 | 16.55 | 6.29 | 241 | 5 | 89 | 20.23 | 11.06 | 197 | 0.11 | 9.76 | 1.76 | 1.49 | <35 |
IL6 (ng/L) | 28 | 0.1 | 6.48 | 1.97 | 1.44 | 99 | 0.13 | 66.03 | 2.22 | 6.6 | 97 | 0.36 | 14.81 | 3.11 | 2.74 | 0.4–1.4 |
IL8 (ng/L) | 61 | 0.29 | 12.81 | 3.32 | 2.61 | 121 | 0.46 | 22.89 | 3.2 | 3.15 | 96 | 0.14 | 5.7 | 1.26 | 0.88 | 2–10 |
IL1b (ng/L) | 22 | 0.2 | 3.21 | 1.53 | 0.79 | 62 | 0.15 | 3.67 | 1.24 | 0.8 | 97 | 0.65 | 17.43 | 4.3 | 2.41 | 200–500 |
TNFα (ng/L) | 61 | 0.88 | 28.84 | 3.96 | 3.69 | 121 | 0.82 | 29.43 | 4.39 | 3.38 | 155 | 87.1 | 249 | 153.07 | 31.19 | 0.75–5 |
APOA1 (mg/dL) | 36 | 136 | 214 | 164.91 | 20.6 | 121 | 104 | 317 | 162.27 | 31.74 | 196 | 63 | 170 | 88.5 | 12.81 | 120–180 |
(D) Eating habits | BMI | <25 | BMI | 25–30 | BMI | >30 | ||||||||||
n | Min | Max | Mean | SD | n | Min | Max | Mean | SD | n | Min | Max | Mean | SD | ||
Meals out Mon-Fri | 203 | 0 | 3 | 0.68 | 0.86 | 234 | 2 | 5 | 3.72 | 0.77 | 191 | 0 | 5 | 0.5 | 0.78 | |
Meals at home Mon-Fri | 203 | 1 | 10 | 3.46 | 1.23 | 234 | 0 | 4 | 0.65 | 0.89 | 191 | 0 | 5 | 3.45 | 1.1 | |
Meals out Sat-Sun | 203 | 0 | 4 | 0.77 | 0.79 | 234 | 0 | 14 | 3.5 | 1.47 | 191 | 0 | 4.5 | 0.6 | 0.77 | |
Meals at home Sat-Sun | 203 | 0 | 6 | 3.31 | 1.08 | 234 | 0 | 3 | 0.59 | 0.66 | 191 | 0 | 5 | 3.33 | 1.11 | |
Water (mL) | 181 | 0 | 4500 | 1442.99 | 735.08 | 233 | 0 | 3000 | 1294.15 | 594.07 | 196 | 0 | 3500 | 1285.26 | 704.46 | |
Glycemic index | 198 | 33.91 | 98.09 | 70.05 | 20.42 | 227 | 35.89 | 119.76 | 75.68 | 18.73 | 184 | 32.5 | 118.72 | 74.84 | 19.56 | |
(E) Other variables related to lifestyle variables | ||||||||||||||||
Exercise (week) | n | 0 | 1 | 2 | 3 | 4 | >5 | |||||||||
647 | 34% | 7.88% | 18.39% | 16.54% | 17.93% | 5.26% | ||||||||||
Urination (day) | n | dk/na | 2 | 3 | 4 | 5 | >5 | |||||||||
639 | 1.56% | 1.25% | 8.76% | 15.02% | 26.29% | 47.10% | ||||||||||
Bowel movement | n | dk/na | Daily | 2 days | >2 days | |||||||||||
639 | 1.56% | 77.15% | 14.76% | 6.42% | ||||||||||||
Alcohol/week | n | 0 | 0–5 | 5–10 | 10–15 | |||||||||||
622 | 33.12% | 49.04% | 13.83% | 3.05% | ||||||||||||
Mental problems | n | Yes | No | |||||||||||||
Depression | 650 | 0.77% | 99.23% | |||||||||||||
Stress | 636 | 25.47% | 74.53% | |||||||||||||
Anxiety | 643 | 15.71% | 84.29% | |||||||||||||
Antidepressants | 655 | 1.68% | 97.86% | |||||||||||||
Smoking | 651 | 13.82% | 86.18% |
Gene | SNP | MAF | Functionality | Bibliography |
---|---|---|---|---|
CNR1 | rs1049353 | 0.26906 (T) | Synonymous variant | Abdominal adiposity [31], BMI [32] |
DPP4 | rs12617656 | 0.32893 (C) | Intronic variant | Type 2 Diabetes (DM2) [33] |
GIPR | rs1800437 | 0.20971 (C) | Nonsense | Glucose homeostasis [34], obesity [35] |
SREBF1 | rs2297508 | 0.43149 (C) | Non-coding transcription variant | DM2 prevalence, adiponectin levels [36] |
FAAH | rs324420 | 0.199837 (A) | Nonsense | Obesity [37], dyslipemia [38] |
TAS1R1 | rs34160967 | 0.132269 (A) | Nonsense | Higher energy and fat consumption [39] |
rs731024 | 0.335981 (A) | Intronic variant | Sugar intake [40] | |
GIP | rs3809770 | 0.39782 (G) | Upstream variant | Possible DM2 risk [41] |
FGF21 | rs838133 | 0.44310 (A) | Synonymous variant | Macronutrient and sugar intake [42,43] |
rs838145 | 0.39468 (G) | Intronic variant | High carbohydrate and calorie intake [42,44] | |
SLC5A1 | rs9609429 | 0.254067 (C) | Upstream variant | Blood pressure [45] |
TAS1R2 | rs12033832 | 0.32579 (A) | Blood pressure | Blood pressure [26,46] |
rs3935570 | 0.266728 (T) | Intronic variant | Dental caries [47] | |
FTO | rs11642841 | 0.397825 (A) | Intronic variant | Obesity [48] |
INSL5 | rs17495511 | 0.25539 (T) | 2KB upstream variant | Blood proteins [49] |
GNAT3 | rs2074673 | 0.304752 (G) | 3′UTR variant | Oral microbiota [40] |
GHRL | rs27647 | 0.40810 (C) | Intronic variant | Insulin sensitivity [50] |
FUT1 | rs28400014 | 0.48936 (G) | 2KB upstream variant | Taste measurement [51] |
SLC2A2 | rs5400 | 0.136075 (A) | Nonsense | DM2 risk [52] |
rs8192675 | 0.30001 (C) | Intronic variant | Favorable response to DM2 treatment [53] | |
SLC2A4 | rs5415 | 0.292429 (T) | 2KB upstream variant | HbA1c levels [54], heart disease risk [55] |
rs5418 | 0.412875 (G) | 5′UTR variant | ||
MC4R | rs571312 | 0.229418 (A) | No data | BMI and obesity [56] |
GHSR | rs572169 | 0.298022 (T) | Synonymous variant | Obesity [57] |
PCSK1 | rs6235 | 0.26683 (G) | Nonsense | Glucose homeostasis and DM2 [58] |
Gene | SNP | Functionality | Ref.A | MAF | Genotype (%) | HWE | ||
---|---|---|---|---|---|---|---|---|
0 (%) | 1 (%) | 2 (%) | ||||||
CNR1 | rs1049353 | Synonymous variant | C | T = 0.26906 | 56.31 | 37.25 | 6.44 | 0.8719 |
DPP4 | rs12617656 | Intronic variant | T | C = 0.32893 | 48.37 | 40.83 | 10.8 | 0.185 |
GIPR | rs1800437 | Nonsense | G | C = 0.20971 | 67.05 | 29.29 | 3.66 | 0.6294 |
SREBF1 | rs2297508 | Non-coding transcription variant | G | C = 0.43149 | 36.02 | 46.98 | 17 | 0.5129 |
FAAH | rs324420 | Nonsense | C | A = 0.199837 | 65.1 | 31.98 | 2.92 | 0.2696 |
TAS1R1 | rs34160967 | Nonsense | G | A = 0.132269 | 79.37 | 18.74 | 1.89 | 0.1121 |
rs731024 | Intronic variant | G | A = 0.335981 | 47.23 | 40.68 | 12.09 | 0.05 | |
GIP | rs3809770 | Upstream variant | A | G = 0.39782 | 36.24 | 45.96 | 17.8 | 0.1907 |
FGF21 | rs838133 | Synonymous variant | G | A = 0.44310 | 33.5 | 47.1 | 19.4 | 0.2988 |
rs838145 | Intronic variant | A | G = 0.39468 | 32.87 | 50.76 | 16.37 | 0.2422 | |
SLC5A1 | rs9609429 | Upstream variant | T | C = 0.254067 | 59.01 | 35.91 | 5.08 | 0.7787 |
TAS1R2 | rs12033832 | Synonymous variant | G | A = 0.32579 | 45.55 | 44.53 | 9.92 | 0.6184 |
rs3935570 | Intronic variant | G | T = 0.266728 | 53.16 | 39.11 | 7.72 | 0.7444 | |
FTO | rs11642841 | Intronic variant | C | A = 0.397825 | 39.29 | 47.07 | 13.65 | 0.8776 |
INSL5 | rs17495511 | 2KB Upstream variant | C | T = 0.25539 | 58.64 | 35.81 | 5.55 | 0.9802 |
GNAT3 | rs2074673 | 3′UTR variant | A | G = 0.304752 | 50.06 | 41.72 | 8.22 | 0.7978 |
GHRL | rs27647 | Intronic variant | T | C = 0.40810 | 34.18 | 47.72 | 18.1 | 0.6071 |
FUT1 | rs28400014 | 2KB Upstream variant | C | G = 0.48936 | 27.57 | 51.21 | 21.22 | 0.4592 |
SLC2A2 | rs5400 | Nonsense | G | A = 0.136075 | 71.05 | 26.3 | 2.65 | 0.8264 |
rs8192675 | Intronic variant | T | C = 0.30001 | 46.42 | 43.4 | 10.19 | 0.9666 | |
SLC2A4 | rs5415 | 2KB Upstream variant | C | T = 0.292429 | 53.16 | 40.51 | 6.33 | 0.323 |
rs5418 | 5′UTR variant | A | G = 0.412875 | 36.35 | 47.83 | 15.82 | 0.9771 | |
MC4R | rs571312 | No data | C | A = 0.229418 | 65.41 | 31.19 | 3.4 | 0.771 |
GHSR | rs572169 | Synonymous variant | C | T = 0.298022 | 55.42 | 37.66 | 6.93 | 0.7203 |
PCSK1 | rs6235 | Nonsense | C | G = 0.26683 | 60.98 | 33.88 | 5.14 | 0.7226 |
PYY | rs8074783 | No data | A | C = 0.4913 | 40.03 | 46.42 | 13.55 | 0.9807 |
Gene | SNP | Variable | n | Model | Beta | p | padj |
---|---|---|---|---|---|---|---|
CNR1 | rs1049353 | Glycemic index | 579 | Add | −4.23 (−6.8, −1.67) | 0.001 | 0.033 |
DPP4 | rs12617656 | Total food (g) | 564 | Add | −132 (−205, −60) | 3.56 × 10−4 | 0.009 |
Pantothenic acid | 576 | Add | −0.388 (−0.581, −0.194) | 9.39 × 10−5 | 0.002 | ||
Magnesium | 578 | Add | −19.9 (−30.7, −9.04) | 3.47 × 10−4 | 0.009 | ||
Potassium | 578 | Add | −183 (−283, −83.6) | 3.35 × 10−4 | 0.009 | ||
Folic acid | 627 | Add | −21.8 (−34, −9.72) | 4.36 × 10−4 | 0.011 | ||
Carbohydrates | 618 | Add | −12.3 (−19.1, −5.42) | 4.67 × 10−4 | 0.012 | ||
Simple sugars | 622 | Add | −6.76 (−10.6, −2.96) | 5.16 × 10−4 | 0.013 | ||
GIPR | rs1800437 | Legumes | 564 | Cod | −3.62 (−15.3, 8.05)/60.4 (29.3, 91.5) | 4.44 × 10−4 | 0.012 |
Physical exercise | 621 | Add | 0.383 (0.144, 0.622) | 0.002 | 0.044 | ||
SREBF1 | rs2297508 | Riboflavin | 586 | Add | 0.129 (0.0597, 0.198) | 2.72 × 10−4 | 0.007 |
Fe | 630 | Add | 0.79 (0.313, 1.27) | 0.001 | 0.031 | ||
FAAH | rs324420 | TNFα | 309 | Cod | 0.312 (−0.446, 1.07)/3.47 (1.59, 5.35) | 0.002 | 0.039 |
TAS1R1 | rs34160967 | Overweight risk | 648 | Dom | 0.522 (0.345, 0.79) | 0.002 | 0.055 |
rs731024 | Antidepressants | 627 | Add | 0.102 (0.00569, 0.478) | 0.001 | 0.027 | |
GIP | rs3809770 | Alcohol | 629 | Add | 2 (0.763, 3.24) | 0.002 | 0.041 |
FGF21 | rs838133 | Hip circumference | 429 | Cod | −2.48 (−4.62, −0.344)/2.06 (−0.834, 4.96) | 0.002 | 0.053 |
SLC5A1 | rs9609429 | Bowel motility | 600 | Add | 0.121 (0.0459, 0.196) | 0.002 | 0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagner Reguero, S.; Fernández, L.P.; Colmenarejo, G.; Cruz-Gil, S.; Espinosa, I.; Molina, S.; Crespo, M.C.; Aguilar-Aguilar, E.; Marcos-Pasero, H.; de la Iglesia, R.; et al. Sweet Taste Receptors’ Genetic Variability in Advanced Potential Targets of Obesity. Nutrients 2025, 17, 1712. https://doi.org/10.3390/nu17101712
Wagner Reguero S, Fernández LP, Colmenarejo G, Cruz-Gil S, Espinosa I, Molina S, Crespo MC, Aguilar-Aguilar E, Marcos-Pasero H, de la Iglesia R, et al. Sweet Taste Receptors’ Genetic Variability in Advanced Potential Targets of Obesity. Nutrients. 2025; 17(10):1712. https://doi.org/10.3390/nu17101712
Chicago/Turabian StyleWagner Reguero, Sonia, Lara P. Fernández, Gonzalo Colmenarejo, Silvia Cruz-Gil, Isabel Espinosa, Susana Molina, María Carmen Crespo, Elena Aguilar-Aguilar, Helena Marcos-Pasero, Rocío de la Iglesia, and et al. 2025. "Sweet Taste Receptors’ Genetic Variability in Advanced Potential Targets of Obesity" Nutrients 17, no. 10: 1712. https://doi.org/10.3390/nu17101712
APA StyleWagner Reguero, S., Fernández, L. P., Colmenarejo, G., Cruz-Gil, S., Espinosa, I., Molina, S., Crespo, M. C., Aguilar-Aguilar, E., Marcos-Pasero, H., de la Iglesia, R., Loria-Kohen, V., Ruiz, R. R., Laparra-Llopis, M., de Molina, A. R., & Gómez de Cedrón, M. (2025). Sweet Taste Receptors’ Genetic Variability in Advanced Potential Targets of Obesity. Nutrients, 17(10), 1712. https://doi.org/10.3390/nu17101712